organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(But­­oxy­methyl­­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 24 February 2014; accepted 12 March 2014; online 19 March 2014)

In the title solvated salt, C7H16NO+·C24H20B·C2H3N, the C—N bond lengths in the cation are 1.2831 (19), 1.467 (2) and 1.465 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2950 (18) Å shows a double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. The two C atoms of the n-butyl group are disordered over the two sites, with refined occupancy ratios of 0.890 (5):0.110 (5) and 0.888 (4):0.112 (4). In the crystal, C—H⋯π inter­actions occur between the methine H atom, H atoms of the –N(CH3)2 and –CH2 groups of the cation, and two of the phenyl rings of the tetra­phenyl­borate anion. The latter inter­action forms an aromatic pocket in which the cation is embedded. Thus, a two-dimensional pattern is created in the ac plane.

Related literature

For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the crystal structure of (meth­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate, see: Tiritiris et al. (2014[Tiritiris, I., Saur, S. & Kantlehner, W. (2014). Acta Cryst. E70, o333.]).

[Scheme 1]

Experimental

Crystal data
  • C7H16NO+·C24H20B·C2H3N

  • Mr = 490.47

  • Monoclinic, P 21 /n

  • a = 11.2463 (4) Å

  • b = 17.7975 (9) Å

  • c = 14.6666 (7) Å

  • β = 100.821 (3)°

  • V = 2883.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.23 × 0.17 × 0.13 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • 27626 measured reflections

  • 7019 independent reflections

  • 4718 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.01

  • 7019 reflections

  • 352 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.95 (2) 2.55 (2) 3.493 (2) 172 (2)
C2—H2CCg2ii 0.98 2.65 3.399 (2) 133
C5A—H5BCg2 0.99 2.78 3.621 (2) 144
C5B—H5DCg2 0.99 2.62 3.542 (2) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

(Butoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate is similar to the structurally known compound (methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate (Tiritiris et al., 2014). According to the structure analysis, the C1–N1 bond length is 1.465 (2) Å, C2–N1 = 1.467 (2) Å and C3–N1 = 1.2831 (19) Å, showing single and double bond character, respectively. The C–N1–C angles are: 116.73 (12)° (C1–N1–C2), 121.54 (14)° (C1–N1–C3) and 121.65 (13)° (C3–N1–C2) indicating a nearly trigonal-planar surrounding of the nitrogen centre by the carbon atoms (Fig. 1). The C–O bond length of 1.2950 (18) Å reveals a double bond character. The positive charge is completely delocalized in the plane of the atoms N1, C3 and O1. The n-butyl group is disordered over the two sites with refined occupancies of 0.888 (5) and 0.112 (5). The bond lengths and angles in the tetraphenylborate anion are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). A strong C–H···π interaction between the hydrogen atom H3 of the cation and one phenyl ring (Cg1) of the tetraphenylborate anion is observed (Fig. 2). Slightly weaker C–H···π interactions between the hydrogen atoms of –N(CH3)2 and –CH2 groups and a second phenyl ring (Cg2) are also present (Fig. 2, Table 1). The hydrogen centroid distances are 2.55, 2.62, 2.65 and 2.78 Å (Tab. 1), respectively. The phenyl rings form aromatic pockets, in which the iminium ion is embedded. This leads to the formation of a two-dimensional supramolecular pattern in the ac plane. In contrast to the crystal structure of (methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate (Tiritiris et al., 2014), the acetonitrile molecule is hardly involved in a C–H···N hydrogen bond system.

Related literature top

For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of (methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate, see: Tiritiris et al. (2014).

Experimental top

The title compound was obtained by reacting of equimolar amounts of N,N-dimethylformamide with dimethyl sulfate at room temperature forming (methoxymethylidene)dimethylazanium methyl sulfate (I). One mol of (I) was heated with 2.2 mol n-butanol for eight hours at 313 K. The methanol formed was distilled off and (butoxymethylidene)dimethylazanium butyl sulfate (II) was obtained in nearly quantitative yield. 1.00 g (3.66 mmol) of crude (II) was dissolved in 20 ml acetonitrile and 1.25 g (3.66 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium butyl sulfate was filtered off. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming colourless single crystals suitable for X-ray analysis.

Dimethyl sulfate is carcinogenic, mutagenic and highly poisonous. During the use appropriate precautions must be taken.

Refinement top

The H atom bound to C3 was located in a difference Fourier map and was refined freely [C—H = 0.95 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N, C–O and C–C bonds to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Atoms C5 and C6 of the n-butyl group are disordered over two sites (C5A, C6A and C5B,C6B) with refined occupancies of 0.888 (5) and 0.112 (5). A free refinement of the anisotropic displacement parameters of the atoms C5B and C6B (minor moiety) was not possible, so an ISOR = 0.001 instruction for C6B was established, which solves this problem. Finally, the atoms C5B and C6B were restrained to have similar anisotropic displacement parameters. Nevertheless, it was not possible to prevent the detection of an A-alert in the checkcif utility. There is a large Ueq(max)/Ueq(min) ratio of the hydrogen atoms, caused by the large Ueq of the terminal methyl group hydrogen atoms and the small Ueq of the hydrogen atoms attached to the atoms C5B and C6B in the disordered n-butyl moiety.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon bonded hydrogen atoms (except of H3) were omitted for the sake of clarity. Only the major orientation [pp = 0.888 (5)] of the n-butyl group is shown.
[Figure 2] Fig. 2. C—H···π interactions (red dashed lines) between the hydrogen atoms of the cation and the phenyl carbon atoms (centroids) of the tetraphenylborate ion. Both orientations of the n-butyl group are shown.
(Butoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate top
Crystal data top
C7H16NO+·C24H20B·C2H3NF(000) = 1056
Mr = 490.47Dx = 1.130 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 27626 reflections
a = 11.2463 (4) Åθ = 1.8–28.3°
b = 17.7975 (9) ŵ = 0.07 mm1
c = 14.6666 (7) ÅT = 100 K
β = 100.821 (3)°Block, colourless
V = 2883.4 (2) Å30.23 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO
diffractometer
4718 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ϕ scans, and ω scansh = 1414
27626 measured reflectionsk = 2323
7019 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.6909P]
where P = (Fo2 + 2Fc2)/3
7019 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.28 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H16NO+·C24H20B·C2H3NV = 2883.4 (2) Å3
Mr = 490.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2463 (4) ŵ = 0.07 mm1
b = 17.7975 (9) ÅT = 100 K
c = 14.6666 (7) Å0.23 × 0.17 × 0.13 mm
β = 100.821 (3)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
4718 reflections with I > 2σ(I)
27626 measured reflectionsRint = 0.054
7019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0496 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
7019 reflectionsΔρmin = 0.31 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.05819 (11)0.19695 (7)1.00987 (8)0.0190 (3)
C11.14020 (14)0.25442 (10)1.05776 (12)0.0283 (4)
H1A1.09290.29391.08100.042*
H1B1.18700.27631.01440.042*
H1C1.19550.23151.10990.042*
C21.11443 (15)0.13197 (10)0.97325 (12)0.0275 (4)
H2A1.05130.09720.94370.041*
H2B1.16800.10631.02420.041*
H2C1.16160.14900.92740.041*
C30.94283 (13)0.20482 (9)0.99683 (10)0.0189 (3)
H30.9082 (15)0.2476 (10)1.0209 (11)0.025 (4)*
O10.87394 (9)0.15411 (6)0.95062 (7)0.0196 (2)
C40.74205 (13)0.16696 (9)0.93430 (11)0.0218 (3)
H4A0.72420.22090.92180.026*
H4B0.70930.15210.98980.026*
C5A0.68533 (15)0.12077 (10)0.85260 (13)0.0197 (5)0.890 (5)
H5A0.71750.13740.79760.024*0.890 (5)
H5B0.59690.13000.83980.024*0.890 (5)
C6A0.70789 (17)0.03642 (10)0.86623 (14)0.0277 (5)0.888 (4)
H6A0.79620.02710.88140.033*0.888 (4)
H6B0.67220.01900.91930.033*0.888 (4)
C5B0.6903 (11)0.0909 (7)0.8972 (10)0.009 (3)0.110 (5)
H5C0.72350.05130.94220.011*0.110 (5)
H5D0.60140.09170.89280.011*0.110 (5)
C6B0.7178 (10)0.0710 (6)0.8041 (8)0.009 (3)0.112 (4)
H6C0.80620.06690.80690.011*0.112 (4)
H6D0.68450.10910.75700.011*0.112 (4)
C70.65349 (17)0.00822 (11)0.78020 (14)0.0410 (5)
H7A0.66970.06180.79170.062*
H7B0.68980.00820.72780.062*
H7C0.56590.00020.76560.062*
B10.29162 (15)0.22427 (9)0.73749 (11)0.0157 (3)
C80.35342 (12)0.18276 (8)0.83517 (10)0.0145 (3)
C90.35346 (13)0.10426 (8)0.84668 (10)0.0173 (3)
H9A0.32280.07370.79450.021*
C100.39659 (13)0.06971 (9)0.93151 (11)0.0208 (3)
H10A0.39660.01650.93610.025*
C110.43964 (13)0.11303 (9)1.00947 (11)0.0223 (3)
H11A0.46930.08971.06750.027*
C120.43886 (13)0.19056 (9)1.00171 (10)0.0202 (3)
H12A0.46630.22071.05490.024*
C130.39780 (13)0.22429 (8)0.91588 (10)0.0179 (3)
H13A0.39990.27750.91170.022*
C140.29953 (13)0.17201 (8)0.64632 (10)0.0162 (3)
C150.40218 (14)0.12851 (8)0.64120 (11)0.0209 (3)
H15A0.46550.12640.69410.025*
C160.41546 (15)0.08837 (9)0.56222 (11)0.0259 (4)
H16A0.48660.05960.56220.031*
C170.32541 (15)0.09030 (9)0.48393 (11)0.0269 (4)
H17A0.33360.06270.43000.032*
C180.22291 (15)0.13319 (9)0.48557 (10)0.0242 (3)
H18A0.16040.13540.43220.029*
C190.21100 (14)0.17302 (8)0.56495 (10)0.0188 (3)
H19A0.14000.20210.56410.023*
C200.15186 (13)0.24097 (8)0.75026 (9)0.0168 (3)
C210.05601 (13)0.19093 (9)0.72214 (10)0.0207 (3)
H21A0.07140.14580.69190.025*
C220.06111 (14)0.20452 (10)0.73668 (11)0.0263 (4)
H22A0.12400.16950.71530.032*
C230.08547 (14)0.26923 (10)0.78234 (11)0.0289 (4)
H23A0.16530.27930.79160.035*
C240.00722 (15)0.31904 (10)0.81425 (11)0.0281 (4)
H24A0.00820.36290.84700.034*
C250.12320 (14)0.30481 (9)0.79832 (11)0.0222 (3)
H25A0.18570.33970.82090.027*
C260.36367 (13)0.30231 (8)0.72107 (10)0.0160 (3)
C270.30508 (14)0.36477 (8)0.67425 (10)0.0194 (3)
H27A0.21970.36300.65440.023*
C280.36669 (15)0.42920 (9)0.65570 (11)0.0247 (4)
H28A0.32330.47000.62350.030*
C290.49117 (15)0.43391 (9)0.68403 (11)0.0260 (4)
H29A0.53350.47800.67230.031*
C300.55292 (14)0.37329 (9)0.72968 (11)0.0235 (3)
H30A0.63830.37560.74920.028*
C310.49002 (14)0.30897 (8)0.74708 (10)0.0192 (3)
H31A0.53450.26790.77780.023*
N20.8185 (2)0.08990 (10)0.54785 (13)0.0595 (5)
C320.83893 (19)0.06303 (10)0.48185 (14)0.0384 (5)
C330.86399 (19)0.02888 (10)0.39784 (13)0.0388 (5)
H33A0.79990.00720.37380.058*
H33B0.94200.00280.41160.058*
H33C0.86700.06800.35120.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (6)0.0248 (7)0.0156 (6)0.0002 (5)0.0029 (5)0.0000 (5)
C10.0179 (8)0.0332 (9)0.0324 (9)0.0040 (7)0.0015 (7)0.0103 (7)
C20.0190 (8)0.0326 (9)0.0315 (9)0.0040 (7)0.0065 (7)0.0064 (7)
C30.0166 (7)0.0227 (8)0.0172 (7)0.0002 (6)0.0026 (6)0.0008 (6)
O10.0124 (5)0.0246 (6)0.0212 (6)0.0001 (4)0.0018 (4)0.0037 (4)
C40.0116 (7)0.0268 (8)0.0270 (8)0.0014 (6)0.0037 (6)0.0049 (6)
C5A0.0159 (8)0.0226 (10)0.0202 (10)0.0005 (7)0.0025 (7)0.0003 (8)
C6A0.0216 (10)0.0234 (10)0.0371 (12)0.0006 (7)0.0030 (8)0.0020 (8)
C5B0.009 (3)0.009 (3)0.009 (3)0.0001 (10)0.0018 (11)0.0003 (10)
C6B0.009 (3)0.009 (3)0.009 (3)0.0001 (10)0.0018 (11)0.0003 (10)
C70.0358 (11)0.0293 (10)0.0552 (13)0.0015 (8)0.0014 (9)0.0192 (9)
B10.0142 (8)0.0163 (8)0.0163 (8)0.0005 (6)0.0019 (6)0.0007 (6)
C80.0095 (6)0.0175 (7)0.0168 (7)0.0009 (5)0.0032 (5)0.0007 (5)
C90.0142 (7)0.0185 (7)0.0188 (7)0.0006 (6)0.0022 (6)0.0023 (6)
C100.0179 (7)0.0181 (7)0.0262 (8)0.0036 (6)0.0032 (6)0.0020 (6)
C110.0154 (7)0.0313 (9)0.0190 (8)0.0024 (6)0.0004 (6)0.0061 (6)
C120.0148 (7)0.0292 (8)0.0162 (7)0.0036 (6)0.0015 (6)0.0043 (6)
C130.0152 (7)0.0180 (7)0.0210 (8)0.0003 (6)0.0045 (6)0.0015 (6)
C140.0167 (7)0.0151 (7)0.0172 (7)0.0030 (6)0.0043 (6)0.0016 (6)
C150.0202 (8)0.0230 (8)0.0196 (8)0.0002 (6)0.0041 (6)0.0015 (6)
C160.0294 (9)0.0238 (8)0.0274 (9)0.0022 (7)0.0131 (7)0.0040 (7)
C170.0390 (10)0.0238 (8)0.0206 (8)0.0076 (7)0.0130 (7)0.0066 (7)
C180.0294 (9)0.0273 (8)0.0149 (8)0.0091 (7)0.0015 (6)0.0003 (6)
C190.0192 (7)0.0189 (7)0.0181 (7)0.0029 (6)0.0031 (6)0.0023 (6)
C200.0168 (7)0.0203 (7)0.0132 (7)0.0030 (6)0.0028 (6)0.0041 (6)
C210.0181 (8)0.0252 (8)0.0191 (8)0.0006 (6)0.0042 (6)0.0040 (6)
C220.0163 (8)0.0407 (10)0.0214 (8)0.0030 (7)0.0024 (6)0.0082 (7)
C230.0167 (8)0.0460 (11)0.0259 (9)0.0091 (7)0.0090 (7)0.0134 (8)
C240.0295 (9)0.0312 (9)0.0265 (9)0.0127 (7)0.0127 (7)0.0056 (7)
C250.0209 (8)0.0237 (8)0.0230 (8)0.0015 (6)0.0066 (6)0.0020 (6)
C260.0178 (7)0.0171 (7)0.0137 (7)0.0005 (6)0.0041 (6)0.0026 (5)
C270.0184 (7)0.0211 (8)0.0187 (8)0.0016 (6)0.0035 (6)0.0006 (6)
C280.0296 (9)0.0200 (8)0.0255 (9)0.0026 (7)0.0074 (7)0.0039 (6)
C290.0314 (9)0.0212 (8)0.0269 (9)0.0086 (7)0.0095 (7)0.0007 (7)
C300.0196 (8)0.0285 (9)0.0227 (8)0.0052 (7)0.0045 (6)0.0007 (7)
C310.0187 (7)0.0212 (8)0.0179 (7)0.0011 (6)0.0037 (6)0.0008 (6)
N20.0909 (16)0.0368 (10)0.0494 (11)0.0001 (10)0.0097 (11)0.0072 (9)
C320.0497 (12)0.0227 (9)0.0394 (11)0.0011 (8)0.0005 (9)0.0051 (8)
C330.0516 (12)0.0290 (10)0.0366 (11)0.0036 (9)0.0107 (9)0.0084 (8)
Geometric parameters (Å, º) top
N1—C31.2831 (19)C11—H11A0.9500
N1—C11.465 (2)C12—C131.393 (2)
N1—C21.467 (2)C12—H12A0.9500
C1—H1A0.9800C13—H13A0.9500
C1—H1B0.9800C14—C191.403 (2)
C1—H1C0.9800C14—C151.404 (2)
C2—H2A0.9800C15—C161.393 (2)
C2—H2B0.9800C15—H15A0.9500
C2—H2C0.9800C16—C171.382 (2)
C3—O11.2950 (18)C16—H16A0.9500
C3—H30.954 (18)C17—C181.387 (2)
O1—C41.4752 (17)C17—H17A0.9500
C4—C5A1.494 (2)C18—C191.391 (2)
C4—C5B1.531 (12)C18—H18A0.9500
C4—H4A0.9900C19—H19A0.9500
C4—H4B0.9900C20—C211.399 (2)
C5A—C6A1.530 (3)C20—C251.406 (2)
C5A—H5A0.9900C21—C221.394 (2)
C5A—H5B0.9900C21—H21A0.9500
C6A—C71.520 (3)C22—C231.385 (2)
C6A—H6A0.9900C22—H22A0.9500
C6A—H6B0.9900C23—C241.381 (2)
C5B—C6B1.486 (13)C23—H23A0.9500
C5B—H5C0.9900C24—C251.391 (2)
C5B—H5D0.9900C24—H24A0.9500
C6B—C71.5972C25—H25A0.9500
C6B—H6C0.9900C26—C271.404 (2)
C6B—H6D0.9900C26—C311.406 (2)
C7—H7A0.9800C27—C281.393 (2)
C7—H7B0.9800C27—H27A0.9500
C7—H7C0.9800C28—C291.386 (2)
B1—C201.645 (2)C28—H28A0.9500
B1—C141.645 (2)C29—C301.386 (2)
B1—C81.645 (2)C29—H29A0.9500
B1—C261.648 (2)C30—C311.394 (2)
C8—C131.405 (2)C30—H30A0.9500
C8—C91.407 (2)C31—H31A0.9500
C9—C101.391 (2)N2—C321.141 (3)
C9—H9A0.9500C32—C331.448 (3)
C10—C111.389 (2)C33—H33A0.9800
C10—H10A0.9500C33—H33B0.9800
C11—C121.384 (2)C33—H33C0.9800
C3—N1—C1121.54 (14)C11—C10—C9120.02 (14)
C3—N1—C2121.65 (13)C11—C10—H10A120.0
C1—N1—C2116.73 (12)C9—C10—H10A120.0
N1—C1—H1A109.5C12—C11—C10119.33 (14)
N1—C1—H1B109.5C12—C11—H11A120.3
H1A—C1—H1B109.5C10—C11—H11A120.3
N1—C1—H1C109.5C11—C12—C13119.99 (14)
H1A—C1—H1C109.5C11—C12—H12A120.0
H1B—C1—H1C109.5C13—C12—H12A120.0
N1—C2—H2A109.5C12—C13—C8122.66 (14)
N1—C2—H2B109.5C12—C13—H13A118.7
H2A—C2—H2B109.5C8—C13—H13A118.7
N1—C2—H2C109.5C19—C14—C15114.89 (14)
H2A—C2—H2C109.5C19—C14—B1123.09 (13)
H2B—C2—H2C109.5C15—C14—B1121.73 (13)
N1—C3—O1119.39 (14)C16—C15—C14123.03 (14)
N1—C3—H3120.3 (10)C16—C15—H15A118.5
O1—C3—H3120.3 (10)C14—C15—H15A118.5
C3—O1—C4117.47 (12)C17—C16—C15120.15 (15)
O1—C4—C5A108.05 (12)C17—C16—H16A119.9
O1—C4—C5B102.9 (5)C15—C16—H16A119.9
O1—C4—H4A110.1C16—C17—C18118.77 (15)
C5A—C4—H4A110.1C16—C17—H17A120.6
C5B—C4—H4A137.7C18—C17—H17A120.6
O1—C4—H4B110.1C17—C18—C19120.41 (14)
C5A—C4—H4B110.1C17—C18—H18A119.8
C5B—C4—H4B83.2C19—C18—H18A119.8
H4A—C4—H4B108.4C18—C19—C14122.74 (15)
C4—C5A—C6A113.56 (16)C18—C19—H19A118.6
C4—C5A—H5A108.9C14—C19—H19A118.6
C6A—C5A—H5A108.9C21—C20—C25115.19 (14)
C4—C5A—H5B108.9C21—C20—B1123.45 (13)
C6A—C5A—H5B108.9C25—C20—B1121.14 (13)
H5A—C5A—H5B107.7C22—C21—C20122.83 (15)
C7—C6A—C5A111.92 (16)C22—C21—H21A118.6
C7—C6A—H6A109.2C20—C21—H21A118.6
C5A—C6A—H6A109.2C23—C22—C21119.75 (16)
C7—C6A—H6B109.2C23—C22—H22A120.1
C5A—C6A—H6B109.2C21—C22—H22A120.1
H6A—C6A—H6B107.9C24—C23—C22119.48 (15)
C6B—C5B—C4113.8 (9)C24—C23—H23A120.3
C6B—C5B—H5C108.8C22—C23—H23A120.3
C4—C5B—H5C108.8C23—C24—C25119.87 (16)
C6B—C5B—H5D108.8C23—C24—H24A120.1
C4—C5B—H5D108.8C25—C24—H24A120.1
H5C—C5B—H5D107.7C24—C25—C20122.81 (15)
C5B—C6B—C7104.7 (5)C24—C25—H25A118.6
C5B—C6B—H6C110.8C20—C25—H25A118.6
C7—C6B—H6C110.8C27—C26—C31115.07 (13)
C5B—C6B—H6D110.8C27—C26—B1122.69 (13)
C7—C6B—H6D110.8C31—C26—B1122.08 (13)
H6C—C6B—H6D108.9C28—C27—C26122.85 (14)
C6A—C7—H7A109.5C28—C27—H27A118.6
C6B—C7—H7A139.2C26—C27—H27A118.6
C6A—C7—H7B109.5C29—C28—C27120.17 (15)
C6B—C7—H7B71.2C29—C28—H28A119.9
H7A—C7—H7B109.5C27—C28—H28A119.9
C6A—C7—H7C109.5C30—C29—C28118.96 (15)
C6B—C7—H7C108.2C30—C29—H29A120.5
H7A—C7—H7C109.5C28—C29—H29A120.5
H7B—C7—H7C109.5C29—C30—C31120.15 (15)
C20—B1—C14113.17 (12)C29—C30—H30A119.9
C20—B1—C8103.80 (11)C31—C30—H30A119.9
C14—B1—C8112.05 (12)C30—C31—C26122.78 (14)
C20—B1—C26111.78 (12)C30—C31—H31A118.6
C14—B1—C26104.75 (11)C26—C31—H31A118.6
C8—B1—C26111.51 (11)N2—C32—C33179.6 (2)
C13—C8—C9115.41 (13)C32—C33—H33A109.5
C13—C8—B1121.50 (12)C32—C33—H33B109.5
C9—C8—B1122.73 (12)H33A—C33—H33B109.5
C10—C9—C8122.57 (13)C32—C33—H33C109.5
C10—C9—H9A118.7H33A—C33—H33C109.5
C8—C9—H9A118.7H33B—C33—H33C109.5
C1—N1—C3—O1177.02 (13)C14—C15—C16—C170.2 (2)
C2—N1—C3—O10.4 (2)C15—C16—C17—C180.5 (2)
N1—C3—O1—C4177.73 (13)C16—C17—C18—C190.4 (2)
C3—O1—C4—C5A158.30 (14)C17—C18—C19—C140.3 (2)
C3—O1—C4—C5B168.8 (6)C15—C14—C19—C180.9 (2)
O1—C4—C5A—C6A60.11 (19)B1—C14—C19—C18174.79 (13)
C5B—C4—C5A—C6A25.5 (8)C14—B1—C20—C2130.61 (19)
C4—C5A—C6A—C7177.50 (15)C8—B1—C20—C2191.10 (16)
O1—C4—C5B—C6B66.3 (9)C26—B1—C20—C21148.59 (13)
C5A—C4—C5B—C6B37.1 (6)C14—B1—C20—C25155.05 (13)
C4—C5B—C6B—C7178.7 (6)C8—B1—C20—C2583.24 (16)
C5A—C6A—C7—C6B35.93 (11)C26—B1—C20—C2537.07 (18)
C5B—C6B—C7—C6A27.7 (5)C25—C20—C21—C222.8 (2)
C20—B1—C8—C1381.68 (15)B1—C20—C21—C22177.43 (14)
C14—B1—C8—C13155.86 (13)C20—C21—C22—C231.3 (2)
C26—B1—C8—C1338.81 (18)C21—C22—C23—C241.0 (2)
C20—B1—C8—C991.09 (15)C22—C23—C24—C251.6 (2)
C14—B1—C8—C931.36 (18)C23—C24—C25—C200.1 (2)
C26—B1—C8—C9148.42 (13)C21—C20—C25—C242.2 (2)
C13—C8—C9—C101.2 (2)B1—C20—C25—C24176.95 (14)
B1—C8—C9—C10174.43 (13)C20—B1—C26—C2732.58 (18)
C8—C9—C10—C111.3 (2)C14—B1—C26—C2790.33 (15)
C9—C10—C11—C120.1 (2)C8—B1—C26—C27148.27 (13)
C10—C11—C12—C131.5 (2)C20—B1—C26—C31152.20 (13)
C11—C12—C13—C81.5 (2)C14—B1—C26—C3184.89 (15)
C9—C8—C13—C120.2 (2)C8—B1—C26—C3136.51 (18)
B1—C8—C13—C12173.10 (13)C31—C26—C27—C280.8 (2)
C20—B1—C14—C1930.90 (19)B1—C26—C27—C28176.32 (14)
C8—B1—C14—C19147.85 (13)C26—C27—C28—C290.3 (2)
C26—B1—C14—C1991.11 (16)C27—C28—C29—C300.9 (2)
C20—B1—C14—C15155.60 (13)C28—C29—C30—C310.4 (2)
C8—B1—C14—C1538.64 (18)C29—C30—C31—C260.7 (2)
C26—B1—C14—C1582.40 (16)C27—C26—C31—C301.3 (2)
C19—C14—C15—C160.8 (2)B1—C26—C31—C30176.85 (14)
B1—C14—C15—C16174.84 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.95 (2)2.55 (2)3.493 (2)172 (2)
C2—H2C···Cg2ii0.982.653.399 (2)133
C5A—H5B···Cg20.992.783.621 (2)144
C5B—H5D···Cg20.992.623.542 (2)154
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.95 (2)2.55 (2)3.493 (2)172 (2)
C2—H2C···Cg2ii0.982.653.399 (2)133
C5A—H5B···Cg20.992.783.621 (2)144
C5B—H5D···Cg20.992.623.542 (2)154
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the crystal data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I., Saur, S. & Kantlehner, W. (2014). Acta Cryst. E70, o333.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds