organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o411-o412

Tetra­ethyl­ammonium 7,12-di­cyano-1-carba-closo-dodeca­borate

aDepartment of Chemistry, Whitman College, Walla Walla, WA 99362, USA, and bDepartment of Physics, Whitman College, Walla Walla, WA 99362, USA
*Correspondence e-mail: juhaszma@whitman.edu

(Received 22 February 2014; accepted 1 March 2014; online 12 March 2014)

In the title compound, C8H20N+·C3H10B11N2, the carborane anion cage displays nearly-perfect Cs symmetry, with the two CN groups lying on a noncrystallographic mirror plane that bis­ects the cage. In the crystal, the anions form extended chains along the a-axis direction, with C—H⋯N hydrogen bonds linking consecutive anions. The C≡N bond lengths (and B—C≡N angles) in the nitrile moities are 1.1201 (19) Å, 178.60 (15)° and 1.1433 (17) Å, 179.45 (15)°, similar to those observed in organic nitriles. A hydrogen bond between a methylene H atom of the cation and the N atom in one of the nitrile groups of the anion is the closest contact between the anion and cation, at 2.52 Å.

Related literature

For the synthesis, and spectroscopic studies of the title compound and the related monosubstituted cyano compound, see: Rosenbaum et al. (2013[Rosenbaum, A. J., Juers, D. H. & Juhasz, M. A. (2013). Inorg. Chem. 52, 10717-10719.]). For gas phase acidity calculations of cyanated 1-carba-closo-dodeca­borate(1−) derivatives, see: Lipping et al. (2009[Lipping, L., Leito, I., Koppel, I. & Koppel, I. A. (2009). J. Phys. Chem. A, 113, 12972-12978.]). For studies of 1-carba-closo-dodeca­borate(1−) as a weakly coordinating anion, see: Reed (1998[Reed, C. A. (1998). Acc. Chem. Res. 31, 133-139.]). For the title compound acting as a conjugate base for the strongest Brønsted acids, see: Juhasz et al. (2004[Juhasz, M., Hoffmann, S., Stoyanov, E., Kim, K. C. & Reed, C. A. (2004). Angew. Chem. Int. Ed. 43, 5352-5355.]). For a general review of the chemistry of the 1-carba-closo-dodeca­borate(1−) anion, see: Douvris & Michl (2013[Douvris, C. & Michl, J. (2013). Chem. Rev. 113, R179-P, R233.]). For bond lengths of cyano groups in organic nitriles, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C3H10B11N2

  • Mr = 323.45

  • Monoclinic, P 21 /c

  • a = 8.9280 (2) Å

  • b = 10.5695 (3) Å

  • c = 21.0620 (5) Å

  • β = 92.165 (2)°

  • V = 1986.09 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.72 × 0.11 × 0.09 mm

Data collection
  • Agilent Xcalibur (Onyx, Nova) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technoligies UK Ltd, Yarnton, England.]) Tmin = 0.874, Tmax = 1.000

  • 13665 measured reflections

  • 3549 independent reflections

  • 3110 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.04

  • 3549 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N16i 0.968 (18) 2.496 (18) 3.3042 (18) 140.9 (14)
C18—H18a⋯N14 0.97 2.52 3.4323 (17) 157
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technoligies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of the 1-carba-closo-dodecaborate(1-) carborane anion, e.g. CB11H12-, have been recognized as exceptionally weakly-coordinating anions (Reed, 1998) and they have been used to prepare the strongest Brønsted acids known (Juhasz et al., 2004). This family of carborane anions has further potential uses in pharmaceuticals, in optical and electronic materials, and in catalysts for industrial-scale chemical reactions. A relatively small number of synthetic reactions have been developed for producing new derivatives of CB11H12-, and derivatives bearing CN groups on boron were unknown until very recently (Rosenbaum et al., 2013). In the present report, we describe the crystal structure of the tetra­ethyl­ammonium salt of the di­cyanated carborane anion, 7,12-(CN)2-closo-CHB11H9-. In the crystal structure, the carborane anion cluster has nearly perfect Cs symmetry, with the two CN groups lying on a mirror plane that bis­ects the cluster. The carborane anions pack to form extended chains. The closest contact between consecutive anions is hydrogen bond with a length of 2.406 Å from hydrogen on C1 of one cluster to nitro­gen in the CN group on B12 of the next. A weak inter­action between the anion and cation is indicated; the closest contact between these involves a methyl­ene hydrogen on the tetra­ethyl­ammonium cation at 2.519 Å from the nitro­gen atom in the CN group on B7 of the carborane anion. The CN bond distances (and B—CN angles) are 1.1201 (19) Å, 178.60 (15)° and 1.1433 (17) Å, 179.45 (15)° for the CN groups on B12 and B7, respectively. These bond lengths are similar to those observed in organic nitriles (Allen et al., 1987).

Experimental top

For the synthesis and spectroscopic characterization of the title compound, see (Rosenbaum et al., 2013). Colorless crystals of the compound suitable for X-ray diffraction were obtained by the slow evaporation over 10 days of a saturated solution of the compound in a 1:3 aceto­nitrile/water solution. The crystallization procedure was performed under normal atmosphere at 25 °C using reagent grade aceto­nitrile and deionized water.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms were positioned and refined using a riding model with d(B—H)= 1.10 Å, Uiso = 1.2Ueq(B) for B—H bonds; d(C—H)= 0.97 Å, Uiso = 1.2Ueq(C) for C—H and CH2 groups and d(C—H)= 0.96 Å, Uiso = 1.5Ueq(C) for CH3 group; except for the hydrogen atom of the C1 carbon atom which was refined isotropically.

Related literature top

For the synthesis, and spectroscopic studies of the title compound and the related monosubstituted cyano compound, see: Rosenbaum et al. (2013). For gas phase acidity calculations of cyanated 1-carba-closo-dodecaborate(1-) derivatives, see: Lipping et al. (2009). For studies of 1-carba-closo-dodecaborate(1-) as a weakly coordinating anion, see: Reed (1998). For the title compound acting as a conjugate base for the strongest Brønsted acids, see: Juhasz et al. (2004). For a general review of the chemistry of the 1-carba-closo-dodecaborate(1-) anion, see: Douvris & Michl (2013). For bond lengths of cyano groups in organic nitriles, see: Allen et al. (1987).

Structure description top

Derivatives of the 1-carba-closo-dodecaborate(1-) carborane anion, e.g. CB11H12-, have been recognized as exceptionally weakly-coordinating anions (Reed, 1998) and they have been used to prepare the strongest Brønsted acids known (Juhasz et al., 2004). This family of carborane anions has further potential uses in pharmaceuticals, in optical and electronic materials, and in catalysts for industrial-scale chemical reactions. A relatively small number of synthetic reactions have been developed for producing new derivatives of CB11H12-, and derivatives bearing CN groups on boron were unknown until very recently (Rosenbaum et al., 2013). In the present report, we describe the crystal structure of the tetra­ethyl­ammonium salt of the di­cyanated carborane anion, 7,12-(CN)2-closo-CHB11H9-. In the crystal structure, the carborane anion cluster has nearly perfect Cs symmetry, with the two CN groups lying on a mirror plane that bis­ects the cluster. The carborane anions pack to form extended chains. The closest contact between consecutive anions is hydrogen bond with a length of 2.406 Å from hydrogen on C1 of one cluster to nitro­gen in the CN group on B12 of the next. A weak inter­action between the anion and cation is indicated; the closest contact between these involves a methyl­ene hydrogen on the tetra­ethyl­ammonium cation at 2.519 Å from the nitro­gen atom in the CN group on B7 of the carborane anion. The CN bond distances (and B—CN angles) are 1.1201 (19) Å, 178.60 (15)° and 1.1433 (17) Å, 179.45 (15)° for the CN groups on B12 and B7, respectively. These bond lengths are similar to those observed in organic nitriles (Allen et al., 1987).

For the synthesis and spectroscopic characterization of the title compound, see (Rosenbaum et al., 2013). Colorless crystals of the compound suitable for X-ray diffraction were obtained by the slow evaporation over 10 days of a saturated solution of the compound in a 1:3 aceto­nitrile/water solution. The crystallization procedure was performed under normal atmosphere at 25 °C using reagent grade aceto­nitrile and deionized water.

For the synthesis, and spectroscopic studies of the title compound and the related monosubstituted cyano compound, see: Rosenbaum et al. (2013). For gas phase acidity calculations of cyanated 1-carba-closo-dodecaborate(1-) derivatives, see: Lipping et al. (2009). For studies of 1-carba-closo-dodecaborate(1-) as a weakly coordinating anion, see: Reed (1998). For the title compound acting as a conjugate base for the strongest Brønsted acids, see: Juhasz et al. (2004). For a general review of the chemistry of the 1-carba-closo-dodecaborate(1-) anion, see: Douvris & Michl (2013). For bond lengths of cyano groups in organic nitriles, see: Allen et al. (1987).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms were positioned and refined using a riding model with d(B—H)= 1.10 Å, Uiso = 1.2Ueq(B) for B—H bonds; d(C—H)= 0.97 Å, Uiso = 1.2Ueq(C) for C—H and CH2 groups and d(C—H)= 0.96 Å, Uiso = 1.5Ueq(C) for CH3 group; except for the hydrogen atom of the C1 carbon atom which was refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Structure of the repeat unit of tetraethylammonium 7,12-dicyano-1-carba-closo-dodecaborate. Thermal ellipsoids are at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram for tetraethylammonium 7,12-dicyano-1-carba-closo-dodecaborate.
[Figure 3] Fig. 3. Partial view along the b axis of the crystal, showing the hydrogen-bonded chains of carborane anions.
Tetraethylammonium 7,12-dicyano-1-carba-closo-dodecaborate top
Crystal data top
C8H20N+·C3H10B11N2F(000) = 688
Mr = 323.45Dx = 1.081 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 8.9280 (2) ÅCell parameters from 9624 reflections
b = 10.5695 (3) Åθ = 4.2–67.0°
c = 21.0620 (5) ŵ = 0.40 mm1
β = 92.165 (2)°T = 100 K
V = 1986.09 (8) Å3Needle, clear light colourless
Z = 40.72 × 0.11 × 0.09 mm
Data collection top
Agilent Xcalibur (Onyx, Nova)
diffractometer
3549 independent reflections
Radiation source: Nova (Cu) X-ray Source3110 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 8.3552 pixels mm-1θmax = 67.1°, θmin = 4.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.874, Tmax = 1.000l = 2518
13665 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.5426P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3549 reflectionsΔρmax = 0.20 e Å3
234 parametersΔρmin = 0.21 e Å3
Crystal data top
C8H20N+·C3H10B11N2V = 1986.09 (8) Å3
Mr = 323.45Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.9280 (2) ŵ = 0.40 mm1
b = 10.5695 (3) ÅT = 100 K
c = 21.0620 (5) Å0.72 × 0.11 × 0.09 mm
β = 92.165 (2)°
Data collection top
Agilent Xcalibur (Onyx, Nova)
diffractometer
3549 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3110 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.039
13665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3549 reflectionsΔρmin = 0.21 e Å3
234 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N171.01231 (11)0.69866 (9)0.37094 (5)0.0192 (2)
N140.76135 (13)0.55607 (11)0.51262 (5)0.0293 (3)
C130.69013 (14)0.61804 (12)0.54418 (6)0.0232 (3)
C10.32003 (14)0.76849 (12)0.62912 (6)0.0226 (3)
H10.213 (2)0.7535 (17)0.6265 (9)0.044 (5)*
C200.88278 (13)0.77399 (12)0.34123 (6)0.0234 (3)
H20A0.90910.86300.34260.028*
H20B0.87040.75000.29690.028*
C181.03464 (14)0.72809 (12)0.44147 (6)0.0231 (3)
H18A0.94470.70380.46280.028*
H18B1.11630.67640.45870.028*
C220.98194 (14)0.55670 (11)0.36737 (6)0.0218 (3)
H22A1.06670.51280.38730.026*
H22B0.89500.53830.39200.026*
C251.29534 (14)0.67411 (13)0.35946 (6)0.0255 (3)
H25A1.31790.70280.40200.038*
H25B1.37520.69770.33260.038*
H25C1.28470.58370.35940.038*
C241.15065 (13)0.73406 (12)0.33489 (6)0.0227 (3)
H24A1.13400.71020.29070.027*
H24B1.16230.82530.33630.027*
C230.95487 (15)0.50319 (13)0.30122 (7)0.0303 (3)
H23A0.86540.53970.28230.045*
H23B0.94340.41300.30370.045*
H23C1.03860.52290.27570.045*
C210.73378 (14)0.75717 (13)0.37238 (7)0.0270 (3)
H21A0.70710.66920.37220.041*
H21B0.65790.80460.34930.041*
H21C0.74200.78700.41540.041*
C150.84647 (15)0.84551 (13)0.64203 (6)0.0276 (3)
N160.97050 (14)0.86121 (14)0.64645 (7)0.0423 (3)
B110.59691 (15)0.68338 (13)0.67214 (6)0.0214 (3)
H110.66710.61230.69710.026*
C191.06859 (17)0.86511 (14)0.45676 (7)0.0336 (3)
H19A1.16110.88890.43830.050*
H19B1.07720.87590.50200.050*
H19C0.98900.91750.43970.050*
B30.41460 (15)0.75312 (14)0.56090 (6)0.0222 (3)
H30.36440.72610.51440.027*
B50.38243 (15)0.88617 (14)0.67872 (7)0.0226 (3)
H50.31090.94510.70810.027*
B20.43587 (16)0.64087 (14)0.62446 (7)0.0223 (3)
H20.39950.54190.61870.027*
B40.38189 (15)0.90407 (14)0.59491 (7)0.0225 (3)
H40.31000.97450.57030.027*
B80.56256 (15)0.86592 (13)0.56845 (7)0.0216 (3)
H80.61050.91170.52690.026*
B100.56283 (15)0.83638 (14)0.70569 (6)0.0218 (3)
H100.61080.86380.75260.026*
B90.54205 (15)0.94840 (13)0.64211 (7)0.0217 (3)
H90.57681.04770.64790.026*
B60.41595 (16)0.72351 (14)0.69686 (7)0.0233 (3)
H60.36610.67760.73790.028*
B70.59456 (15)0.70269 (13)0.58752 (6)0.0204 (3)
B120.67289 (15)0.82232 (13)0.63756 (6)0.0205 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N170.0172 (5)0.0209 (5)0.0194 (5)0.0007 (4)0.0004 (4)0.0010 (4)
N140.0295 (6)0.0313 (6)0.0273 (6)0.0027 (5)0.0039 (5)0.0012 (5)
C130.0208 (6)0.0265 (6)0.0222 (6)0.0004 (5)0.0000 (5)0.0045 (5)
C10.0163 (6)0.0268 (6)0.0246 (6)0.0010 (5)0.0004 (5)0.0015 (5)
C200.0203 (6)0.0233 (6)0.0262 (6)0.0016 (5)0.0039 (5)0.0021 (5)
C180.0215 (6)0.0292 (7)0.0184 (6)0.0014 (5)0.0010 (5)0.0019 (5)
C220.0201 (6)0.0190 (6)0.0262 (6)0.0008 (5)0.0000 (5)0.0011 (5)
C250.0209 (6)0.0310 (7)0.0248 (6)0.0014 (5)0.0039 (5)0.0025 (5)
C240.0211 (6)0.0248 (6)0.0224 (6)0.0030 (5)0.0028 (5)0.0038 (5)
C230.0316 (7)0.0279 (7)0.0309 (7)0.0007 (6)0.0042 (5)0.0054 (5)
C210.0198 (6)0.0277 (7)0.0333 (7)0.0025 (5)0.0025 (5)0.0011 (5)
C150.0244 (7)0.0306 (7)0.0279 (7)0.0012 (5)0.0005 (5)0.0014 (5)
N160.0238 (7)0.0541 (9)0.0492 (8)0.0000 (6)0.0020 (5)0.0046 (6)
B110.0219 (7)0.0233 (7)0.0189 (6)0.0017 (5)0.0010 (5)0.0013 (5)
C190.0356 (7)0.0302 (7)0.0346 (8)0.0052 (6)0.0069 (6)0.0099 (6)
B30.0195 (7)0.0269 (7)0.0200 (7)0.0006 (5)0.0009 (5)0.0004 (5)
B50.0183 (6)0.0263 (7)0.0233 (7)0.0003 (5)0.0014 (5)0.0016 (6)
B20.0215 (7)0.0235 (7)0.0219 (7)0.0017 (5)0.0020 (5)0.0002 (5)
B40.0188 (6)0.0242 (7)0.0244 (7)0.0010 (5)0.0010 (5)0.0008 (6)
B80.0192 (6)0.0241 (7)0.0216 (7)0.0005 (5)0.0004 (5)0.0028 (5)
B100.0189 (6)0.0264 (7)0.0199 (6)0.0014 (5)0.0006 (5)0.0014 (5)
B90.0177 (6)0.0226 (7)0.0246 (7)0.0000 (5)0.0000 (5)0.0004 (5)
B60.0226 (7)0.0266 (7)0.0209 (7)0.0011 (6)0.0034 (5)0.0008 (5)
B70.0195 (6)0.0228 (7)0.0189 (6)0.0008 (5)0.0013 (5)0.0008 (5)
B120.0158 (6)0.0231 (7)0.0226 (7)0.0001 (5)0.0004 (5)0.0003 (5)
Geometric parameters (Å, º) top
N17—C201.5192 (15)B11—B21.780 (2)
N17—C241.5208 (15)B11—B121.785 (2)
N17—C181.5234 (15)B11—B71.7932 (19)
N17—C221.5261 (15)B11—B101.795 (2)
N14—C131.1433 (17)B11—H111.1000
C13—B71.5558 (18)C19—H19A0.9600
C1—B31.7016 (18)C19—H19B0.9600
C1—B61.7037 (19)C19—H19C0.9600
C1—B51.7043 (18)B3—B71.7640 (19)
C1—B21.7048 (19)B3—B41.778 (2)
C1—B41.7052 (19)B3—B81.7821 (19)
C1—H10.965 (19)B3—B21.793 (2)
C20—C211.5158 (18)B3—H31.1000
C20—H20A0.9700B5—B101.7676 (19)
C20—H20B0.9700B5—B91.7723 (19)
C18—C191.5117 (19)B5—B41.7751 (19)
C18—H18A0.9700B5—B61.784 (2)
C18—H18B0.9700B5—H51.1000
C22—C231.5146 (18)B2—B71.7672 (19)
C22—H22A0.9700B2—B61.7721 (19)
C22—H22B0.9700B2—H21.1000
C25—C241.5125 (17)B4—B81.7728 (19)
C25—H25A0.9600B4—B91.7734 (19)
C25—H25B0.9600B4—H41.1000
C25—H25C0.9600B8—B121.7869 (19)
C24—H24A0.9700B8—B71.7919 (19)
C24—H24B0.9700B8—B91.7950 (19)
C23—H23A0.9600B8—H81.1000
C23—H23B0.9600B10—B121.7757 (18)
C23—H23C0.9600B10—B61.777 (2)
C21—H21A0.9600B10—B91.7918 (19)
C21—H21B0.9600B10—H101.1000
C21—H21C0.9600B9—B121.7771 (19)
C15—N161.1201 (19)B9—H91.1000
C15—B121.5683 (18)B6—H61.1000
B11—B61.7677 (19)B7—B121.7727 (19)
C20—N17—C24106.58 (9)B7—B2—B6107.74 (10)
C20—N17—C18111.36 (9)C1—B2—B11104.28 (10)
C24—N17—C18110.96 (9)B7—B2—B1160.73 (8)
C20—N17—C22111.34 (9)B6—B2—B1159.69 (8)
C24—N17—C22111.31 (9)C1—B2—B358.14 (8)
C18—N17—C22105.38 (9)B7—B2—B359.39 (8)
N14—C13—B7179.45 (15)B6—B2—B3107.75 (10)
B3—C1—B6115.51 (10)B11—B2—B3108.34 (10)
B3—C1—B5115.22 (10)C1—B2—H2125.5
B6—C1—B563.13 (8)B7—B2—H2122.8
B3—C1—B263.54 (8)B6—B2—H2121.6
B6—C1—B262.65 (8)B11—B2—H2122.0
B5—C1—B2115.33 (10)B3—B2—H2121.6
B3—C1—B462.90 (8)C1—B4—B8104.76 (10)
B6—C1—B4115.32 (10)C1—B4—B9104.62 (10)
B5—C1—B462.75 (8)B8—B4—B960.82 (8)
B2—C1—B4115.70 (10)C1—B4—B558.60 (8)
B3—C1—H1117.1 (11)B8—B4—B5108.67 (10)
B6—C1—H1117.8 (11)B9—B4—B559.93 (8)
B5—C1—H1117.0 (11)C1—B4—B358.45 (8)
B2—C1—H1117.8 (11)B8—B4—B360.26 (8)
B4—C1—H1116.7 (11)B9—B4—B3108.77 (10)
C21—C20—N17115.28 (10)B5—B4—B3108.10 (10)
C21—C20—H20A108.5C1—B4—H4125.1
N17—C20—H20A108.5B8—B4—H4121.8
C21—C20—H20B108.5B9—B4—H4122.0
N17—C20—H20B108.5B5—B4—H4121.4
H20A—C20—H20B107.5B3—B4—H4121.3
C19—C18—N17114.90 (11)B4—B8—B360.00 (8)
C19—C18—H18A108.5B4—B8—B12106.42 (9)
N17—C18—H18A108.5B3—B8—B12106.50 (10)
C19—C18—H18B108.5B4—B8—B7106.72 (10)
N17—C18—H18B108.5B3—B8—B759.15 (8)
H18A—C18—H18B107.5B12—B8—B759.38 (8)
C23—C22—N17115.74 (10)B4—B8—B959.61 (8)
C23—C22—H22A108.3B3—B8—B9107.61 (9)
N17—C22—H22A108.3B12—B8—B959.49 (8)
C23—C22—H22B108.3B7—B8—B9107.12 (9)
N17—C22—H22B108.3B4—B8—H8122.4
H22A—C22—H22B107.4B3—B8—H8122.2
C24—C25—H25A109.5B12—B8—H8122.8
C24—C25—H25B109.5B7—B8—H8122.5
H25A—C25—H25B109.5B9—B8—H8121.9
C24—C25—H25C109.5B5—B10—B12106.89 (9)
H25A—C25—H25C109.5B5—B10—B660.43 (8)
H25B—C25—H25C109.5B12—B10—B6106.73 (10)
C25—C24—N17115.18 (10)B5—B10—B959.72 (8)
C25—C24—H24A108.5B12—B10—B959.75 (8)
N17—C24—H24A108.5B6—B10—B9108.07 (9)
C25—C24—H24B108.5B5—B10—B11107.92 (10)
N17—C24—H24B108.5B12—B10—B1159.96 (8)
H24A—C24—H24B107.5B6—B10—B1159.31 (8)
C22—C23—H23A109.5B9—B10—B11108.38 (9)
C22—C23—H23B109.5B5—B10—H10121.9
H23A—C23—H23B109.5B12—B10—H10122.6
C22—C23—H23C109.5B6—B10—H10122.1
H23A—C23—H23C109.5B9—B10—H10121.5
H23B—C23—H23C109.5B11—B10—H10121.6
C20—C21—H21A109.5B5—B9—B460.08 (8)
C20—C21—H21B109.5B5—B9—B12106.63 (10)
H21A—C21—H21B109.5B4—B9—B12106.82 (10)
C20—C21—H21C109.5B5—B9—B1059.46 (8)
H21A—C21—H21C109.5B4—B9—B10107.63 (10)
H21B—C21—H21C109.5B12—B9—B1059.68 (7)
N16—C15—B12178.60 (15)B5—B9—B8107.81 (10)
B6—B11—B259.93 (8)B4—B9—B859.58 (8)
B6—B11—B12106.76 (10)B12—B9—B860.03 (8)
B2—B11—B12106.79 (9)B10—B9—B8108.30 (10)
B6—B11—B7106.79 (10)B5—B9—H9122.2
B2—B11—B759.28 (7)B4—B9—H9122.2
B12—B11—B759.40 (8)B12—B9—H9122.6
B6—B11—B1059.84 (8)B10—B9—H9121.7
B2—B11—B10107.70 (10)B8—B9—H9121.5
B12—B11—B1059.47 (8)C1—B6—B11104.86 (9)
B7—B11—B10107.02 (10)C1—B6—B258.71 (8)
B6—B11—H11122.3B11—B6—B260.38 (8)
B2—B11—H11122.1C1—B6—B10104.23 (10)
B12—B11—H11122.6B11—B6—B1060.85 (8)
B7—B11—H11122.6B2—B6—B10108.86 (10)
B10—B11—H11121.9C1—B6—B558.45 (8)
C18—C19—H19A109.5B11—B6—B5108.42 (10)
C18—C19—H19B109.5B2—B6—B5108.20 (10)
H19A—C19—H19B109.5B10—B6—B559.52 (8)
C18—C19—H19C109.5C1—B6—H6125.2
H19A—C19—H19C109.5B11—B6—H6121.8
H19B—C19—H19C109.5B2—B6—H6121.0
C1—B3—B7103.62 (9)B10—B6—H6122.2
C1—B3—B458.65 (8)B5—B6—H6121.6
B7—B3—B4107.74 (10)C13—B7—B3120.02 (10)
C1—B3—B8104.51 (10)C13—B7—B2120.81 (11)
B7—B3—B860.70 (8)B3—B7—B261.05 (8)
B4—B3—B859.74 (8)C13—B7—B12123.11 (11)
C1—B3—B258.32 (8)B3—B7—B12107.91 (10)
B7—B3—B259.56 (8)B2—B7—B12107.87 (10)
B4—B3—B2107.90 (10)C13—B7—B8120.56 (10)
B8—B3—B2108.59 (9)B3—B7—B860.15 (8)
C1—B3—H3125.4B2—B7—B8109.33 (10)
B7—B3—H3122.7B12—B7—B860.17 (8)
B4—B3—H3121.6C13—B7—B11122.11 (11)
B8—B3—H3121.9B3—B7—B11109.06 (9)
B2—B3—H3121.5B2—B7—B1159.99 (8)
C1—B5—B10104.62 (10)B12—B7—B1160.05 (8)
C1—B5—B9104.70 (9)B8—B7—B11109.16 (10)
B10—B5—B960.82 (8)C15—B12—B7120.93 (11)
C1—B5—B458.65 (8)C15—B12—B10120.93 (11)
B10—B5—B4108.63 (10)B7—B12—B10108.80 (10)
B9—B5—B459.99 (8)C15—B12—B9121.98 (11)
C1—B5—B658.42 (8)B7—B12—B9108.76 (9)
B10—B5—B660.06 (8)B10—B12—B960.57 (8)
B9—B5—B6108.64 (10)C15—B12—B11119.61 (11)
B4—B5—B6108.05 (10)B7—B12—B1160.54 (8)
C1—B5—H5125.1B10—B12—B1160.57 (8)
B10—B5—H5121.9B9—B12—B11109.53 (9)
B9—B5—H5121.9C15—B12—B8121.44 (11)
B4—B5—H5121.3B7—B12—B860.45 (8)
B6—B5—H5121.4B10—B12—B8109.38 (9)
C1—B2—B7103.35 (10)B9—B12—B860.48 (8)
C1—B2—B658.64 (8)B11—B12—B8109.78 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N16i0.968 (18)2.496 (18)3.3042 (18)140.9 (14)
C18—H18a···N140.972.523.4323 (17)157
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N16i0.968 (18)2.496 (18)3.3042 (18)140.9 (14)
C18—H18a···N140.972.523.4323 (17)157
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We gratefully acknowledge the National Science Foundation (grant No. CHE-0922775), the M. J. Murdock Charitable Trust, and Whitman College for financial support.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technoligies UK Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDouvris, C. & Michl, J. (2013). Chem. Rev. 113, R179–P, R233.  Google Scholar
First citationJuhasz, M., Hoffmann, S., Stoyanov, E., Kim, K. C. & Reed, C. A. (2004). Angew. Chem. Int. Ed. 43, 5352–5355.  Web of Science CrossRef CAS Google Scholar
First citationLipping, L., Leito, I., Koppel, I. & Koppel, I. A. (2009). J. Phys. Chem. A, 113, 12972–12978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReed, C. A. (1998). Acc. Chem. Res. 31, 133–139.  Web of Science CrossRef CAS Google Scholar
First citationRosenbaum, A. J., Juers, D. H. & Juhasz, M. A. (2013). Inorg. Chem. 52, 10717–10719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o411-o412
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds