organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o447-o448

2-[4-(Piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidin-2-yl]phenol

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

(Received 4 March 2014; accepted 12 March 2014; online 15 March 2014)

In the title compound, C22H21N3O2, the pyrimidine ring is essentially planar [maximum deviation = 0.018 (2) Å] and forms dihedral angles of 22.70 (8) and 0.97 (7)°, respectively, with the fused benzene ring and the hy­droxy-substituted benzene ring. The piperidine ring has a chair conformation and the pyran ring has a flattened twist-boat conformation. The hy­droxy group was refined as disordered over two sets of sites in a 0.702 (4):0.298 (4) ratio. The disorder corresponds to a rotation of approxomiately 180° about the C—C bond connecting the phenol group to the pyrimidine ring and hence, both the major and minor components of disorder form intra­molecular O—H⋯N hydrogen bonds. In the crystal, pairs of weak C—H⋯π inter­actions form inversion dimers. In addition, ππ inter­actions are observed between the pyrimidine ring and the hy­droxy-substituted benzene ring [centroid–centroid separation = 3.739 (2) Å].

Related literature

For applications of benzo­pyrano[2,3-d]pyrimidines, see: Hadfield et al. (1999[Hadfield, J. A., Pavlidis, V. H., Perry, P. J. & McGown, A. T. (1999). Anticancer Drugs, 10, 591-595.]); Bruno et al. (2001[Bruno, O., Brullo, C., Ranise, A., Schenone, S., Bondavalli, F., Barocelli, E., Ballabeni, V., Chiavarini, M., Tognolini, M. & Impicciatore, M. (2001). Bioorg. Med. Chem. Lett. 11, 1397-1400.], 2004[Bruno, O., Brullo, C., Schenone, S., Bondavalli, F., Ranise, A., Tognolini, M., Ballabeni, V. & Barocelli, E. (2004). Bioorg. Med. Chem. Lett. 12, 553-561.]). For general background to benzo­pyrano[2,3-d]pyrimidines, see: Brahmachari & Das (2014[Brahmachari, G. & Das, S. (2014). J. Heterocycl. Chem. In the press. doi:10.1002/jhet.2123. ]). For a related structure, see: Gajera et al. (2013[Gajera, N. N., Patel, M. C., Jotani, M. M. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1577-o1578.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For conformational analysis, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21N3O2

  • Mr = 359.42

  • Monoclinic, P 21 /n

  • a = 9.9826 (5) Å

  • b = 15.8773 (7) Å

  • c = 12.2197 (6) Å

  • β = 109.381 (6)°

  • V = 1827.03 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.975, Tmax = 0.983

  • 13349 measured reflections

  • 3576 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.133

  • S = 1.03

  • 3576 reflections

  • 254 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C6–C9/C12/C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O27A—H27A⋯N3 0.82 1.78 2.535 (3) 151
O27B—H27B⋯N1 0.82 1.83 2.551 (3) 146
C5—H5BCgi 0.97 2.67 3.59 159
Symmetry code: (i) -x, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Benzopyrano[2,3-d]pyrimidines have gained much attention as significant medicinal scaffolds due to their inherent and multidirectional pharmaceutical potentials that include anti-inflammatory, analgesic, and anti-aggregating activities (Bruno et al., 2001,2004). More importantly, such chemical entities have been found to exhibit potent in vivo antitumor as well as in vitro cytotoxic activity against various cancer cell lines causing considerable degree of perturbation in cell cycle kinetics (Hadfield et al., 1999). Very recently, we have developed a straight forward and efficient pseudo four-component one-pot synthesis of diverse benzopyrano[2,3-d]pyrimidine scaffolds in good yields using commercially available sodium formate as an inexpensive and non-toxic catalyst (Brahmachari & Das, 2014). Herein, we wish to report the environmentally benign one-pot synthesis and X-ray crystal structure of 2-(4-(piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidin-2-yl)phenol.

The molecular structure of the title compound (I) is shown in Fig. 1. In (I), the expected values for the bond-lengths are observed (Allen et al., 1987) and the distances are comparable to a closely related structure (Gajera et al., 2013). The pyrimidine ring (A) is essentially planar with a maximum deviation of 0.019 (2) Å for C4. This ring forms dihedral angles of 22.70 (8)° and 0.97 (7)°, respectively, with the fused benzene ring (B) and hydroxy-substituted benzene ring (E). The pyran ring (C) adopts a flattened twist-boat conformation with asymmetry parameters [ΔCs(C5—C10)=2.61, ΔC2(C11—C14)=2.66] and the piperidine ring (D) adopts chair conformation with asymmetry parameters [ΔCs(C17—C20)=2.67, ΔC2(C17—C8)=0.2] (Duax & Norton, 1975). The hydroxy group was refined as disordered over two sets of sites in a 0.702 (4): 0.298 (4) ratio. The disorder corresponds to a rotation of approxomiately 180° about the C2—C21 bond and hence, both the major and minor components of disorder form intramolecular O—H···N hydrogen bonds (see Table 1). In the crystal, pairs of weak C—H···π interactions form inversion dimers. In addition, ππ interactions are observed between the pyrimidine ring and hydroxy-substituted benzene ring [centroid–centroid seperation = 3.739 (2) Å, interplanar spacing = 3.534 Å, centriod shift = 1.22 Å, symmetry code: 1 - x,1 - y,1 - z]. The crystal packing is shown in Fig. 2.

Related literature top

For applications of benzopyrano[2,3-d]pyrimidines, see: Hadfield et al. (1999); Bruno et al. (2001, 2004). For general background to benzopyrano[2,3-d]pyrimidines, see: Brahmachari & Das (2014). For a related structure, see: Gajera et al. (2013). For standard bond-length data, see: Allen et al. (1987). For conformational analysis, see: Duax & Norton (1975).

Experimental top

Infrared spectra were recorded using a Shimadzu (FT—IR 8400S) FT—IR spectrophotometer using KBr disc. 1H and 13 C NMR spectra was obtained at 400 and 100 MHz, respectively, using Bruker DRX spectrometer and CDCl3 and DMSO-d6 as solvents. Elemental analysis was performed with an Elementar Vario EL III Carlo Erba 1108 micro-analyzer instrument. Melting point was recorded on a Sunvic melting point apparatus and is uncorrected. TLC was performed using silica gel 60 F254 (Merck) plates. An oven-dried screw cap test tube was charged with a magnetic stir bar, salicylaldehyde (2 mmol), malononitrile (1 mmol), piperidine (1 mmol), and sodium formate (10 mol%) in 4 ml e thanol. The reaction mixture was stirred at room temperature for 12 h. On completion of the reaction as monitored by TLC, the product was precipitated out and filtered; the filtrate was preserved for reuse. The crude residue was washed with water followed by ethanol to obtain pure product 1, characterized by elemental analyses as well as spectral studies including FT—IR, 1H-NMR and 13 C-NMR. The title compound (50 mg) was dissolved in 10 ml DMSO and left for several days at ambient temperature which yielded single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were geometrically fixed and allowed to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, O—H = 0.82Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. Both disorder components are shown.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Only the H atoms involved in hydrogen bonds and weak C—H···π interactions are shown.
2-[4-(Piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidin-2-yl]phenol top
Crystal data top
C22H21N3O2F(000) = 760
Mr = 359.42Dx = 1.307 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4022 reflections
a = 9.9826 (5) Åθ = 3.4–29.1°
b = 15.8773 (7) ŵ = 0.09 mm1
c = 12.2197 (6) ÅT = 293 K
β = 109.381 (6)°Block, colourless
V = 1827.03 (15) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3576 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1210
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1919
Tmin = 0.975, Tmax = 0.983l = 1515
13349 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.0647P]
where P = (Fo2 + 2Fc2)/3
3576 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.13 e Å3
12 restraintsΔρmin = 0.16 e Å3
Crystal data top
C22H21N3O2V = 1827.03 (15) Å3
Mr = 359.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9826 (5) ŵ = 0.09 mm1
b = 15.8773 (7) ÅT = 293 K
c = 12.2197 (6) Å0.30 × 0.20 × 0.20 mm
β = 109.381 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3576 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1918 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.048
13349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06012 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
3576 reflectionsΔρmin = 0.16 e Å3
254 parameters
Special details top

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.1453 (2)0.07319 (14)0.0435 (2)0.0477 (6)
C40.3129 (2)0.03037 (14)0.1148 (2)0.0463 (6)
C50.3928 (2)0.06426 (14)0.33523 (19)0.0507 (6)
H5A0.38940.12350.31520.061*
H5B0.49160.04690.36220.061*
C60.3630 (3)0.10672 (16)0.5247 (2)0.0647 (8)
H60.42180.15270.52800.078*
C70.3085 (3)0.09410 (19)0.6134 (2)0.0742 (9)
H70.33120.13120.67580.089*
C80.2209 (3)0.0268 (2)0.6095 (3)0.0756 (9)
H80.18370.01850.66910.091*
C90.1882 (3)0.02815 (18)0.5177 (2)0.0658 (8)
H90.12960.07420.51470.079*
C110.3132 (2)0.01433 (14)0.2289 (2)0.0443 (6)
C120.3321 (3)0.05240 (15)0.4307 (2)0.0499 (6)
C130.2437 (3)0.01392 (16)0.4299 (2)0.0522 (7)
C140.2228 (3)0.04870 (15)0.2367 (2)0.0483 (6)
C160.3602 (3)0.11949 (17)0.0314 (2)0.0693 (8)
H16A0.41320.08540.06880.083*
H16B0.25980.11150.07300.083*
C170.3982 (3)0.21068 (17)0.0359 (2)0.0731 (9)
H17A0.38280.22640.11590.088*
H17B0.33600.24490.00780.088*
C180.5505 (3)0.22899 (19)0.0357 (3)0.0843 (10)
H18A0.61370.20190.00090.101*
H18B0.56740.28920.03740.101*
C190.5809 (3)0.19662 (19)0.1583 (2)0.0783 (9)
H19A0.52630.22880.19630.094*
H19B0.68080.20400.20200.094*
C200.5425 (3)0.10490 (16)0.1567 (2)0.0618 (7)
H20A0.56060.08530.23550.074*
H20B0.60100.07230.12290.074*
C210.0531 (2)0.12112 (13)0.0572 (2)0.0488 (6)
C220.0519 (3)0.10222 (18)0.1690 (2)0.0599 (7)
H220.10790.05820.17940.072*0.702 (4)
O27A0.1226 (5)0.0461 (3)0.1909 (5)0.076 (3)0.298 (4)
H27A0.16720.02160.13080.114*0.298 (4)
C230.0300 (3)0.14697 (19)0.2643 (3)0.0711 (8)
H230.02770.13400.33790.085*
C240.1140 (3)0.2101 (2)0.2497 (3)0.0745 (9)
H240.16940.24040.31400.089*
C250.1190 (3)0.23027 (16)0.1420 (3)0.0728 (9)
H250.17870.27290.13360.087*
C260.0337 (3)0.18620 (15)0.0448 (3)0.0604 (7)
H260.03500.20060.02860.072*0.298 (4)
O27B0.0379 (3)0.21092 (14)0.0561 (2)0.0703 (11)0.702 (4)
H27B0.02500.18720.10790.105*0.702 (4)
N10.1407 (2)0.09492 (12)0.14824 (18)0.0522 (5)
N30.2261 (2)0.01277 (12)0.02367 (17)0.0499 (5)
N150.3930 (2)0.09248 (12)0.08946 (17)0.0536 (6)
O100.20328 (18)0.07135 (10)0.33851 (15)0.0621 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0481 (15)0.0410 (14)0.0520 (16)0.0057 (12)0.0137 (12)0.0011 (12)
C40.0432 (14)0.0424 (14)0.0499 (15)0.0060 (12)0.0107 (12)0.0062 (12)
C50.0486 (15)0.0474 (15)0.0501 (16)0.0009 (12)0.0083 (12)0.0074 (12)
C60.0749 (19)0.0566 (18)0.0548 (18)0.0014 (14)0.0110 (15)0.0021 (15)
C70.095 (2)0.071 (2)0.0508 (18)0.0174 (19)0.0165 (16)0.0041 (15)
C80.082 (2)0.093 (2)0.055 (2)0.0225 (19)0.0271 (17)0.0147 (18)
C90.0647 (19)0.073 (2)0.0583 (19)0.0039 (15)0.0189 (15)0.0157 (16)
C110.0454 (14)0.0373 (13)0.0461 (15)0.0035 (11)0.0099 (12)0.0056 (11)
C120.0515 (15)0.0461 (15)0.0446 (15)0.0074 (13)0.0061 (12)0.0082 (12)
C130.0559 (16)0.0523 (16)0.0424 (15)0.0050 (13)0.0082 (13)0.0069 (13)
C140.0527 (15)0.0434 (14)0.0469 (15)0.0046 (12)0.0139 (12)0.0095 (12)
C160.080 (2)0.0724 (19)0.0500 (17)0.0152 (16)0.0138 (14)0.0087 (14)
C170.084 (2)0.0658 (19)0.0637 (19)0.0169 (16)0.0171 (16)0.0174 (15)
C180.085 (2)0.080 (2)0.081 (2)0.0266 (18)0.0185 (18)0.0180 (17)
C190.0648 (19)0.087 (2)0.072 (2)0.0243 (17)0.0071 (15)0.0029 (17)
C200.0479 (16)0.075 (2)0.0596 (17)0.0004 (14)0.0144 (13)0.0148 (14)
C210.0495 (15)0.0381 (14)0.0547 (16)0.0058 (12)0.0117 (12)0.0047 (12)
C220.0549 (17)0.0660 (19)0.0544 (18)0.0102 (15)0.0121 (14)0.0054 (15)
O27A0.057 (4)0.109 (6)0.061 (4)0.019 (4)0.017 (3)0.009 (4)
C230.0653 (19)0.079 (2)0.0622 (19)0.0111 (17)0.0115 (15)0.0125 (17)
C240.070 (2)0.070 (2)0.069 (2)0.0155 (17)0.0042 (16)0.0223 (17)
C250.0633 (19)0.0512 (18)0.092 (2)0.0057 (14)0.0092 (17)0.0127 (17)
C260.0659 (18)0.0452 (16)0.0648 (19)0.0019 (14)0.0146 (15)0.0029 (14)
O27B0.083 (2)0.0662 (18)0.061 (2)0.0287 (14)0.0220 (14)0.0006 (14)
N10.0570 (13)0.0442 (12)0.0518 (13)0.0029 (10)0.0132 (10)0.0018 (10)
N30.0503 (12)0.0461 (12)0.0507 (13)0.0030 (10)0.0132 (10)0.0030 (10)
N150.0529 (13)0.0540 (13)0.0486 (13)0.0093 (10)0.0097 (10)0.0106 (10)
O100.0786 (13)0.0545 (11)0.0527 (11)0.0138 (9)0.0208 (9)0.0054 (9)
Geometric parameters (Å, º) top
C2—N31.326 (3)C17—C181.509 (4)
C2—N11.341 (3)C17—H17A0.9700
C2—C211.479 (3)C17—H17B0.9700
C4—N31.349 (3)C18—C191.517 (3)
C4—N151.368 (3)C18—H18A0.9700
C4—C111.416 (3)C18—H18B0.9700
C5—C121.495 (3)C19—C201.504 (3)
C5—C111.504 (3)C19—H19A0.9700
C5—H5A0.9700C19—H19B0.9700
C5—H5B0.9700C20—N151.458 (3)
C6—C71.379 (4)C20—H20A0.9700
C6—C121.387 (3)C20—H20B0.9700
C6—H60.9300C21—C261.388 (3)
C7—C81.371 (4)C21—C221.395 (3)
C7—H70.9300C22—O27A1.220 (5)
C8—C91.373 (4)C22—C231.378 (3)
C8—H80.9300C22—H220.9300
C9—C131.379 (3)O27A—H27A0.8200
C9—H90.9300C23—C241.357 (4)
C11—C141.372 (3)C23—H230.9300
C12—C131.371 (3)C24—C251.371 (4)
C13—O101.394 (3)C24—H240.9300
C14—N11.338 (3)C25—C261.397 (4)
C14—O101.370 (3)C25—H250.9300
C16—N151.467 (3)C26—O27B1.309 (3)
C16—C171.503 (3)C26—H260.9300
C16—H16A0.9700O27B—H27B0.8200
C16—H16B0.9700
N3—C2—N1125.1 (2)C17—C18—C19109.9 (2)
N3—C2—C21118.0 (2)C17—C18—H18A109.7
N1—C2—C21116.9 (2)C19—C18—H18A109.7
N3—C4—N15116.3 (2)C17—C18—H18B109.7
N3—C4—C11120.8 (2)C19—C18—H18B109.7
N15—C4—C11122.8 (2)H18A—C18—H18B108.2
C12—C5—C11111.9 (2)C20—C19—C18110.4 (2)
C12—C5—H5A109.2C20—C19—H19A109.6
C11—C5—H5A109.2C18—C19—H19A109.6
C12—C5—H5B109.2C20—C19—H19B109.6
C11—C5—H5B109.2C18—C19—H19B109.6
H5A—C5—H5B107.9H19A—C19—H19B108.1
C7—C6—C12121.5 (3)N15—C20—C19110.3 (2)
C7—C6—H6119.2N15—C20—H20A109.6
C12—C6—H6119.2C19—C20—H20A109.6
C8—C7—C6120.0 (3)N15—C20—H20B109.6
C8—C7—H7120.0C19—C20—H20B109.6
C6—C7—H7120.0H20A—C20—H20B108.1
C7—C8—C9120.0 (3)C26—C21—C22117.6 (2)
C7—C8—H8120.0C26—C21—C2122.1 (2)
C9—C8—H8120.0C22—C21—C2120.3 (2)
C8—C9—C13118.9 (3)O27A—C22—C23114.5 (4)
C8—C9—H9120.5O27A—C22—C21123.7 (4)
C13—C9—H9120.5C23—C22—C21121.8 (3)
C14—C11—C4114.4 (2)C23—C22—H22119.1
C14—C11—C5119.7 (2)C21—C22—H22119.1
C4—C11—C5125.7 (2)C22—O27A—H27A109.5
C13—C12—C6116.7 (2)C24—C23—C22119.3 (3)
C13—C12—C5121.2 (2)C24—C23—H23120.4
C6—C12—C5122.1 (2)C22—C23—H23120.4
C12—C13—C9122.9 (3)C23—C24—C25121.3 (3)
C12—C13—O10121.5 (2)C23—C24—H24119.3
C9—C13—O10115.6 (2)C25—C24—H24119.3
N1—C14—O10110.9 (2)C24—C25—C26119.5 (3)
N1—C14—C11125.8 (2)C24—C25—H25120.2
O10—C14—C11123.3 (2)C26—C25—H25120.2
N15—C16—C17110.1 (2)O27B—C26—C21122.8 (3)
N15—C16—H16A109.6O27B—C26—C25116.7 (3)
C17—C16—H16A109.6C21—C26—C25120.5 (3)
N15—C16—H16B109.6C21—C26—H26119.8
C17—C16—H16B109.6C25—C26—H26119.8
H16A—C16—H16B108.2C26—O27B—H27B109.5
C16—C17—C18112.5 (2)C14—N1—C2115.1 (2)
C16—C17—H17A109.1C2—N3—C4118.7 (2)
C18—C17—H17A109.1C4—N15—C20122.37 (19)
C16—C17—H17B109.1C4—N15—C16119.1 (2)
C18—C17—H17B109.1C20—N15—C16111.89 (19)
H17A—C17—H17B107.8C14—O10—C13117.75 (19)
C12—C6—C7—C80.4 (4)C26—C21—C22—C231.1 (2)
C6—C7—C8—C90.4 (4)C2—C21—C22—C23178.3 (2)
C7—C8—C9—C130.6 (4)O27A—C22—C23—C24179.2 (2)
N3—C4—C11—C141.7 (3)C21—C22—C23—C241.3 (3)
N15—C4—C11—C14178.1 (2)C22—C23—C24—C250.0 (4)
N3—C4—C11—C5173.0 (2)C23—C24—C25—C261.4 (4)
N15—C4—C11—C53.4 (4)C22—C21—C26—O27B177.9 (2)
C12—C5—C11—C1415.2 (3)C2—C21—C26—O27B1.5 (3)
C12—C5—C11—C4159.2 (2)C22—C21—C26—C250.3 (3)
C7—C6—C12—C130.6 (4)C2—C21—C26—C25179.8 (2)
C7—C6—C12—C5178.7 (2)C24—C25—C26—O27B176.8 (2)
C11—C5—C12—C1317.3 (3)C24—C25—C26—C211.5 (4)
C11—C5—C12—C6163.5 (2)O10—C14—N1—C2175.57 (18)
C6—C12—C13—C90.8 (4)C11—C14—N1—C23.3 (3)
C5—C12—C13—C9178.4 (2)N3—C2—N1—C142.0 (3)
C6—C12—C13—O10178.6 (2)C21—C2—N1—C14178.36 (19)
C5—C12—C13—O102.1 (3)N1—C2—N3—C40.9 (3)
C8—C9—C13—C120.8 (4)C21—C2—N3—C4178.68 (18)
C8—C9—C13—O10178.7 (2)N15—C4—N3—C2179.44 (19)
C4—C11—C14—N11.5 (3)C11—C4—N3—C22.9 (3)
C5—C11—C14—N1176.5 (2)N3—C4—N15—C20137.0 (2)
C4—C11—C14—O10177.2 (2)C11—C4—N15—C2046.5 (3)
C5—C11—C14—O102.2 (3)N3—C4—N15—C1612.1 (3)
N15—C16—C17—C1854.4 (3)C11—C4—N15—C16164.4 (2)
C16—C17—C18—C1953.0 (3)C19—C20—N15—C4148.4 (2)
C17—C18—C19—C2054.2 (3)C19—C20—N15—C1660.5 (3)
C18—C19—C20—N1558.2 (3)C17—C16—N15—C4149.8 (2)
N3—C2—C21—C26179.10 (19)C17—C16—N15—C2058.0 (3)
N1—C2—C21—C260.6 (3)N1—C14—O10—C13160.0 (2)
N3—C2—C21—C220.4 (3)C11—C14—O10—C1318.9 (3)
N1—C2—C21—C22179.98 (17)C12—C13—O10—C1416.6 (3)
C26—C21—C22—O27A179.45 (14)C9—C13—O10—C14162.9 (2)
C2—C21—C22—O27A1.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C6–C9/C12/C13 ring.
D—H···AD—HH···AD···AD—H···A
O27A—H27A···N30.821.782.535 (3)151
O27B—H27B···N10.821.832.551 (3)146
C5—H5B···Cgi0.972.673.59159
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C6–C9/C12/C13 ring.
D—H···AD—HH···AD···AD—H···A
O27A—H27A···N30.821.782.535 (3)151
O27B—H27B···N10.821.832.551 (3)146
C5—H5B···Cgi0.972.673.59159
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technol­ogy for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. SD is grateful to the UGC, New Delhi, for the award of a Junior Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrahmachari, G. & Das, S. (2014). J. Heterocycl. Chem. In the press. doi:10.1002/jhet.2123.  Google Scholar
First citationBruno, O., Brullo, C., Ranise, A., Schenone, S., Bondavalli, F., Barocelli, E., Ballabeni, V., Chiavarini, M., Tognolini, M. & Impicciatore, M. (2001). Bioorg. Med. Chem. Lett. 11, 1397–1400.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruno, O., Brullo, C., Schenone, S., Bondavalli, F., Ranise, A., Tognolini, M., Ballabeni, V. & Barocelli, E. (2004). Bioorg. Med. Chem. Lett. 12, 553–561.  Web of Science CrossRef CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGajera, N. N., Patel, M. C., Jotani, M. M. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1577–o1578.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHadfield, J. A., Pavlidis, V. H., Perry, P. J. & McGown, A. T. (1999). Anticancer Drugs, 10, 591–595.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o447-o448
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds