organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′′-(4-Meth­­oxy­phen­yl)-N,N,N′-tri­methyl-N′-phenyl­guanidine

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany, and bInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 11 March 2014; accepted 14 March 2014; online 22 March 2014)

In the title compound, C17H21N3O, the C—N bond lengths in the guanidine unit are 1.2889 (19), 1.3682 (19) and 1.408 (2) Å, indicating double- and single-bond character. The N—C—N angles are 115.10 (13), 119.29 (15) and 125.61 (14)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. In the crystal, non-classical C—H⋯O hydrogen bonds between methyl H atoms and meth­oxy O atoms are present, generating centrosymmetric dimers running in the [101] direction.

Related literature

For the crystal structures of N-methyl­ated di­phenyl­guanidines, see: Tanatani et al. (1998[Tanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433-6442.]). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, ch. 2. Oxford University Press.]). For the crystal structure of N′′-(4-carbazol-9-ylphen­yl)-N,N′-diethyl-N,N′-di­phenyl­guani­dine, see: Tiritiris & Kantlehner (2013[Tiritiris, I. & Kantlehner, W. (2013). Acta Cryst. E69, o1066.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N3O

  • Mr = 283.37

  • Monoclinic, C 2/c

  • a = 26.691 (4) Å

  • b = 7.5135 (7) Å

  • c = 19.361 (2) Å

  • β = 125.412 (8)°

  • V = 3164.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Nicolet P3/F diffractometer

  • 3817 measured reflections

  • 3817 independent reflections

  • 2770 reflections with I > 2σ(I)

  • 3 standard reflections every 50 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.04

  • 3817 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.96 2.81 3.502 (2) 130
Symmetry code: (i) [-x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The here presented title compound is similar to the structurally known compound N''-phenyl-N,N-dimethyl-N',N'-methylphenyl- guanidine (Tanatani et al., 1998). According to the structure analysis, the C1–N3 bond in the guanidine unit is 1.2889 (19) Å, indicating double bond character. The bond lengths C1–N2 = 1.408 (2) Å and C1–N1 = 1.3682 (19) Å are elongated and characteristic for C–N imine single bonds. The N–C1–N angles are 115.10 (13)° (N1–C1–N2), 125.61 (14)° (N2–C1–N3) and 119.29 (15)° (N1–C1–N3), showing a deviation of the CN3 plane from an ideal trigonal planar geometry (Fig. 1). Similar bond lengths and angles of the guanidine CN3 group have been found by structure analysis for N''-(4-carbazol-9-yl-phenyl)- N,N'-diethyl-N,N'-diphenyl-guanidine (Tiritiris & Kantlehner, 2013) and several N-methylated diphenylguanidines (Tanatani et al., 1998). Non-classical C–H···O hydrogen bonds (Desiraju & Steiner, 1999) between methyl hydrogen atoms and oxygen atoms of the methoxy groups are present [d(H···O) = 2.81 Å] (Table 1), generating centrosymmetric dimers (Fig. 2 and Fig. 3) running in the direction [101].

Related literature top

For the crystal structures of N-methylated diphenylguanidines, see: Tanatani et al. (1998). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999). For the crystal structure of N''-(4-carbazol-9-ylphenyl)-N,N'-diethyl-N,N'-diphenylguanidine, see: Tiritiris & Kantlehner (2013).

Experimental top

One equivalent of N,N-dimethyl-N',N'-methylphenyl- chloroformamidinium-chloride (synthesized from N,N-dimethyl- N',N'-methylphenylthiourea and phosgene) was reacted with one equivalent of 4-methoxyaniline (Sigma-Aldrich) in acetonitrile, in the presence of one equivalent of triethylamine, at 273 K. The obtained mixture consisting of the guanidinium chloride and triethylammonium chloride was reacted in the next step with an excess of an aqueous sodium hydroxide solution at 273 K. After extraction of the guanidine with diethyl ether from the water phase, the solvent was evaporated and the title compound was isolated in form of a colourless solid. Single crystals have been obtained by recrystallization from a saturated acetonitrile solution at 273 K.

Refinement top

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N and C–O bond to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.96 Å. The H atoms in aromatic rings were placed in calculated positions with (C—H) = 0.93 Å. They were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Non-classical C–H···O hydrogen bonds (indicated by dashed lines) between the methyl hydrogen atoms (H17A) and oxygen atoms (O1) of the methoxy groups, forming a centrosymmetric dimer.
[Figure 3] Fig. 3. Packing diagram of the title compound in ac-plane. The hydrogen bonds are indicated by dashed lines.
N''-(4-Methoxyphenyl)-N,N,N'-trimethyl-N'-phenylguanidine top
Crystal data top
C17H21N3OF(000) = 1216
Mr = 283.37Dx = 1.190 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 32 reflections
a = 26.691 (4) Åθ = 12.5–17.0°
b = 7.5135 (7) ŵ = 0.08 mm1
c = 19.361 (2) ÅT = 293 K
β = 125.412 (8)°Block, colourless
V = 3164.4 (7) Å30.45 × 0.30 × 0.20 mm
Z = 8
Data collection top
Nicolet P3/F
diffractometer
Rint = 0.000
Radiation source: sealed tubeθmax = 28.0°, θmin = 1.9°
Graphite monochromatorh = 3528
Wyckoff–Scan scansk = 09
3817 measured reflectionsl = 025
3817 independent reflections3 standard reflections every 50 reflections
2770 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0907P)2 + 0.4749P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3817 reflectionsΔρmax = 0.21 e Å3
195 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0126 (12)
Crystal data top
C17H21N3OV = 3164.4 (7) Å3
Mr = 283.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.691 (4) ŵ = 0.08 mm1
b = 7.5135 (7) ÅT = 293 K
c = 19.361 (2) Å0.45 × 0.30 × 0.20 mm
β = 125.412 (8)°
Data collection top
Nicolet P3/F
diffractometer
Rint = 0.000
3817 measured reflections3 standard reflections every 50 reflections
3817 independent reflections intensity decay: 2%
2770 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3817 reflectionsΔρmin = 0.16 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08203 (6)0.45184 (19)0.19928 (10)0.0707 (4)
N20.05887 (6)0.71681 (18)0.12254 (7)0.0580 (3)
N30.01532 (6)0.56477 (18)0.13348 (9)0.0647 (4)
C10.03887 (6)0.5790 (2)0.15042 (9)0.0569 (4)
C20.07023 (9)0.3255 (3)0.24493 (16)0.0970 (7)
H2A0.05060.38540.26710.146*
H2B0.10840.27510.29080.146*
H2C0.04390.23250.20710.146*
C30.12795 (8)0.4022 (3)0.18495 (13)0.0820 (6)
H3A0.11850.28640.15930.123*
H3B0.16780.39990.23810.123*
H3C0.12790.48750.14800.123*
C40.02692 (9)0.7432 (3)0.03201 (10)0.0774 (5)
H4A0.02620.86770.02040.116*
H4B0.01450.70000.00290.116*
H4C0.04780.67930.01280.116*
C50.11327 (6)0.8100 (2)0.18048 (9)0.0525 (3)
C60.13389 (7)0.8259 (2)0.26485 (9)0.0586 (4)
H60.11170.77360.28280.070*
C70.18709 (7)0.9188 (2)0.32194 (10)0.0663 (4)
H70.20040.92750.37810.080*
C80.22101 (8)0.9991 (3)0.29729 (13)0.0744 (5)
H80.25701.06040.33630.089*
C90.20037 (8)0.9863 (3)0.21424 (13)0.0768 (5)
H90.22251.04100.19670.092*
C100.14755 (8)0.8943 (2)0.15616 (11)0.0674 (4)
H100.13450.88790.10000.081*
C110.05759 (6)0.7075 (2)0.09794 (9)0.0570 (4)
C120.11896 (7)0.6672 (2)0.03552 (11)0.0676 (4)
H120.13000.54980.01800.081*
C130.16389 (7)0.7981 (3)0.00107 (11)0.0683 (4)
H130.20440.76840.04380.082*
C140.14870 (7)0.9715 (2)0.02570 (10)0.0607 (4)
C150.08802 (7)1.0149 (2)0.08889 (10)0.0626 (4)
H150.07741.13210.10720.075*
C160.04339 (7)0.8840 (2)0.12449 (10)0.0610 (4)
H160.00300.91440.16710.073*
O10.19000 (6)1.11075 (18)0.00565 (8)0.0812 (4)
C170.25343 (8)1.0690 (3)0.06419 (12)0.0898 (7)
H17A0.27721.17660.08170.135*
H17B0.26610.99150.03760.135*
H17C0.25971.01080.11280.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0551 (7)0.0659 (8)0.0859 (10)0.0101 (6)0.0379 (7)0.0117 (7)
N20.0533 (7)0.0721 (8)0.0512 (6)0.0078 (6)0.0318 (6)0.0042 (6)
N30.0481 (6)0.0664 (8)0.0729 (8)0.0038 (6)0.0312 (6)0.0037 (6)
C10.0486 (7)0.0594 (8)0.0585 (8)0.0050 (6)0.0286 (6)0.0002 (6)
C20.0641 (10)0.0750 (12)0.1319 (18)0.0057 (9)0.0453 (12)0.0345 (12)
C30.0589 (9)0.0856 (12)0.0863 (12)0.0236 (9)0.0333 (9)0.0041 (10)
C40.0842 (12)0.0862 (12)0.0534 (9)0.0075 (10)0.0350 (9)0.0023 (8)
C50.0502 (7)0.0610 (8)0.0559 (7)0.0110 (6)0.0362 (6)0.0060 (6)
C60.0544 (7)0.0747 (9)0.0563 (8)0.0062 (7)0.0376 (7)0.0068 (7)
C70.0552 (8)0.0834 (11)0.0590 (8)0.0057 (8)0.0323 (7)0.0003 (8)
C80.0514 (8)0.0812 (11)0.0880 (12)0.0003 (8)0.0390 (8)0.0004 (9)
C90.0654 (10)0.0875 (12)0.1004 (13)0.0015 (9)0.0611 (10)0.0110 (10)
C100.0699 (9)0.0834 (11)0.0705 (9)0.0097 (8)0.0531 (8)0.0099 (8)
C110.0455 (7)0.0688 (9)0.0574 (8)0.0028 (6)0.0302 (6)0.0023 (7)
C120.0486 (8)0.0723 (10)0.0731 (10)0.0024 (7)0.0302 (7)0.0046 (8)
C130.0446 (7)0.0873 (12)0.0633 (9)0.0040 (7)0.0257 (7)0.0003 (8)
C140.0530 (8)0.0815 (11)0.0567 (8)0.0136 (7)0.0369 (7)0.0079 (7)
C150.0586 (8)0.0691 (9)0.0671 (9)0.0028 (7)0.0405 (8)0.0083 (7)
C160.0467 (7)0.0763 (10)0.0577 (8)0.0024 (7)0.0290 (6)0.0083 (7)
O10.0646 (7)0.0920 (9)0.0876 (8)0.0245 (6)0.0445 (7)0.0114 (7)
C170.0629 (10)0.1322 (18)0.0652 (10)0.0366 (11)0.0318 (9)0.0137 (11)
Geometric parameters (Å, º) top
N1—C11.3682 (19)C7—H70.9300
N1—C21.450 (3)C8—C91.368 (3)
N1—C31.453 (2)C8—H80.9300
N2—C51.4035 (19)C9—C101.376 (3)
N2—C11.408 (2)C9—H90.9300
N2—C41.4513 (19)C10—H100.9300
N3—C11.2889 (19)C11—C161.392 (2)
N3—C111.4133 (19)C11—C121.393 (2)
C2—H2A0.9600C12—C131.386 (2)
C2—H2B0.9600C12—H120.9300
C2—H2C0.9600C13—C141.374 (3)
C3—H3A0.9600C13—H130.9300
C3—H3B0.9600C14—O11.3792 (19)
C3—H3C0.9600C14—C151.389 (2)
C4—H4A0.9600C15—C161.382 (2)
C4—H4B0.9600C15—H150.9300
C4—H4C0.9600C16—H160.9300
C5—C61.394 (2)O1—C171.423 (2)
C5—C101.399 (2)C17—H17A0.9600
C6—C71.381 (2)C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—C81.383 (2)
C1—N1—C2119.01 (14)C8—C7—H7119.3
C1—N1—C3120.83 (15)C9—C8—C7118.47 (17)
C2—N1—C3116.97 (15)C9—C8—H8120.8
C5—N2—C1120.47 (12)C7—C8—H8120.8
C5—N2—C4120.59 (13)C8—C9—C10121.32 (15)
C1—N2—C4118.38 (14)C8—C9—H9119.3
C1—N3—C11121.50 (14)C10—C9—H9119.3
N3—C1—N1119.29 (15)C9—C10—C5120.83 (15)
N3—C1—N2125.61 (14)C9—C10—H10119.6
N1—C1—N2115.10 (13)C5—C10—H10119.6
N1—C2—H2A109.5C16—C11—C12117.32 (14)
N1—C2—H2B109.5C16—C11—N3124.97 (13)
H2A—C2—H2B109.5C12—C11—N3117.57 (15)
N1—C2—H2C109.5C13—C12—C11121.54 (17)
H2A—C2—H2C109.5C13—C12—H12119.2
H2B—C2—H2C109.5C11—C12—H12119.2
N1—C3—H3A109.5C14—C13—C12120.06 (15)
N1—C3—H3B109.5C14—C13—H13120.0
H3A—C3—H3B109.5C12—C13—H13120.0
N1—C3—H3C109.5C13—C14—O1124.56 (14)
H3A—C3—H3C109.5C13—C14—C15119.57 (15)
H3B—C3—H3C109.5O1—C14—C15115.87 (16)
N2—C4—H4A109.5C16—C15—C14120.01 (16)
N2—C4—H4B109.5C16—C15—H15120.0
H4A—C4—H4B109.5C14—C15—H15120.0
N2—C4—H4C109.5C15—C16—C11121.46 (14)
H4A—C4—H4C109.5C15—C16—H16119.3
H4B—C4—H4C109.5C11—C16—H16119.3
C6—C5—C10117.68 (15)C14—O1—C17117.52 (16)
C6—C5—N2120.15 (13)O1—C17—H17A109.5
C10—C5—N2122.15 (13)O1—C17—H17B109.5
C7—C6—C5120.37 (14)H17A—C17—H17B109.5
C7—C6—H6119.8O1—C17—H17C109.5
C5—C6—H6119.8H17A—C17—H17C109.5
C6—C7—C8121.31 (16)H17B—C17—H17C109.5
C6—C7—H7119.3
C11—N3—C1—N1167.43 (14)C7—C8—C9—C100.8 (3)
C11—N3—C1—N212.8 (2)C8—C9—C10—C50.2 (3)
C2—N1—C1—N312.6 (2)C6—C5—C10—C91.3 (2)
C3—N1—C1—N3146.64 (17)N2—C5—C10—C9179.28 (15)
C2—N1—C1—N2167.62 (17)C1—N3—C11—C1644.6 (2)
C3—N1—C1—N233.2 (2)C1—N3—C11—C12139.97 (16)
C5—N2—C1—N3128.72 (16)C16—C11—C12—C132.3 (3)
C4—N2—C1—N359.8 (2)N3—C11—C12—C13178.05 (15)
C5—N2—C1—N151.48 (19)C11—C12—C13—C141.8 (3)
C4—N2—C1—N1120.04 (16)C12—C13—C14—O1179.03 (15)
C1—N2—C5—C627.5 (2)C12—C13—C14—C150.7 (2)
C4—N2—C5—C6161.16 (15)C13—C14—C15—C160.1 (2)
C1—N2—C5—C10154.51 (14)O1—C14—C15—C16179.66 (14)
C4—N2—C5—C1016.8 (2)C14—C15—C16—C110.6 (2)
C10—C5—C6—C71.4 (2)C12—C11—C16—C151.6 (2)
N2—C5—C6—C7179.44 (14)N3—C11—C16—C15177.09 (14)
C5—C6—C7—C80.4 (2)C13—C14—O1—C175.9 (2)
C6—C7—C8—C90.6 (3)C15—C14—O1—C17173.79 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.813.502 (2)130
Symmetry code: (i) x1/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.813.502 (2)130
Symmetry code: (i) x1/2, y+5/2, z.
 

Acknowledgements

The authors thank Dr B. Iliev (IoLiTec GmbH) for the synthesis of the title compound.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, ch. 2. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433–6442.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2013). Acta Cryst. E69, o1066.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds