organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 3,3′-di­meth­­oxy­bi­phenyl-4,4′-di­carboxyl­ate

aCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1126, 0315 Oslo, Norway, binGAP National Centre of Research-based Innovation, Department of Chemistry, University of Oslo, PO Box 1126, 0315 Oslo, Norway, and cDepartment of Chemistry, University of Bergen, PO Box 7803, 5020 Bergen, Norway
*Correspondence e-mail: fredrik.lundvall@smn.uio.no

(Received 5 March 2014; accepted 12 March 2014; online 15 March 2014)

In the title compound, C18H18O6, the biphenyl moiety is twisted with a dihedral angle of 29.11 (10)°. The carbometh­oxy groups form C—C—C—O torsion angles of −18.3 (3) and −27.7 (3)° with the attached rings, as a result of steric hindrances from the nearby meth­oxy groups. In the absence of stacking inter­actions and with no H⋯O contacts shorter than 2.7 Å, the packing is dominated by weaker van der Waals inter­actions.

Related literature

For the synthesis, see Zhou et al. (2007[Zhou, J., Xu, R.-H., Yang, J., Shen, X., Zhang, J.-J. & Zhu, D.-R. (2007). J. Nanjing Univ. Tech. 29, 16-18.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O6

  • Mr = 330.32

  • Monoclinic, P 21 /c

  • a = 12.9320 (6) Å

  • b = 7.3736 (4) Å

  • c = 16.4203 (8) Å

  • β = 97.410 (2)°

  • V = 1552.69 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 297 K

  • 0.23 × 0.17 × 0.06 mm

Data collection
  • Bruker PHOTON CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.994

  • 14813 measured reflections

  • 2830 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 1.02

  • 2830 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected torsion angles (°)

C2—C1—C7—C8 28.9 (3)
C3—C4—C13—O1 −27.7 (3)
C11—C10—C14—O4 −18.3 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ChemBioDraw Ultra (CambridgeSoft, 2009[CambridgeSoft (2009). ChemBioDraw Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is an intermediate in the synthesis of 3,3'-dimethoxy-4,4'-biphenyldicarboxylic acid, an organic linker for use in the synthesis of MOFs (Metal-Organic Frameworks). The title compound has previously been reported (Zhou et al., 2007), but its crystal structure was unknown until this publication.

There is a twist between benzene rings, which is a common feature in biphenyl compounds. The methoxy substituents are nearly coplanar with their parent benzene rings. On the opposite, the methyl carboxylate substituents are not co-planar with the adjacent benzene rings, and the corresponding dihedral angles differ between the two halves of the molecule. The methyl groups of the methoxy and methyl carboxylate substituents are oriented away from each other to accommodate the sterical demands of these groups. The long axis of the molecules is oriented in the [101] direction and two-dimensional corrugated layers parallel to the ac plane can be imagined. The packing does not appear to be directed by any strong intermolecular bonding, although some long range interaction might influence the ordering of the molecules. Indeed, the carbonyl O atoms O5 and O2 are oriented towards H12 and H2 of neighbouring molecules in a near linear fashion. However, since the O—H distances are very long (>2.7 Å), they are unlikely to be a major factor in the crystal packing.

Related literature top

For the synthesis, see Zhou et al. (2007).

Experimental top

The title compound was synthesized by a slightly modified version of the method used by Zhou et al. (2007). In the Ullmann-coupling of 2 equivalents of methyl 4-iodo-2-methoxybenzoate to form the title compound, the reaction temperature was increased to 225 °C and the reaction time was set to 8 h. The title compound was extracted from the reaction mixture by repeated washing with warm ethyl acetate and subsequent filtering to remove solid particles. The resulting 1H NMR spectrum is in good agreement with what was reported by Zhou et al. (2007).

Single crystals suitable for XRD analysis were obtained by recrystallizing the title compound from ethyl acetate.

Refinement top

The structure was refined by full-matrix least squares using SHELXL97 (Sheldrick, 2008) as implemented in the WinGX suite (Farrugia, 2012). H-atoms were positioned geometrically at distances of 0.93 (CH) and 0.96 Å (CH3) and refined using a riding/rotating model with Uiso (H)=1.2 Ueq (CH) and Uiso (H)=1.5 Ueq (CH3).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2004) and ChemBioDraw Ultra (CambridgeSoft, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
Dimethyl 3,3'-dimethoxybiphenyl-4,4'-dicarboxylate top
Crystal data top
C18H18O6F(000) = 696
Mr = 330.32Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5300 reflections
a = 12.9320 (6) Åθ = 2.5–25.3°
b = 7.3736 (4) ŵ = 0.11 mm1
c = 16.4203 (8) ÅT = 297 K
β = 97.410 (2)°Plate, colourless
V = 1552.69 (13) Å30.23 × 0.17 × 0.06 mm
Z = 4
Data collection top
Bruker PHOTON CCD
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.976, Tmax = 0.994k = 88
14813 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.5584P]
where P = (Fo2 + 2Fc2)/3
2830 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H18O6V = 1552.69 (13) Å3
Mr = 330.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9320 (6) ŵ = 0.11 mm1
b = 7.3736 (4) ÅT = 297 K
c = 16.4203 (8) Å0.23 × 0.17 × 0.06 mm
β = 97.410 (2)°
Data collection top
Bruker PHOTON CCD
diffractometer
2830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2023 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.031
14813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
2830 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65055 (14)0.1733 (3)0.91869 (11)0.0393 (5)
C20.54757 (14)0.2196 (3)0.92368 (11)0.0403 (5)
H20.52740.24580.97470.048*
C30.47394 (14)0.2277 (3)0.85443 (11)0.0381 (5)
C40.50301 (15)0.1825 (3)0.77713 (11)0.0408 (5)
C50.60636 (15)0.1385 (3)0.77293 (12)0.0457 (5)
H50.62700.11140.72210.055*
C60.67954 (15)0.1336 (3)0.84176 (12)0.0466 (5)
H60.74840.10380.83690.056*
C70.72881 (14)0.1687 (3)0.99378 (11)0.0399 (5)
C80.70005 (15)0.1301 (3)1.07078 (11)0.0465 (5)
H80.63070.10591.07630.056*
C90.77472 (15)0.1280 (3)1.13896 (11)0.0457 (5)
H90.75430.10201.18990.055*
C100.87902 (15)0.1633 (3)1.13416 (11)0.0401 (5)
C110.90801 (14)0.2030 (3)1.05639 (11)0.0398 (5)
C120.83282 (14)0.2061 (3)0.98785 (11)0.0404 (5)
H120.85260.23380.93680.048*
C130.43182 (15)0.1785 (3)0.69788 (11)0.0420 (5)
C140.95062 (15)0.1569 (3)1.21280 (12)0.0450 (5)
C150.26093 (16)0.1350 (4)0.63245 (12)0.0577 (6)
H15A0.28370.04400.59690.087*
H15B0.25840.25050.60540.087*
H15C0.19280.10450.64540.087*
C161.12175 (16)0.1390 (4)1.27938 (12)0.0630 (7)
H16A1.11790.25211.30780.094*
H16B1.19120.12181.26610.094*
H16C1.10430.04151.31390.094*
C170.34918 (16)0.3548 (4)0.93227 (12)0.0585 (6)
H17A0.35450.26070.97300.088*
H17B0.27930.40140.92450.088*
H17C0.39690.45080.95020.088*
C181.04057 (16)0.2687 (4)0.97237 (12)0.0604 (7)
H18A1.01980.16640.93800.091*
H18B1.11490.28260.97720.091*
H18C1.00760.37630.94850.091*
O10.33324 (10)0.1438 (2)0.70733 (8)0.0530 (4)
O20.46142 (11)0.1984 (2)0.63214 (8)0.0616 (5)
O30.37416 (9)0.2830 (2)0.85684 (7)0.0475 (4)
O41.04924 (11)0.1413 (3)1.20477 (8)0.0647 (5)
O50.92109 (13)0.1656 (4)1.27824 (9)0.1001 (8)
O61.00999 (10)0.2403 (2)1.05180 (8)0.0579 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0377 (10)0.0468 (11)0.0326 (10)0.0036 (9)0.0012 (8)0.0007 (9)
C20.0396 (10)0.0555 (12)0.0257 (10)0.0045 (9)0.0039 (8)0.0019 (8)
C30.0331 (10)0.0523 (12)0.0288 (10)0.0056 (9)0.0041 (7)0.0010 (8)
C40.0408 (11)0.0524 (12)0.0291 (10)0.0054 (9)0.0040 (8)0.0018 (8)
C50.0436 (11)0.0645 (14)0.0297 (10)0.0037 (10)0.0073 (8)0.0076 (9)
C60.0375 (11)0.0636 (14)0.0386 (11)0.0016 (10)0.0050 (9)0.0075 (10)
C70.0413 (11)0.0452 (11)0.0321 (10)0.0004 (9)0.0012 (8)0.0003 (8)
C80.0382 (11)0.0651 (14)0.0361 (11)0.0038 (10)0.0045 (9)0.0048 (9)
C90.0461 (11)0.0623 (14)0.0297 (10)0.0010 (10)0.0082 (9)0.0057 (9)
C100.0423 (11)0.0499 (12)0.0275 (10)0.0004 (9)0.0024 (8)0.0009 (8)
C110.0359 (10)0.0507 (12)0.0325 (10)0.0005 (9)0.0033 (8)0.0007 (8)
C120.0408 (11)0.0537 (12)0.0265 (10)0.0002 (9)0.0034 (8)0.0027 (8)
C130.0401 (11)0.0553 (12)0.0304 (10)0.0016 (9)0.0033 (8)0.0034 (9)
C140.0458 (12)0.0606 (13)0.0285 (10)0.0015 (10)0.0050 (9)0.0032 (9)
C150.0452 (12)0.0891 (18)0.0356 (12)0.0075 (11)0.0071 (9)0.0099 (11)
C160.0470 (12)0.107 (2)0.0326 (11)0.0060 (13)0.0046 (9)0.0061 (12)
C170.0433 (12)0.0973 (19)0.0350 (11)0.0075 (12)0.0059 (9)0.0140 (11)
C180.0444 (12)0.1011 (19)0.0369 (12)0.0048 (12)0.0101 (9)0.0112 (12)
O10.0411 (8)0.0887 (12)0.0277 (7)0.0117 (7)0.0010 (6)0.0036 (7)
O20.0497 (9)0.1084 (14)0.0272 (8)0.0051 (8)0.0067 (6)0.0013 (8)
O30.0360 (7)0.0799 (11)0.0265 (7)0.0022 (7)0.0032 (5)0.0055 (6)
O40.0444 (9)0.1215 (15)0.0266 (8)0.0118 (9)0.0011 (6)0.0045 (8)
O50.0544 (10)0.217 (2)0.0287 (9)0.0005 (12)0.0049 (7)0.0034 (11)
O60.0368 (8)0.1072 (13)0.0289 (7)0.0093 (8)0.0018 (6)0.0119 (8)
Geometric parameters (Å, º) top
C1—C21.387 (3)C12—H120.9300
C1—C61.394 (3)C13—O21.200 (2)
C1—C71.491 (3)C13—O11.329 (2)
C2—C31.387 (3)C14—O51.188 (2)
C2—H20.9300C14—O41.304 (2)
C3—O31.359 (2)C15—O11.447 (2)
C3—C41.410 (2)C15—H15A0.9600
C4—C51.386 (3)C15—H15B0.9600
C4—C131.494 (3)C15—H15C0.9600
C5—C61.378 (3)C16—O41.444 (2)
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—C121.389 (3)C16—H16C0.9600
C7—C81.393 (3)C17—O31.422 (2)
C8—C91.381 (3)C17—H17A0.9600
C8—H80.9300C17—H17B0.9600
C9—C101.386 (3)C17—H17C0.9600
C9—H90.9300C18—O61.426 (2)
C10—C111.407 (2)C18—H18A0.9600
C10—C141.489 (3)C18—H18B0.9600
C11—O61.359 (2)C18—H18C0.9600
C11—C121.389 (3)
C2—C1—C6118.52 (17)C11—C12—H12119.2
C2—C1—C7120.74 (17)O2—C13—O1123.42 (17)
C6—C1—C7120.74 (17)O2—C13—C4123.29 (18)
C3—C2—C1121.67 (17)O1—C13—C4113.25 (16)
C3—C2—H2119.2O5—C14—O4121.94 (18)
C1—C2—H2119.2O5—C14—C10123.11 (19)
O3—C3—C2122.91 (16)O4—C14—C10114.95 (16)
O3—C3—C4117.51 (16)O1—C15—H15A109.5
C2—C3—C4119.56 (17)O1—C15—H15B109.5
C5—C4—C3118.12 (17)H15A—C15—H15B109.5
C5—C4—C13116.23 (16)O1—C15—H15C109.5
C3—C4—C13125.66 (17)H15A—C15—H15C109.5
C6—C5—C4122.01 (18)H15B—C15—H15C109.5
C6—C5—H5119.0O4—C16—H16A109.5
C4—C5—H5119.0O4—C16—H16B109.5
C5—C6—C1120.08 (18)H16A—C16—H16B109.5
C5—C6—H6120.0O4—C16—H16C109.5
C1—C6—H6120.0H16A—C16—H16C109.5
C12—C7—C8118.60 (17)H16B—C16—H16C109.5
C12—C7—C1119.85 (17)O3—C17—H17A109.5
C8—C7—C1121.54 (18)O3—C17—H17B109.5
C9—C8—C7119.84 (18)H17A—C17—H17B109.5
C9—C8—H8120.1O3—C17—H17C109.5
C7—C8—H8120.1H17A—C17—H17C109.5
C8—C9—C10122.39 (17)H17B—C17—H17C109.5
C8—C9—H9118.8O6—C18—H18A109.5
C10—C9—H9118.8O6—C18—H18B109.5
C9—C10—C11117.76 (17)H18A—C18—H18B109.5
C9—C10—C14116.46 (16)O6—C18—H18C109.5
C11—C10—C14125.78 (17)H18A—C18—H18C109.5
O6—C11—C12122.32 (16)H18B—C18—H18C109.5
O6—C11—C10117.80 (16)C13—O1—C15115.73 (15)
C12—C11—C10119.86 (17)C3—O3—C17117.41 (14)
C7—C12—C11121.53 (17)C14—O4—C16116.86 (16)
C7—C12—H12119.2C11—O6—C18117.77 (15)
C6—C1—C2—C30.3 (3)C14—C10—C11—O60.4 (3)
C7—C1—C2—C3178.88 (18)C9—C10—C11—C120.1 (3)
C1—C2—C3—O3175.97 (18)C14—C10—C11—C12179.39 (19)
C1—C2—C3—C42.1 (3)C8—C7—C12—C110.9 (3)
O3—C3—C4—C5175.44 (18)C1—C7—C12—C11179.97 (18)
C2—C3—C4—C52.7 (3)O6—C11—C12—C7179.58 (18)
O3—C3—C4—C134.2 (3)C10—C11—C12—C70.7 (3)
C2—C3—C4—C13177.70 (19)C5—C4—C13—O224.9 (3)
C3—C4—C5—C61.6 (3)C3—C4—C13—O2154.7 (2)
C13—C4—C5—C6178.72 (19)C5—C4—C13—O1152.69 (19)
C4—C5—C6—C10.1 (3)C3—C4—C13—O127.7 (3)
C2—C1—C6—C50.8 (3)C9—C10—C14—O517.9 (3)
C7—C1—C6—C5179.99 (19)C11—C10—C14—O5161.6 (2)
C2—C1—C7—C12150.2 (2)C9—C10—C14—O4162.24 (19)
C6—C1—C7—C1228.9 (3)C11—C10—C14—O418.3 (3)
C2—C1—C7—C828.9 (3)O2—C13—O1—C151.3 (3)
C6—C1—C7—C8152.0 (2)C4—C13—O1—C15178.92 (18)
C12—C7—C8—C90.6 (3)C2—C3—O3—C177.5 (3)
C1—C7—C8—C9179.67 (19)C4—C3—O3—C17170.62 (19)
C7—C8—C9—C100.0 (3)O5—C14—O4—C161.3 (4)
C8—C9—C10—C110.3 (3)C10—C14—O4—C16178.55 (19)
C8—C9—C10—C14179.8 (2)C12—C11—O6—C185.2 (3)
C9—C10—C11—O6179.02 (19)C10—C11—O6—C18175.9 (2)

Experimental details

Crystal data
Chemical formulaC18H18O6
Mr330.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)12.9320 (6), 7.3736 (4), 16.4203 (8)
β (°) 97.410 (2)
V3)1552.69 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.23 × 0.17 × 0.06
Data collection
DiffractometerBruker PHOTON CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
14813, 2830, 2023
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.02
No. of reflections2830
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2004) and ChemBioDraw Ultra (CambridgeSoft, 2009), publCIF (Westrip, 2010).

Selected torsion angles (º) top
C2—C1—C7—C828.9 (3)C11—C10—C14—O418.3 (3)
C3—C4—C13—O127.7 (3)
 

Acknowledgements

We acknowledge the support from the Norwegian Research Council (project 190980), inGAP, RECX and the Department of Chemistry, UiO.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridgeSoft (2009). ChemBioDraw Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, J., Xu, R.-H., Yang, J., Shen, X., Zhang, J.-J. & Zhu, D.-R. (2007). J. Nanjing Univ. Tech. 29, 16–18.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds