organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,3R*,5S*,7S*)-4,4,8,8-Tetra­chloro-1-iso­propyl-5-methyl­tri­cyclo­[5.1.0.03,5]octa­ne

aInternational Reseach and Production Holding "Phytochemistry", Gazaliev St 4, 100009 Karaganda, Kazakhstan
*Correspondence e-mail: xray-phyto@yandex.kz

(Received 13 February 2014; accepted 3 March 2014; online 12 March 2014)

The title compound, C12H16Cl4, is a derivative of the natural product 1-isopropyl-4-methyl­cyclo­hexa-1,4-diene, and represents a diastereomer with two trans-fused cyclo­propane rings. Both enanti­omers are present in the non-centrosymmetric polar space group Pna21. The central cyclo­hexane ring is planar within 0.02 (1) Å. The C atoms of di­chloro­methyl­ene groups deviate from this plane by 1.19 (1) and −1.26 (1) Å, whereas the isopropyl and methyl groups are oriented more equatorially, deviating by 0.71 (1) and −0.87 (1) Å, respectively.

Related literature

For the isolation of 1-isopropyl-4-methyl­cyclo­hexa-1,4-diene, see: Jamali et al. (2013[Jamali, C. A., Kasrat, A., Bekkouche, K., Hassani, L., Wohlmuth, H., Leach, D. & Abbad, A. (2013). Ind. Crops Prod. 49, 366-372.]). For the crystal structure of a related compound, see: Lynch et al. (1994[Lynch, V. M., Baran, J. R., Lagow, R. J. & Davis, B. E. (1994). Acta Cryst. C50, 1765-1768.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16Cl4

  • Mr = 302.05

  • Orthorhombic, P n a 21

  • a = 10.9480 (3) Å

  • b = 11.8207 (3) Å

  • c = 10.5027 (4) Å

  • V = 1359.19 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 150 K

  • 0.30 × 0.26 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.786, Tmax = 0.988

  • 9762 measured reflections

  • 3130 independent reflections

  • 2973 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.05

  • 3130 reflections

  • 148 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1313 Friedel pairs

  • Absolute structure parameter: 0.09 (4)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The molecule of the title compound, (I) (Fig.1) is an enantiomeric pair of diastereomers. The relative configuration at positions 1, 3, 5 and 7 was established as S, R, S, and S, respectively. The cyclohexane ring is approximately planar, the maximum deviation from the mean plane being 0.02 (1) Å. The atoms C4 and C8 of cyclopentane rings deviate from this plane on 1.19 (1) and -1.26 (1) Å, atom C9 of isopropyl and atom C12 of methyl groups deviate on 0.71 (1) and -0.87 (1) Å, respectively.

Related literature top

For the isolation of 1-isopropyl-4-methylcyclohexa-1,4-diene, see: Jamali et al. (2013). For the crystal structure of a related compound, see: Lynch et al. (1994).

Experimental top

The title compound was synthesized by interaction of /g-terpinene 1-isopropyl-4-methylcyclohexa-1,4-diene, which was isolated from the essential oil of above aerial part of Juniperus sabina L., with NaOH in CHCl3 in presence of triethylbenzylammonium chloride with yield 72% and with melting point 80–84°C.

Refinement top

H atoms were positioned geometrically and refined using a riding and rotating model, with C—H = 0.98–1.0 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times the Ueq(C). The absolute configurations of the crystal was established by refinement of the Flack parameter.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(1S*,3R*,5S*,7S*)-4,4,8,8-Tetrachloro-1-isopropyl-5-methyltricyclo[5.1.0.03,5]octane top
Crystal data top
C12H16Cl4Dx = 1.476 Mg m3
Mr = 302.05Melting point = 357–353 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5371 reflections
a = 10.9480 (3) Åθ = 2.5–29.2°
b = 11.8207 (3) ŵ = 0.84 mm1
c = 10.5027 (4) ÅT = 150 K
V = 1359.19 (7) Å3Irregular, colourless
Z = 40.30 × 0.26 × 0.02 mm
F(000) = 624
Data collection top
Bruker APEXII CCD
diffractometer
3130 independent reflections
Radiation source: fine-focus sealed tube2973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 7.11 pixels mm-1θmax = 29.7°, θmin = 2.6°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1315
Tmin = 0.786, Tmax = 0.988l = 1413
9762 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.1704P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3130 reflectionsΔρmax = 0.23 e Å3
148 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1313 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (4)
Crystal data top
C12H16Cl4V = 1359.19 (7) Å3
Mr = 302.05Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.9480 (3) ŵ = 0.84 mm1
b = 11.8207 (3) ÅT = 150 K
c = 10.5027 (4) Å0.30 × 0.26 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3130 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2973 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.988Rint = 0.021
9762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.23 e Å3
S = 1.05Δρmin = 0.16 e Å3
3130 reflectionsAbsolute structure: Flack (1983), 1313 Friedel pairs
148 parametersAbsolute structure parameter: 0.09 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57150 (4)0.08034 (4)1.00600 (5)0.03549 (12)
Cl20.38725 (4)0.05915 (4)1.12573 (5)0.03067 (11)
Cl30.09617 (3)0.02606 (4)0.84836 (4)0.02866 (11)
Cl40.10624 (4)0.10256 (4)0.74584 (4)0.02984 (11)
C10.15053 (13)0.08350 (13)0.90807 (15)0.0188 (3)
C20.27707 (13)0.08167 (13)0.84709 (17)0.0232 (3)
H2A0.26650.08690.75370.028*
H2B0.32130.15040.87480.028*
C30.35723 (14)0.01975 (14)0.87507 (16)0.0228 (3)
H30.40930.04340.80150.027*
C40.41698 (13)0.03625 (14)1.00155 (18)0.0240 (3)
C50.31894 (14)0.11786 (14)0.96113 (17)0.0223 (3)
C60.19710 (14)0.11148 (14)1.03019 (16)0.0223 (3)
H6A0.15260.18311.01480.027*
H6B0.21360.10681.12270.027*
C70.11359 (13)0.01439 (13)0.99450 (16)0.0186 (3)
H70.05550.00771.06360.022*
C80.06109 (13)0.00524 (14)0.86426 (16)0.0204 (3)
C90.10022 (14)0.20144 (15)0.93809 (17)0.0230 (4)
H90.01440.19150.96870.028*
C100.17182 (18)0.25947 (16)1.04511 (19)0.0333 (4)
H10A0.25670.27041.01830.050*
H10B0.16980.21201.12160.050*
H10C0.13480.33311.06390.050*
C110.09512 (18)0.27444 (16)0.8189 (2)0.0338 (4)
H11A0.05580.34670.83900.051*
H11B0.04810.23530.75290.051*
H11C0.17820.28830.78800.051*
C120.35564 (17)0.23654 (15)0.92405 (19)0.0303 (4)
H12A0.43270.23420.87660.045*
H12B0.29180.27000.87060.045*
H12C0.36620.28241.00100.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01859 (18)0.0338 (2)0.0541 (3)0.00717 (17)0.0056 (2)0.0017 (2)
Cl20.0291 (2)0.0298 (2)0.0332 (2)0.00478 (17)0.00942 (19)0.00751 (19)
Cl30.01775 (18)0.0357 (3)0.0325 (2)0.00250 (16)0.00432 (19)0.00241 (19)
Cl40.0297 (2)0.0359 (3)0.0239 (2)0.00577 (17)0.00508 (17)0.00837 (18)
C10.0177 (7)0.0225 (8)0.0161 (8)0.0025 (6)0.0012 (6)0.0021 (6)
C20.0202 (8)0.0252 (8)0.0241 (9)0.0021 (6)0.0043 (7)0.0065 (7)
C30.0183 (7)0.0276 (9)0.0227 (9)0.0034 (6)0.0030 (6)0.0003 (7)
C40.0166 (7)0.0250 (9)0.0304 (10)0.0056 (6)0.0019 (7)0.0004 (8)
C50.0203 (7)0.0220 (8)0.0247 (8)0.0039 (6)0.0024 (6)0.0004 (7)
C60.0209 (7)0.0241 (9)0.0220 (8)0.0006 (6)0.0001 (6)0.0028 (7)
C70.0171 (7)0.0214 (8)0.0173 (8)0.0004 (5)0.0001 (6)0.0008 (6)
C80.0166 (7)0.0249 (8)0.0198 (9)0.0030 (6)0.0007 (6)0.0003 (7)
C90.0197 (7)0.0236 (9)0.0256 (9)0.0049 (7)0.0014 (6)0.0022 (7)
C100.0332 (10)0.0255 (9)0.0411 (12)0.0068 (8)0.0033 (8)0.0080 (8)
C110.0317 (10)0.0299 (10)0.0399 (12)0.0072 (8)0.0031 (7)0.0124 (9)
C120.0295 (9)0.0254 (10)0.0359 (11)0.0061 (7)0.0030 (8)0.0046 (8)
Geometric parameters (Å, º) top
Cl1—C41.7707 (15)C6—C71.514 (2)
Cl2—C41.7547 (19)C6—H6A0.9900
Cl3—C81.7689 (14)C6—H6B0.9900
Cl4—C81.7648 (17)C7—C81.488 (2)
C1—C81.507 (2)C7—H71.0000
C1—C71.525 (2)C9—C111.522 (2)
C1—C21.526 (2)C9—C101.532 (3)
C1—C91.532 (2)C9—H91.0000
C2—C31.515 (2)C10—H10A0.9800
C2—H2A0.9900C10—H10B0.9800
C2—H2B0.9900C10—H10C0.9800
C3—C41.493 (2)C11—H11A0.9800
C3—C51.529 (2)C11—H11B0.9800
C3—H31.0000C11—H11C0.9800
C4—C51.504 (2)C12—H12A0.9800
C5—C121.510 (2)C12—H12B0.9800
C5—C61.520 (2)C12—H12C0.9800
C8—C1—C758.76 (10)C8—C7—C6121.06 (14)
C8—C1—C2116.86 (14)C8—C7—C160.00 (11)
C7—C1—C2118.66 (13)C6—C7—C1124.20 (13)
C8—C1—C9117.56 (13)C8—C7—H7113.7
C7—C1—C9118.21 (13)C6—C7—H7113.7
C2—C1—C9115.19 (13)C1—C7—H7113.7
C3—C2—C1117.11 (13)C7—C8—C161.24 (11)
C3—C2—H2A108.0C7—C8—Cl4119.49 (11)
C1—C2—H2A108.0C1—C8—Cl4119.14 (11)
C3—C2—H2B108.0C7—C8—Cl3118.56 (11)
C1—C2—H2B108.0C1—C8—Cl3121.04 (11)
H2A—C2—H2B107.3Cl4—C8—Cl3110.02 (9)
C4—C3—C2121.99 (14)C11—C9—C1111.10 (14)
C4—C3—C559.69 (11)C11—C9—C10111.62 (16)
C2—C3—C5123.80 (13)C1—C9—C10111.99 (13)
C4—C3—H3113.7C11—C9—H9107.3
C2—C3—H3113.7C1—C9—H9107.3
C5—C3—H3113.7C10—C9—H9107.3
C3—C4—C561.33 (11)C9—C10—H10A109.5
C3—C4—Cl2119.73 (11)C9—C10—H10B109.5
C5—C4—Cl2119.31 (12)H10A—C10—H10B109.5
C3—C4—Cl1118.71 (12)C9—C10—H10C109.5
C5—C4—Cl1120.02 (12)H10A—C10—H10C109.5
Cl2—C4—Cl1110.29 (9)H10B—C10—H10C109.5
C4—C5—C12118.59 (14)C9—C11—H11A109.5
C4—C5—C6117.36 (14)C9—C11—H11B109.5
C12—C5—C6113.74 (14)H11A—C11—H11B109.5
C4—C5—C358.98 (11)C9—C11—H11C109.5
C12—C5—C3118.63 (15)H11A—C11—H11C109.5
C6—C5—C3119.01 (13)H11B—C11—H11C109.5
C7—C6—C5116.70 (14)C5—C12—H12A109.5
C7—C6—H6A108.1C5—C12—H12B109.5
C5—C6—H6A108.1H12A—C12—H12B109.5
C7—C6—H6B108.1C5—C12—H12C109.5
C5—C6—H6B108.1H12A—C12—H12C109.5
H6A—C6—H6B107.3H12B—C12—H12C109.5
C8—C1—C2—C366.2 (2)C5—C6—C7—C864.6 (2)
C7—C1—C2—C31.2 (2)C5—C6—C7—C18.1 (2)
C9—C1—C2—C3149.62 (15)C2—C1—C7—C8105.70 (16)
C1—C2—C3—C473.4 (2)C9—C1—C7—C8106.78 (15)
C1—C2—C3—C50.8 (2)C8—C1—C7—C6109.15 (17)
C2—C3—C4—C5113.23 (16)C2—C1—C7—C63.4 (2)
C2—C3—C4—Cl23.9 (2)C9—C1—C7—C6144.07 (16)
C5—C3—C4—Cl2109.28 (14)C6—C7—C8—C1114.21 (16)
C2—C3—C4—Cl1136.23 (13)C6—C7—C8—Cl45.1 (2)
C5—C3—C4—Cl1110.53 (15)C1—C7—C8—Cl4109.13 (13)
C3—C4—C5—C12108.00 (18)C6—C7—C8—Cl3134.01 (13)
Cl2—C4—C5—C12142.04 (15)C1—C7—C8—Cl3111.78 (14)
Cl1—C4—C5—C120.4 (2)C2—C1—C8—C7108.76 (15)
C3—C4—C5—C6109.03 (16)C9—C1—C8—C7107.88 (16)
Cl2—C4—C5—C60.9 (2)C7—C1—C8—Cl4109.69 (14)
Cl1—C4—C5—C6142.53 (14)C2—C1—C8—Cl40.9 (2)
Cl2—C4—C5—C3109.95 (14)C9—C1—C8—Cl4142.43 (13)
Cl1—C4—C5—C3108.44 (15)C7—C1—C8—Cl3107.83 (14)
C2—C3—C5—C4110.31 (18)C2—C1—C8—Cl3143.41 (13)
C4—C3—C5—C12107.94 (17)C9—C1—C8—Cl30.0 (2)
C2—C3—C5—C12141.75 (17)C8—C1—C9—C1186.75 (17)
C4—C3—C5—C6106.25 (17)C7—C1—C9—C11154.17 (14)
C2—C3—C5—C64.1 (2)C2—C1—C9—C1157.21 (19)
C4—C5—C6—C776.0 (2)C8—C1—C9—C10147.68 (16)
C12—C5—C6—C7139.28 (15)C7—C1—C9—C1080.26 (18)
C3—C5—C6—C78.1 (2)C2—C1—C9—C1068.36 (19)

Experimental details

Crystal data
Chemical formulaC12H16Cl4
Mr302.05
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)150
a, b, c (Å)10.9480 (3), 11.8207 (3), 10.5027 (4)
V3)1359.19 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.30 × 0.26 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.786, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9762, 3130, 2973
Rint0.021
(sin θ/λ)max1)0.698
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.05
No. of reflections3130
No. of parameters148
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16
Absolute structureFlack (1983), 1313 Friedel pairs
Absolute structure parameter0.09 (4)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Professor Yurii V. Gatilov (Institute of Organic Chemistry, Novosibirsk, Russia) for the data collection.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJamali, C. A., Kasrat, A., Bekkouche, K., Hassani, L., Wohlmuth, H., Leach, D. & Abbad, A. (2013). Ind. Crops Prod. 49, 366–372.  Web of Science CrossRef CAS Google Scholar
First citationLynch, V. M., Baran, J. R., Lagow, R. J. & Davis, B. E. (1994). Acta Cryst. C50, 1765–1768.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds