organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o451-o452

(E)-2-{[(Furan-2-ylmeth­yl)imino]­meth­yl}-4-nitro­phenol

aChemistry Department, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, Keene, NH 03410, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 26 February 2014; accepted 11 March 2014; online 15 March 2014)

In the title compound, C12H10N2O4, the furan-2-ylmethyl group is disordered over two sets of sites, with refined occupancies of 0.858 (3) and 0.143 (3). In the major component of disorder, the dihedral angle between the furan and benzene rings is 63.1 (2)° and for the minor component this value is 67.9 (6)°. The planes of the nitro group and the attached benzene ring form a dihedral angle of 4.34 (17)°. In the crystal, inversion-related mol­ecules are linked by two pairs of weak C—H⋯O inter­actions, one involving the nitro group and the other involving the O—H group as an acceptor. As a result of these associations, ribbons are formed along [120]. A strong intra­molecular O—H⋯N hydrogen bond is observed.

Related literature

For the use of salicyl­idene compounds as anion sensors, see: Hijji et al. (2009[Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297-302.]) and for the use of related compounds as anion sensors, see: Hijji et al. (2004[Hijji, Y. M., Wairia, G., Edwards, A., Iwunze, M., Kennedy Sr, A. & Williams, R. (2004). Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol. 5588, pp. 29, 214-223.]). For the bioactivity of metal complexes of structurally related salicyl­idene derivatives, see: Mandal et al. (2009a[Mandal, S., Rout, A. K., Ghosh, A., Pilet, G. & Bandyopadhyay, D. (2009a). Polyhedron, 28, 3858-3862.],b[Mandal, S., Rout, A. K., Pilet, G. & Bandyopadhyay, D. (2009b). Transition Met. Chem. 34, 719-724.]). For related structures, see: Song et al. (2008[Song, Y., Xu, Z., Sun, Q., Su, B., Gao, Q., Liu, H. & Zhao, J. (2008). J. Coord. Chem. 61, 1212-1220.]); Khalaji et al. (2011a[Khalaji, A. D., Maghsod, L., Rad, S., Grivani, G., Rezaei, M., Gotoh, K. & Ishida, H. (2011a). Chin. J. Chem. 29, 1613-1616. .],b[Khalaji, A. D., Rad, S. M., Grivani, G. & Das, D. (2011b). J. Therm. Anal. Calorim. 103, 747-751.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O4

  • Mr = 246.22

  • Triclinic, [P \overline 1]

  • a = 5.4427 (7) Å

  • b = 8.2488 (10) Å

  • c = 12.4701 (14) Å

  • α = 98.901 (9)°

  • β = 92.04 (1)°

  • γ = 91.69 (1)°

  • V = 552.41 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.96 mm−1

  • T = 123 K

  • 0.34 × 0.26 × 0.17 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.912, Tmax = 1.000

  • 3400 measured reflections

  • 2210 independent reflections

  • 2047 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.06

  • 2210 reflections

  • 186 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.95 (3) 1.72 (3) 2.5784 (14) 148 (2)
C2—H2A⋯O1i 0.95 2.52 3.4548 (16) 169
C7—H7A⋯O3ii 0.95 2.54 3.4567 (16) 161
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound adopts an E configuration with respect to the CN imine bond. Structurally related salicyl­idene derivatives have been used as anion sensors (Hijji, et al., 2004; Hijji et al., 2009) and their metal complexes have shown bioactivity (Mandal et al., 2009a,b). Similar structures have been previously reported (Song et al., 2008; Khalaji et al., 2011a,b).

The molecular structure of the title compound is shown in Fig. 1. The furan-2-yl­methyl group is disordered over two sets of sites with refined occupancies of 0.858 (3) and 0.142 (3). In the major component of disorder the dihedral angle between the furan and benzene rings is 63.1 (2)° and for the minor component this value is 67.9 (6)°. The nitro group and attached benzene ring form a dihedral angle of 4.34 (17)°. In the crystal, inversion related molecules are linked by two pairs of weak C—H···O inter­actions, one involves the nitro group while the other involves the O—H as an acceptor (Fig. 2). As a result of these associations ribbons are formed along [120]. A strong intra­molecular O—H···N hydrogen bond is observed.

Experimental top

((E)-2-(((Furan-2-yl­methyl)­imino)­methyl)-4-nitro­phenol was synthesized by mixing 2-methyl­furyl­amine (0.29 g, 3mmol) with 5-nitro-2-hy­droxy­benzaldehyde. (0.32 g, 2 mmol) the mixture was mixed well and turned dark yellow. After mixing and grinding for 5 minutes the mixture was dissolved in 15 mL of di­ethyl ether and allowed to crystallize to give yellow crystals, 0.378g, 77% yield), m.p. (393-395 K). A sample was recrystallized from di­ethyl ether with slow evaporation to provide a crystal suitable for x-ray measurements.

Refinement top

H atoms were placed in geometrically idealized positions with a C—H distances of 0.95 and 0.99 Å Uĩso~(H) = 1.2U~eq~(C) and 0.96 Å for CH~3~ [Uĩso~(H) = 1.5U~eq~(C)]. The furan ring was refined as disordered over two conformations. Both components were constrained to have similar geometries with occupancies of 0.858 (3) and 0.142 (3). For the hy­droxy group the H atom was refined isotropically.

Related literature top

For the use of salicylidene compounds as anion sensors, see: Hijji et al. (2009) and for the use of related compounds as anion sensors, see: Hijji et al. (2004). For the bioactivity of metal complexes of structurally related salicylidene derivatives, see: Mandal et al. (2009a,b). For related structures, see: Song et al. (2008); Khalaji et al. (2011a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing ellipsoids at the 30% probabilty level (major component only). The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Packing diagram for the complex viewed along the c axis showing the repeating motif forming ribbons along [1 2 0]. N—H···O hydrogen bonds and C—H···O interactions shown by dashed lines.
(E)-2-{[(Furan-2-ylmethyl)imino]methyl}-4-nitrophenol top
Crystal data top
C12H10N2O4Z = 2
Mr = 246.22F(000) = 256
Triclinic, P1Dx = 1.480 Mg m3
a = 5.4427 (7) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.2488 (10) ÅCell parameters from 2639 reflections
c = 12.4701 (14) Åθ = 3.6–75.5°
α = 98.901 (9)°µ = 0.96 mm1
β = 92.04 (1)°T = 123 K
γ = 91.69 (1)°Prism, pale yellow
V = 552.41 (12) Å30.34 × 0.26 × 0.17 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2047 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.019
ω scansθmax = 75.6°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 66
Tmin = 0.912, Tmax = 1.000k = 1010
3400 measured reflectionsl = 1115
2210 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.0922P]
where P = (Fo2 + 2Fc2)/3
2210 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.32 e Å3
13 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H10N2O4γ = 91.69 (1)°
Mr = 246.22V = 552.41 (12) Å3
Triclinic, P1Z = 2
a = 5.4427 (7) ÅCu Kα radiation
b = 8.2488 (10) ŵ = 0.96 mm1
c = 12.4701 (14) ÅT = 123 K
α = 98.901 (9)°0.34 × 0.26 × 0.17 mm
β = 92.04 (1)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2210 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2047 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 1.000Rint = 0.019
3400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04213 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
2210 reflectionsΔρmin = 0.27 e Å3
186 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

1H-NMR (400 MHz): d ppm (CDCl3): 14.41(br. s 1H), 8.39 (t, J = 1.25 Hz, 1H) 8.255 (d, J = 2.85 Hz, 1H), 8.205 (dd, J = 8.25, 2.85 Hz, 1H), 7.44 ( dd, J = 1.75, 0.75 Hz, 1H), 7.01 ( d, J = 7.30 Hz, 1H), 6.395 (dd, J = 3.45, 1.85 Hz, 1H), 6.35 dt, J = 3.45, 0.75 Hz, 1 H), 4.84 (s, 2 H). 13C-NMR (100 MHz) d ppm (CDCl3): 167.64, 164.96, 149.57, 143.12, 139.45, 128.23, 128.08, 118.46, 117.44, 110.05, 108.99, 54.01. Mass spec: M+ = 246.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.24922 (16)0.42490 (11)0.60178 (7)0.0282 (2)
H1O0.352 (5)0.424 (3)0.665 (2)0.082 (8)*
O20.51829 (18)0.00193 (12)0.16611 (7)0.0345 (2)
O30.83082 (19)0.04412 (13)0.26772 (8)0.0406 (3)
N10.6361 (2)0.02267 (13)0.25331 (9)0.0281 (2)
N20.6077 (2)0.34958 (13)0.72346 (8)0.0281 (2)
C10.3478 (2)0.33032 (14)0.51862 (9)0.0226 (2)
C20.2310 (2)0.31430 (15)0.41515 (10)0.0244 (2)
H2A0.08630.37270.40490.029*
C30.3249 (2)0.21438 (14)0.32834 (9)0.0242 (2)
H3A0.24500.20240.25850.029*
C40.5397 (2)0.13099 (14)0.34469 (9)0.0233 (2)
C50.6607 (2)0.14649 (14)0.44537 (10)0.0240 (2)
H5A0.80720.08930.45420.029*
C60.5667 (2)0.24627 (14)0.53369 (9)0.0222 (2)
C70.6911 (2)0.26050 (14)0.64088 (10)0.0256 (3)
H7A0.83680.20220.64910.031*
O40.6949 (2)0.62761 (19)0.92624 (12)0.0322 (3)0.858 (3)
C80.7459 (4)0.3535 (3)0.8281 (2)0.0320 (5)0.858 (3)
H8A0.88130.27570.81800.038*0.858 (3)
H8B0.63500.31700.88160.038*0.858 (3)
C90.8503 (5)0.5208 (3)0.8716 (3)0.0253 (3)0.858 (3)
C101.0759 (3)0.5895 (2)0.87026 (14)0.0297 (4)0.858 (3)
H10A1.21470.54050.83620.036*0.858 (3)
C111.0658 (4)0.7526 (2)0.93068 (14)0.0318 (4)0.858 (3)
H11A1.19700.83250.94490.038*0.858 (3)
C120.8342 (4)0.76926 (19)0.96289 (13)0.0328 (4)0.858 (3)
H12A0.77440.86491.00490.039*0.858 (3)
O4A0.7528 (18)0.6486 (14)0.9445 (9)0.0322 (3)0.142 (3)
C8A0.694 (3)0.3590 (19)0.8374 (16)0.0320 (5)0.142 (3)
H8A10.80570.26810.84440.038*0.142 (3)
H8A20.55260.34810.88360.038*0.142 (3)
C9A0.827 (3)0.519 (2)0.8736 (17)0.0253 (3)0.142 (3)
C10A1.0441 (18)0.5434 (14)0.8316 (9)0.0297 (4)0.142 (3)
H10B1.12530.47360.77720.036*0.142 (3)
C11A1.1230 (19)0.6970 (14)0.8873 (9)0.0318 (4)0.142 (3)
H11B1.27890.74770.87930.038*0.142 (3)
C12A0.950 (3)0.7651 (13)0.9539 (9)0.0328 (4)0.142 (3)
H12B0.96010.87000.99810.039*0.142 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (4)0.0311 (4)0.0245 (4)0.0086 (3)0.0018 (3)0.0001 (3)
O20.0409 (5)0.0361 (5)0.0247 (4)0.0025 (4)0.0013 (4)0.0014 (4)
O30.0365 (5)0.0429 (6)0.0409 (5)0.0172 (4)0.0048 (4)0.0024 (4)
N10.0291 (5)0.0253 (5)0.0298 (5)0.0021 (4)0.0052 (4)0.0034 (4)
N20.0347 (5)0.0247 (5)0.0245 (5)0.0003 (4)0.0056 (4)0.0040 (4)
C10.0220 (5)0.0210 (5)0.0252 (5)0.0008 (4)0.0021 (4)0.0048 (4)
C20.0205 (5)0.0249 (5)0.0283 (6)0.0036 (4)0.0002 (4)0.0059 (4)
C30.0243 (5)0.0261 (5)0.0229 (5)0.0002 (4)0.0010 (4)0.0063 (4)
C40.0246 (5)0.0203 (5)0.0249 (6)0.0009 (4)0.0038 (4)0.0027 (4)
C50.0212 (5)0.0209 (5)0.0308 (6)0.0030 (4)0.0016 (4)0.0067 (4)
C60.0225 (5)0.0202 (5)0.0244 (5)0.0003 (4)0.0007 (4)0.0054 (4)
C70.0263 (5)0.0211 (5)0.0299 (6)0.0011 (4)0.0047 (4)0.0064 (4)
O40.0284 (7)0.0340 (6)0.0326 (7)0.0038 (5)0.0018 (5)0.0002 (5)
C80.0410 (13)0.0279 (6)0.0266 (8)0.0046 (8)0.0087 (8)0.0042 (5)
C90.0277 (8)0.0287 (6)0.0195 (5)0.0067 (5)0.0021 (5)0.0030 (4)
C100.0246 (7)0.0411 (10)0.0230 (8)0.0050 (6)0.0016 (6)0.0032 (7)
C110.0386 (9)0.0338 (9)0.0222 (8)0.0078 (7)0.0049 (7)0.0047 (6)
C120.0441 (10)0.0261 (7)0.0268 (7)0.0069 (7)0.0003 (7)0.0011 (5)
O4A0.0284 (7)0.0340 (6)0.0326 (7)0.0038 (5)0.0018 (5)0.0002 (5)
C8A0.0410 (13)0.0279 (6)0.0266 (8)0.0046 (8)0.0087 (8)0.0042 (5)
C9A0.0277 (8)0.0287 (6)0.0195 (5)0.0067 (5)0.0021 (5)0.0030 (4)
C10A0.0246 (7)0.0411 (10)0.0230 (8)0.0050 (6)0.0016 (6)0.0032 (7)
C11A0.0386 (9)0.0338 (9)0.0222 (8)0.0078 (7)0.0049 (7)0.0047 (6)
C12A0.0441 (10)0.0261 (7)0.0268 (7)0.0069 (7)0.0003 (7)0.0011 (5)
Geometric parameters (Å, º) top
O1—C11.3363 (14)C8—C91.491 (3)
O1—H1O0.95 (3)C8—H8A0.9900
O2—N11.2286 (15)C8—H8B0.9900
O3—N11.2289 (15)C9—C101.339 (3)
N1—C41.4586 (15)C10—C111.440 (3)
N2—C71.2747 (17)C10—H10A0.9500
N2—C8A1.47 (2)C11—C121.341 (3)
N2—C81.479 (3)C11—H11A0.9500
C1—C21.4036 (16)C12—H12A0.9500
C1—C61.4172 (16)O4A—C9A1.359 (14)
C2—C31.3788 (17)O4A—C12A1.410 (14)
C2—H2A0.9500C8A—C9A1.483 (14)
C3—C41.3982 (17)C8A—H8A10.9900
C3—H3A0.9500C8A—H8A20.9900
C4—C51.3830 (17)C9A—C10A1.333 (14)
C5—C61.3917 (17)C10A—C11A1.395 (12)
C5—H5A0.9500C10A—H10B0.9500
C6—C71.4633 (16)C11A—C12A1.354 (13)
C7—H7A0.9500C11A—H11B0.9500
O4—C91.362 (3)C12A—H12B0.9500
O4—C121.381 (2)
C1—O1—H1O108.3 (17)H8A—C8—H8B107.9
O2—N1—O3123.29 (11)C10—C9—O4111.09 (19)
O2—N1—C4118.49 (10)C10—C9—C8132.3 (2)
O3—N1—C4118.22 (11)O4—C9—C8116.55 (19)
C7—N2—C8A127.0 (7)C9—C10—C11106.24 (16)
C7—N2—C8116.83 (12)C9—C10—H10A126.9
O1—C1—C2119.08 (10)C11—C10—H10A126.9
O1—C1—C6120.99 (10)C12—C11—C10106.29 (14)
C2—C1—C6119.92 (11)C12—C11—H11A126.9
C3—C2—C1120.40 (11)C10—C11—H11A126.9
C3—C2—H2A119.8C11—C12—O4110.34 (14)
C1—C2—H2A119.8C11—C12—H12A124.8
C2—C3—C4119.02 (11)O4—C12—H12A124.8
C2—C3—H3A120.5C9A—O4A—C12A104.9 (10)
C4—C3—H3A120.5N2—C8A—C9A109.4 (15)
C5—C4—C3121.81 (11)N2—C8A—H8A1109.8
C5—C4—N1119.21 (10)C9A—C8A—H8A1109.8
C3—C4—N1118.97 (11)N2—C8A—H8A2109.8
C4—C5—C6119.65 (11)C9A—C8A—H8A2109.8
C4—C5—H5A120.2H8A1—C8A—H8A2108.2
C6—C5—H5A120.2C10A—C9A—O4A114.2 (11)
C5—C6—C1119.19 (11)C10A—C9A—C8A117.8 (13)
C5—C6—C7119.90 (10)O4A—C9A—C8A128.0 (13)
C1—C6—C7120.90 (11)C9A—C10A—C11A102.9 (10)
N2—C7—C6121.28 (11)C9A—C10A—H10B128.6
N2—C7—H7A119.4C11A—C10A—H10B128.6
C6—C7—H7A119.4C12A—C11A—C10A111.8 (9)
C9—O4—C12106.02 (16)C12A—C11A—H11B124.1
N2—C8—C9112.0 (2)C10A—C11A—H11B124.1
N2—C8—H8A109.2C11A—C12A—O4A106.0 (9)
C9—C8—H8A109.2C11A—C12A—H12B127.0
N2—C8—H8B109.2O4A—C12A—H12B127.0
C9—C8—H8B109.2
O1—C1—C2—C3178.40 (10)C8A—N2—C8—C994 (3)
C6—C1—C2—C31.40 (18)C12—O4—C9—C101.4 (3)
C1—C2—C3—C40.77 (18)C12—O4—C9—C8177.1 (3)
C2—C3—C4—C50.24 (18)N2—C8—C9—C10100.0 (4)
C2—C3—C4—N1178.74 (10)N2—C8—C9—O481.9 (3)
O2—N1—C4—C5175.41 (10)O4—C9—C10—C111.2 (3)
O3—N1—C4—C54.15 (17)C8—C9—C10—C11177.0 (4)
O2—N1—C4—C33.60 (17)C9—C10—C11—C120.4 (2)
O3—N1—C4—C3176.84 (11)C10—C11—C12—O40.44 (18)
C3—C4—C5—C60.62 (18)C9—O4—C12—C111.1 (2)
N1—C4—C5—C6178.37 (10)C7—N2—C8A—C9A108.4 (12)
C4—C5—C6—C10.02 (17)C8—N2—C8A—C9A74 (3)
C4—C5—C6—C7178.74 (10)C12A—O4A—C9A—C10A4 (2)
O1—C1—C6—C5178.78 (10)C12A—O4A—C9A—C8A177 (2)
C2—C1—C6—C51.01 (17)N2—C8A—C9A—C10A70 (2)
O1—C1—C6—C70.07 (17)N2—C8A—C9A—O4A109 (2)
C2—C1—C6—C7179.72 (10)O4A—C9A—C10A—C11A5 (2)
C8A—N2—C7—C6171.7 (8)C8A—C9A—C10A—C11A176.2 (18)
C8—N2—C7—C6179.22 (13)C9A—C10A—C11A—C12A4.2 (16)
C5—C6—C7—N2179.25 (11)C10A—C11A—C12A—O4A2.1 (13)
C1—C6—C7—N20.55 (18)C9A—O4A—C12A—C11A0.9 (16)
C7—N2—C8—C9116.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.95 (3)1.72 (3)2.5784 (14)148 (2)
C2—H2A···O1i0.952.523.4548 (16)169
C7—H7A···O3ii0.952.543.4567 (16)161
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.95 (3)1.72 (3)2.5784 (14)148 (2)
C2—H2A···O1i0.952.523.4548 (16)168.7
C7—H7A···O3ii0.952.543.4567 (16)161.0
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1.
 

Footnotes

Current Address: Department of Chemistry and Earth Sciences, Qatar University, PO Box 2713, Doha, Qatar.

Acknowledgements

RJB wishes to acknowledge the National Science Foundation MRI program (CHE0619278) for funds to purchase the diffractometer and the Howard University Nanoscience Facility for access to liquid nitro­gen. YH would like to thank the Department of Chemistry and Earth Sciences at Qatar University for support.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationHijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297–302.  Web of Science CrossRef CAS Google Scholar
First citationHijji, Y. M., Wairia, G., Edwards, A., Iwunze, M., Kennedy Sr, A. & Williams, R. (2004). Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Vol. 5588, pp. 29, 214–223.  Google Scholar
First citationKhalaji, A. D., Maghsod, L., Rad, S., Grivani, G., Rezaei, M., Gotoh, K. & Ishida, H. (2011a). Chin. J. Chem. 29, 1613–1616. .  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Rad, S. M., Grivani, G. & Das, D. (2011b). J. Therm. Anal. Calorim. 103, 747–751.  Web of Science CrossRef CAS Google Scholar
First citationMandal, S., Rout, A. K., Ghosh, A., Pilet, G. & Bandyopadhyay, D. (2009a). Polyhedron, 28, 3858–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandal, S., Rout, A. K., Pilet, G. & Bandyopadhyay, D. (2009b). Transition Met. Chem. 34, 719–724.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Xu, Z., Sun, Q., Su, B., Gao, Q., Liu, H. & Zhao, J. (2008). J. Coord. Chem. 61, 1212–1220.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o451-o452
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds