organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-iodo-2-meth­­oxy­benzoate

aCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1126, 0315 Oslo, Norway, bCentre for Materials Science and Nanotechnology, University of Oslo, PO Box 1033, 0315 Oslo, and cDepartment of Chemistry, University of Bergen, PO Box 7803, 5020 Bergen, Norway
*Correspondence e-mail: fredrik.lundvall@smn.uio.no

(Received 5 March 2014; accepted 17 March 2014; online 22 March 2014)

In the title compound, C9H9IO3, the mol­ecules are close to planar [maximum deviation from benzene ring plane = 0.229 (5) Å for the methyl carboxylate C atom] with the methyl groups oriented away from each other. In the crystal, mol­ecules form stacked layers parallel to the ab plane, where every layer has either the iodine or meth­oxy/methyl carboxyl­ate substituents pointing towards each other in an alternating fashion.

Related literature

For the synthesis, see Wang et al. (2009[Wang, L., Xiao, Z.-Y., Hou, J.-L., Wang, G.-T., Jiang, X.-K. & Li, Z.-T. (2009). Tetrahedron, 65, 10544-10551.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9IO3

  • Mr = 292.06

  • Monoclinic, P 21 /n

  • a = 4.3378 (7) Å

  • b = 7.0690 (11) Å

  • c = 33.120 (5) Å

  • β = 92.727 (2)°

  • V = 1014.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.407, Tmax = 0.788

  • 7578 measured reflections

  • 2064 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.079

  • S = 1.17

  • 2064 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.86 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) implemented in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ChemBioDraw Ultra (CambridgeSoft, 2009[CambridgeSoft (2009). ChemBioDraw Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

The title compound was synthesized by the method used by Wang et al. (2009), only differing slightly in the reaction time which was increased from 30 to 60 minutes. The 1H NMR spectrum of the title compound is in good agreement with what was reported by Wang et al. (2009). The title compound was dissolved in CDCl3 for NMR-analysis, and slow evaporation of the solvent yielded single crystals suitable for X-ray diffraction.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The structure was refined by full-matrix least squares using SHELXL97 (Sheldrick, 2008) as implemented in the WinGX suite (Farrugia, 2012). H-atoms were positioned geometrically at distances of 0.93 (CH) and 0.96 Å (CH3) and refined using a riding model with Uiso (H)=1.2 Ueq (CH) and Uiso (H)=1.5 Ueq (CH3).

Results and discussion top

The title compound is an inter­mediate in the synthesis of 4,4'-di­meth­oxy-3,3'-bi­phenyldi­carb­oxy­lic acid, a novel organic linker for use in MOFs (Metal-Organic Frameworks). The title compound is a known inter­mediate from the literature (Wang et al., 2009), but the crystal structure has not been reported so far.

The structure of the title compound, C9H9IO3, has a monoclinic P21/c symmetry. The asymmetric unit equals one molecule of the compound, with the full content of the unit cell generated by symmetry operations. The molecule has a planar motif where the methyl groups are oriented away from each other to accommodate the sterical demands of these groups. To further increase the distance between the methyl groups, an alternative configuration of the molecule could theoretically be achieved by rotating the methyl carboxyl­ate group 180° around the C1–C7 bond. This however appears not to be an energetically favourable configuration in the solid state. The asymmetric units are packed to form layers parallel to the C plane, which results in a layered structure where every other layer has either an iodine or a meth­oxy/methyl carboxyl­ate inter­face.

Related literature top

For the synthesis, see Wang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) implemented in WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2004) and ChemBioDraw Ultra (CambridgeSoft, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. One molecular unit of the title compound with 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.
Methyl 5-iodo-2-methoxybenzoate top
Crystal data top
C9H9IO3F(000) = 560
Mr = 292.06Dx = 1.912 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5646 reflections
a = 4.3378 (7) Åθ = 2.5–28.8°
b = 7.0690 (11) ŵ = 3.13 mm1
c = 33.120 (5) ÅT = 293 K
β = 92.727 (2)°Plate, colourless
V = 1014.4 (3) Å30.35 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2064 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.407, Tmax = 0.788k = 88
7578 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0267P)2 + 1.5075P]
where P = (Fo2 + 2Fc2)/3
2064 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C9H9IO3V = 1014.4 (3) Å3
Mr = 292.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.3378 (7) ŵ = 3.13 mm1
b = 7.0690 (11) ÅT = 293 K
c = 33.120 (5) Å0.35 × 0.20 × 0.08 mm
β = 92.727 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1971 reflections with I > 2σ(I)
Tmin = 0.407, Tmax = 0.788Rint = 0.018
7578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.17Δρmax = 0.67 e Å3
2064 reflectionsΔρmin = 0.86 e Å3
120 parameters
Special details top

Experimental. The recrystallization was performed in deuterated solvent, CDCl3.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C81.2399 (13)0.2713 (7)0.00134 (13)0.0750 (13)
H8C1.16730.15590.01100.112*
H8B1.46080.26770.00480.112*
H8A1.17960.37640.01560.112*
C71.1645 (9)0.1539 (5)0.06620 (11)0.0513 (8)
C11.0379 (8)0.1809 (5)0.10720 (10)0.0432 (7)
C20.8498 (8)0.3314 (5)0.11933 (11)0.0467 (8)
C30.7587 (9)0.3356 (5)0.15924 (12)0.0541 (9)
H30.63570.43450.16760.065*
C40.8469 (9)0.1966 (6)0.18637 (12)0.0563 (9)
H40.78440.20220.21280.068*
C90.5840 (11)0.6212 (6)0.10360 (16)0.0719 (13)
H9C0.56520.71150.08200.108*
H9B0.68210.67980.12700.108*
H9A0.38250.57750.11000.108*
C51.0295 (8)0.0478 (5)0.17421 (11)0.0486 (8)
C61.1226 (8)0.0425 (5)0.13512 (10)0.0450 (7)
H61.24620.05710.12720.054*
O11.1074 (7)0.2925 (4)0.04032 (8)0.0614 (7)
O30.7663 (7)0.4639 (4)0.09139 (9)0.0652 (8)
O21.3145 (10)0.0189 (5)0.05808 (9)0.0984 (14)
I11.16959 (7)0.16619 (5)0.215055 (9)0.07304 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.101 (4)0.073 (3)0.053 (2)0.023 (3)0.022 (2)0.014 (2)
C70.065 (2)0.0454 (18)0.0436 (18)0.0166 (17)0.0017 (16)0.0022 (15)
C10.0462 (17)0.0391 (16)0.0441 (17)0.0076 (14)0.0004 (14)0.0047 (13)
C20.0466 (18)0.0389 (17)0.055 (2)0.0056 (14)0.0007 (15)0.0076 (15)
C30.050 (2)0.049 (2)0.064 (2)0.0077 (16)0.0127 (17)0.0122 (17)
C40.054 (2)0.067 (2)0.049 (2)0.0002 (18)0.0088 (16)0.0088 (18)
C90.075 (3)0.043 (2)0.098 (3)0.026 (2)0.016 (2)0.002 (2)
C50.0412 (17)0.055 (2)0.0495 (19)0.0002 (15)0.0004 (14)0.0047 (16)
C60.0439 (17)0.0421 (17)0.0488 (18)0.0071 (14)0.0010 (14)0.0018 (14)
O10.080 (2)0.0538 (15)0.0515 (15)0.0239 (14)0.0157 (13)0.0088 (12)
O30.0808 (19)0.0493 (15)0.0664 (17)0.0320 (14)0.0115 (14)0.0011 (13)
O20.166 (4)0.076 (2)0.0566 (18)0.074 (2)0.032 (2)0.0091 (16)
I10.05978 (19)0.0988 (3)0.06086 (19)0.01134 (15)0.00665 (13)0.03178 (15)
Geometric parameters (Å, º) top
C8—O11.446 (5)C3—C41.373 (6)
C8—H8C0.9600C3—H30.9300
C8—H8B0.9600C4—C51.388 (5)
C8—H8A0.9600C4—H40.9300
C7—O21.193 (4)C9—O31.434 (4)
C7—O11.318 (4)C9—H9C0.9600
C7—C11.501 (5)C9—H9B0.9600
C1—C61.384 (5)C9—H9A0.9600
C1—C21.411 (4)C5—C61.375 (5)
C2—O31.354 (4)C5—I12.100 (4)
C2—C31.398 (5)C6—H60.9300
O1—C8—H8C109.5C3—C4—C5119.8 (4)
O1—C8—H8B109.5C3—C4—H4120.1
H8C—C8—H8B109.5C5—C4—H4120.1
O1—C8—H8A109.5O3—C9—H9C109.5
H8C—C8—H8A109.5O3—C9—H9B109.5
H8B—C8—H8A109.5H9C—C9—H9B109.5
O2—C7—O1122.4 (3)O3—C9—H9A109.5
O2—C7—C1122.2 (3)H9C—C9—H9A109.5
O1—C7—C1115.3 (3)H9B—C9—H9A109.5
C6—C1—C2118.8 (3)C6—C5—C4119.4 (3)
C6—C1—C7114.7 (3)C6—C5—I1119.9 (3)
C2—C1—C7126.5 (3)C4—C5—I1120.7 (3)
O3—C2—C3123.6 (3)C5—C6—C1122.0 (3)
O3—C2—C1117.8 (3)C5—C6—H6119.0
C3—C2—C1118.6 (3)C1—C6—H6119.0
C4—C3—C2121.4 (3)C7—O1—C8115.7 (3)
C4—C3—H3119.3C2—O3—C9118.5 (3)
C2—C3—H3119.3
O2—C7—C1—C63.2 (6)C3—C4—C5—C60.7 (6)
O1—C7—C1—C6174.6 (3)C3—C4—C5—I1179.7 (3)
O2—C7—C1—C2177.6 (4)C4—C5—C6—C10.5 (5)
O1—C7—C1—C24.6 (6)I1—C5—C6—C1179.6 (3)
C6—C1—C2—O3179.1 (3)C2—C1—C6—C50.2 (5)
C7—C1—C2—O31.7 (6)C7—C1—C6—C5179.1 (3)
C6—C1—C2—C30.6 (5)O2—C7—O1—C80.3 (7)
C7—C1—C2—C3178.6 (4)C1—C7—O1—C8177.4 (4)
O3—C2—C3—C4179.3 (4)C3—C2—O3—C92.4 (6)
C1—C2—C3—C40.4 (6)C1—C2—O3—C9177.9 (4)
C2—C3—C4—C50.2 (6)

Experimental details

Crystal data
Chemical formulaC9H9IO3
Mr292.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.3378 (7), 7.0690 (11), 33.120 (5)
β (°) 92.727 (2)
V3)1014.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.35 × 0.20 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.407, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
7578, 2064, 1971
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.17
No. of reflections2064
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.86

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) implemented in WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2004) and ChemBioDraw Ultra (CambridgeSoft, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

We acknowledge the support from the Norwegian Research Council (project 190980), inGAP and the Department of Chemistry, UiO.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridgeSoft (2009). ChemBioDraw Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Xiao, Z.-Y., Hou, J.-L., Wang, G.-T., Jiang, X.-K. & Li, Z.-T. (2009). Tetrahedron, 65, 10544–10551.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds