organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o488-o489

5,6-Di­methyl-2-(5-methyl­thio­phen-2-yl)-1-[(5-methyl­thio­phen-2-yl)meth­yl]-1H-benzimidazole

aDepartment of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

(Received 20 February 2014; accepted 21 March 2014; online 29 March 2014)

The title mol­ecule, C20H20N2S2, is T-shaped and consists of a nearly flat 5,6-dimethyl-2-(5-methyl­thio­phen-2-yl)benzimidazole system approximately perpendicular to the 5-methyl­thio­phen-2-ylmethyl substituent. The 5,6-dimethyl-2-(5-meth­yl­thio­phen-2-yl)benzimidazole system is rotationally disordered about the two imidazole N atoms as approximated by a twofold rotation axis with a refined major/minor occupancy ratio of 0.884 (2):0.116 (2). The benzimidazole ring system is essentially planar, the largest deviations being 0.026 (2) and 0.044 (18) Å in the major and minor components, respectively. The inter­planar angles between the benzimidazole unit and the 5-methyl­thio­phen-2-yl substituent are 10.8 (3) and 8(3)° in the major and minor components, respectively, and the corresponding angles with the 5-methyl­thio­phen-2-ylmethyl substituent are 88.12 (8) and 89.5 (4)°. In the crystal, mol­ecules are oriented with their 2-(5-methyl­thio­phen-2-yl)benzimidazole mean planes approximately parallel to (11-3 and appear to be held together by ππ [2-thiophene⋯imidazole centroid–centroid distance = 4.1383 (7) Å] and C—H⋯π contacts. A weak C—H⋯N hydrogen bond generates infinite chains parallel to [100].

Related literature

For the structure of 5,6-di­methyl­benzimidazole, see: Lee & Scheidt (1986[Lee, YoungJa & Scheidt, W. R. (1986). Acta Cryst. C42, 1652-1654.]). For the structure of 2-(thio­phen-2-yl)-1-(thio­phen-2-ylmeth­yl)-1H-benzimidazole, see: Geiger et al. (2012[Geiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.]). For the 5-chloro derivative, see: Geiger & Nellist (2013a[Geiger, D. K. & Nellist, M. R. (2013a). Acta Cryst. E69, o1539-o1540.]), the 6-chloro derivative, see: Geiger & Nellist (2013b[Geiger, D. K. & Nellist, M. R. (2013b). Acta Cryst. E69, o807.]) and the 6-bromo derivative, see: Geiger & Destefano (2012[Geiger, D. K. & Destefano, M. R. (2012). Acta Cryst. E68, o3123.]). Reich et al. (2004[Reich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357-1359.]) provide examples of benzimidazole synthesis via inter­molecular aldimine coupling. For a discussion of the biological activity of benzimidazole derivatives, see: López-Rodríguez et al. (1999[López-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020-5028.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2S2

  • Mr = 352.50

  • Triclinic, [P \overline 1]

  • a = 6.4453 (11) Å

  • b = 10.0228 (18) Å

  • c = 14.249 (3) Å

  • α = 79.171 (5)°

  • β = 83.694 (5)°

  • γ = 83.625 (6)°

  • V = 894.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 200 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.60, Tmax = 0.89

  • 10964 measured reflections

  • 3121 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.03

  • 3121 reflections

  • 276 parameters

  • 47 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯N2i 0.99 2.48 3.195 (4) 129
C61—H61B⋯C3ii 0.98 2.88 3.793 (8) 155
C71—H71B⋯C4iii 0.98 2.89 3.815 (4) 157
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole derivatives have numerous pharmacological uses. Examples include inhibitors of serotonin activated neurotransmission drugs (López-Rodríguez et al., 1999) and anti­arrhythmic, anti­histamine, anti­ulcer, anti­cancer, fungicidal, and anthelmintical drugs (Horton et al., 2003). The title compound was prepared as part of our efforts to characterize benzimidazole analogues with thio­phene substitutents (Geiger & Nellist, 2013a; Geiger & Nellist, 2013b; Geiger & Destefano, 2012; Geiger et al., 2012).

The title compound crystallizes with one molecule in the asymmetric unit. A perspective view of the molecule with the atom-labeling scheme showing only the the major contributor of the orientation disordered 5,6-di­methyl-2-(5-methyl­thio­phen-2-yl)benzimidazole system is given in Fig. 1. The benzimidazole ring system is essentially planar. The largest deviation from planarity is 0.0257 (22) Å for C7 and 0.044 (18) Å for N201 in the major and minor components, respectively. The 2-(5-methyl­thio­phen-2-yl) plane is canted 10.8 (3)° and 8.2 (2.6)° to the benzimidazole plane in the major and minor components, respectively.

The crystal structure reveals molecules oriented with their 2-(5-methyl­thio­phen-2-yl)benzimidazole mean planes approximately parallel to (113). Pairs of molecules related by crystallographic inversion centers exhibit π-π inter­actions. The separation between the mean planes of the associated 2-(5-methyl­thio­phen-2-yl)benzimidazole moieties is 3.74 Å with the closest C···C inter­action between symmetry-related C8 thio­phene atoms [C8···C8(2-x,-y,-z) = 3.727 (6) Å]. The closest C—H···C nonbonded contact is C61—H61C···C1(2-x,-y,-z) [H···C 2.87 Å, C···C 3.744 (5) Å]. Other C—H···π inter­actions between the methyl groups of the thio­phene substituents and the benzene ring on adjacent molecules involve C61—H61B···C3(x,y-1,z) [H···C 2.88 Å, C···C 3.793 (8) Å] and C71—H71B···C4(2-x,-y,1-z) [H···C 2.90 Å, C···C 3.815 (4) Å]. The extended structure exhibits chains formed by very weak inter­molecular C—H···N hydrogen bonds involving one of the methyl­ene hydrogen atoms (H12A) and the unsubstituted benzimidazole nitro­gen atom (N2) along the a axis. The result is infinite C(5) chains. Figure 2 displays a packing diagram exhibiting the chains parallel to [100]. The C12···N2(x+1,y,z) non-bonded contact is 3.195 (4) Å and the C12—H12A···N2 angle is 128.9°.

Experimental top

The title compound was prepared by stirring 4,5-di­methyl-1,2-di­amino­benzene (0.200 g, 1.47 mmol) in absolute ethanol (15 ml) for five minutes under nitro­gen. 5-methyl-2-thio­phene­carboxaldehyde (0.32 ml, 0.374 g, 2.97 mmol) was added dropwise and the reaction mixture was stirred for three days at ambient temperature. The product precipitated during this time and the yellow solid was isolated by vacuum filtration and dried. The isolated yield was 0.468 g (90.4%). 1H NMR (400 MHz, acetone-d6, p.p.m.): 2.34 (s, 3H), 2.36 (s, 3H), 2.37 (s, 3H), 2.53 (s, 3H), 5.74(s, 2H), 6.24 (d, 1H), 6.78, (d, 1H), 6.87 (d, 1H), 7.32 (s, 1H), 7.39 (d, 1H), 7.40 (a, 1H). 13C NMR (acetone-d6, p.p.m.): 14.20, 14.24, 19.36, 19.68, 43.49, 110.39, 119.34, 125.03, 125.45, 126.29, 127.21, 130.84, 130.99, 131.63, 134.81, 137.54, 139.58, 141.96, 142.83, 146.42.

Crystals suitable for X-ray analysis were obtained by vapor diffusion of hexane into a concentrated chloro­form solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in the crystallographic data table. The resolution of the data was limited to 0.84 Å (θmax = 25.1°) because the data quality dropped of markedly at higher resolution. For the shell from 0.85 to 0.84 Å, the mean I/σ was 3.47.

During the initial stages of refinement, it became obvious that the molecule exhibited twofold rotational disorder. The disorder was successfully modeled using the metrics of the major component to define the minor component. Similarity restraints were used for the bond distances using SAME and anisotropic displacement parameters of the minor component atoms were constrained to those of the major component using EADP. The structure converged with a refined major:minor component ratio of 0.8843 (20):0.1157 (20).

All hydrogen atoms were observed in difference Fourier maps. The H atoms were refined using a riding model with a C—H distance of 0.99 Å for the methyl­ene carbon atoms, 0.98 Å for the methyl carbon atoms and 0.95 Å for the phenyl and pyridine carbon atoms. The methyl C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso = 1.5Ueq. All other C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso = 1.2Ueq.

Related literature top

For the structure of 5,6-dimethylbenzimidazole, see: Lee & Scheidt (1986). For the structure of 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole, see: Geiger et al. (2012). For the 5-chloro derivative, see: Geiger & Nellist (2013a), for the 6-chloro derivative, see: Geiger & Nellist (2013b) and for the 6-bromo derivative, see: Geiger & Destefano (2012). Reich et al. (2004) provide examples of benzimidazole synthesis via intermolecular aldimine coupling. For a discussion of the biological activity of benzimidazole derivatives, see: López-Rodríguez et al. (1999); Horton et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound showing the atom-labeling scheme. Anisotropic displacement parameters are displayed at the 50% probability level. Only the major contributor to the disorder model is shown.
[Figure 2] Fig. 2. Packing diagram showing the hydrogen bonding network forming infinite chains parallel to [100]. All hydrogen atoms except H12A have been omitted for clarity. C12—H12A···N2 hydrogen bonds are represented by dashed lines. Only the major contributor to the disorder model is shown.
5,6-Dimethyl-2-(5-methylthiophen-2-yl)-1-[(5-methylthiophen-2-yl)methyl]-1H-benzimidazole top
Crystal data top
C20H20N2S2Z = 2
Mr = 352.50F(000) = 372
Triclinic, P1Dx = 1.308 Mg m3
a = 6.4453 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0228 (18) ÅCell parameters from 6329 reflections
c = 14.249 (3) Åθ = 2.3–24.9°
α = 79.171 (5)°µ = 0.30 mm1
β = 83.694 (5)°T = 200 K
γ = 83.625 (6)°Block, yellow
V = 894.8 (3) Å30.40 × 0.40 × 0.40 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3121 independent reflections
Radiation source: XOS X-beam microfocus source2420 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.037
ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 77
Tmin = 0.60, Tmax = 0.89k = 1111
10964 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.397P]
where P = (Fo2 + 2Fc2)/3
3121 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.26 e Å3
47 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H20N2S2γ = 83.625 (6)°
Mr = 352.50V = 894.8 (3) Å3
Triclinic, P1Z = 2
a = 6.4453 (11) ÅMo Kα radiation
b = 10.0228 (18) ŵ = 0.30 mm1
c = 14.249 (3) ÅT = 200 K
α = 79.171 (5)°0.40 × 0.40 × 0.40 mm
β = 83.694 (5)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
3121 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2420 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.89Rint = 0.037
10964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04347 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3121 reflectionsΔρmin = 0.30 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9366 (4)0.2289 (3)0.2305 (2)0.0381 (7)0.884 (2)
C20.7398 (4)0.2498 (3)0.19474 (18)0.0373 (6)0.884 (2)
C30.6040 (8)0.3653 (6)0.2051 (5)0.0429 (12)0.884 (2)
H30.4730.38180.17830.052*0.884 (2)
C40.6713 (5)0.4579 (3)0.2581 (2)0.0449 (8)0.884 (2)
C50.8692 (6)0.4337 (4)0.2962 (3)0.0465 (9)0.884 (2)
C61.0024 (9)0.3197 (8)0.2824 (7)0.0454 (8)0.884 (2)
H61.13530.30330.30750.054*0.884 (2)
C410.5284 (6)0.5834 (4)0.2728 (3)0.0626 (10)0.884 (2)
H41A0.39880.5840.24260.094*0.884 (2)
H41B0.59860.66510.24360.094*0.884 (2)
H41C0.49510.58270.34160.094*0.884 (2)
C510.9359 (6)0.5297 (4)0.3547 (2)0.0683 (10)0.884 (2)
H51A0.8450.52560.41480.102*0.884 (2)
H51B0.92440.6230.31820.102*0.884 (2)
H51C1.08150.50290.3690.102*0.884 (2)
N11.0278 (3)0.1079 (2)0.20560 (15)0.0366 (6)0.884 (2)
C70.8828 (4)0.0601 (3)0.15921 (17)0.0358 (6)0.884 (2)
N20.7102 (5)0.1432 (3)0.1501 (3)0.0376 (7)0.884 (2)
C80.9077 (4)0.0691 (3)0.1266 (2)0.0384 (7)0.884 (2)
C91.0526 (6)0.1817 (4)0.1428 (2)0.0522 (12)0.884 (2)
H91.16860.18630.17940.063*0.884 (2)
C101.0088 (6)0.2882 (4)0.0990 (3)0.0586 (11)0.884 (2)
H101.09420.37230.10280.07*0.884 (2)
C110.8341 (5)0.2615 (4)0.0507 (2)0.0492 (8)0.884 (2)
S10.72042 (12)0.10176 (9)0.05845 (6)0.0447 (3)0.884 (2)
C610.7391 (6)0.3515 (4)0.0025 (3)0.0652 (10)0.884 (2)
H61C0.82540.35860.06270.098*0.884 (2)
H61A0.59730.31240.01650.098*0.884 (2)
H61B0.73240.44250.0370.098*0.884 (2)
C2010.978 (3)0.058 (2)0.1416 (17)0.0381 (7)0.116 (2)
C2020.775 (3)0.0185 (17)0.1147 (13)0.0373 (6)0.116 (2)
C2030.653 (4)0.098 (3)0.073 (2)0.0429 (12)0.116 (2)
H2030.51160.07140.05910.052*0.116 (2)
C2040.769 (4)0.224 (3)0.054 (2)0.0449 (8)0.116 (2)
C2050.980 (4)0.263 (2)0.072 (2)0.0465 (9)0.116 (2)
C2061.079 (4)0.178 (3)0.116 (2)0.0454 (8)0.116 (2)
H2061.22110.2030.12940.054*0.116 (2)
C2410.655 (5)0.313 (3)0.005 (3)0.0626 (10)0.116 (2)
H24A0.52390.26250.01620.094*0.116 (2)
H24B0.62260.39580.05060.094*0.116 (2)
H24C0.74370.33760.05050.094*0.116 (2)
C2511.108 (4)0.392 (2)0.0553 (19)0.0683 (10)0.116 (2)
H25A1.24860.39230.07610.102*0.116 (2)
H25B1.12020.39620.01310.102*0.116 (2)
H25C1.04050.47040.09210.102*0.116 (2)
N2011.034 (2)0.0443 (17)0.1869 (13)0.0366 (6)0.116 (2)
C2070.865 (3)0.1387 (16)0.1827 (13)0.0358 (6)0.116 (2)
N2020.704 (4)0.104 (3)0.147 (3)0.0376 (7)0.116 (2)
C2080.859 (3)0.258 (2)0.2257 (18)0.0384 (7)0.116 (2)
C2090.999 (8)0.305 (7)0.277 (7)0.0522 (12)0.116 (2)
H2091.13390.26090.28930.063*0.116 (2)
C2100.914 (6)0.425 (4)0.309 (4)0.0586 (11)0.116 (2)
H2100.98550.46880.34810.07*0.116 (2)
C2110.724 (5)0.475 (3)0.280 (2)0.0492 (8)0.116 (2)
S2010.644 (2)0.3748 (17)0.2127 (12)0.0447 (3)0.116 (2)
C2610.592 (5)0.606 (3)0.295 (2)0.0652 (10)0.116 (2)
H26A0.44950.58510.32040.098*0.116 (2)
H26B0.58660.66870.23310.098*0.116 (2)
H26C0.65440.64850.340.098*0.116 (2)
C121.2465 (3)0.0569 (3)0.21561 (16)0.0415 (6)
H12A1.33250.13520.20520.05*
H12B1.29560.00140.16550.05*
C131.2791 (3)0.0285 (2)0.31259 (15)0.0373 (5)
C141.1370 (4)0.0773 (3)0.38263 (18)0.0579 (8)
H140.99010.06310.37770.069*
C151.2288 (4)0.1530 (3)0.46544 (18)0.0588 (8)
H151.14870.19490.5210.071*
C161.4376 (4)0.1594 (3)0.45742 (16)0.0446 (6)
S21.52848 (9)0.07226 (7)0.34707 (4)0.0434 (2)
C711.5901 (5)0.2263 (3)0.52863 (18)0.0596 (8)
H71B1.5130.25960.59020.089*
H71C1.68380.15970.53730.089*
H71A1.6730.3030.50480.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (16)0.0515 (18)0.0243 (13)0.0065 (13)0.0050 (13)0.0103 (12)
C20.0303 (14)0.0493 (16)0.0253 (13)0.0046 (12)0.0030 (11)0.0117 (11)
C30.042 (3)0.052 (2)0.034 (2)0.003 (2)0.0122 (19)0.0002 (14)
C40.052 (2)0.0523 (18)0.0265 (17)0.0064 (15)0.0026 (12)0.0042 (13)
C50.055 (3)0.0557 (19)0.0268 (19)0.0138 (19)0.0042 (16)0.0024 (15)
C60.0436 (16)0.066 (3)0.023 (2)0.0082 (16)0.0055 (12)0.0039 (17)
C410.070 (3)0.062 (2)0.055 (2)0.0029 (18)0.0082 (17)0.0137 (17)
C510.082 (2)0.077 (2)0.049 (2)0.0076 (19)0.0123 (18)0.0167 (17)
N10.0297 (11)0.0525 (16)0.0247 (12)0.0061 (11)0.0048 (9)0.0029 (10)
C70.0302 (13)0.0514 (17)0.0210 (13)0.0071 (12)0.0036 (10)0.0081 (11)
N20.0299 (11)0.048 (2)0.0298 (11)0.0043 (13)0.0057 (8)0.0071 (17)
C80.0327 (17)0.0553 (17)0.0235 (14)0.0060 (14)0.0049 (12)0.0052 (12)
C90.050 (2)0.063 (2)0.041 (3)0.0093 (16)0.0188 (19)0.0037 (18)
C100.061 (2)0.061 (2)0.053 (3)0.0119 (17)0.0163 (17)0.0114 (18)
C110.055 (2)0.063 (2)0.0258 (14)0.0114 (15)0.0017 (17)0.0022 (15)
S10.0416 (5)0.0579 (5)0.0325 (5)0.0058 (4)0.0125 (4)0.0036 (3)
C610.084 (3)0.072 (3)0.0420 (19)0.015 (2)0.012 (2)0.0070 (18)
C2010.0329 (16)0.0515 (18)0.0243 (13)0.0065 (13)0.0050 (13)0.0103 (12)
C2020.0303 (14)0.0493 (16)0.0253 (13)0.0046 (12)0.0030 (11)0.0117 (11)
C2030.042 (3)0.052 (2)0.034 (2)0.003 (2)0.0122 (19)0.0002 (14)
C2040.052 (2)0.0523 (18)0.0265 (17)0.0064 (15)0.0026 (12)0.0042 (13)
C2050.055 (3)0.0557 (19)0.0268 (19)0.0138 (19)0.0042 (16)0.0024 (15)
C2060.0436 (16)0.066 (3)0.023 (2)0.0082 (16)0.0055 (12)0.0039 (17)
C2410.070 (3)0.062 (2)0.055 (2)0.0029 (18)0.0082 (17)0.0137 (17)
C2510.082 (2)0.077 (2)0.049 (2)0.0076 (19)0.0123 (18)0.0167 (17)
N2010.0297 (11)0.0525 (16)0.0247 (12)0.0061 (11)0.0048 (9)0.0029 (10)
C2070.0302 (13)0.0514 (17)0.0210 (13)0.0071 (12)0.0036 (10)0.0081 (11)
N2020.0299 (11)0.048 (2)0.0298 (11)0.0043 (13)0.0057 (8)0.0071 (17)
C2080.0327 (17)0.0553 (17)0.0235 (14)0.0060 (14)0.0049 (12)0.0052 (12)
C2090.050 (2)0.063 (2)0.041 (3)0.0093 (16)0.0188 (19)0.0037 (18)
C2100.061 (2)0.061 (2)0.053 (3)0.0119 (17)0.0163 (17)0.0114 (18)
C2110.055 (2)0.063 (2)0.0258 (14)0.0114 (15)0.0017 (17)0.0022 (15)
S2010.0416 (5)0.0579 (5)0.0325 (5)0.0058 (4)0.0125 (4)0.0036 (3)
C2610.084 (3)0.072 (3)0.0420 (19)0.015 (2)0.012 (2)0.0070 (18)
C120.0289 (12)0.0621 (16)0.0289 (12)0.0047 (11)0.0071 (10)0.0067 (11)
C130.0326 (12)0.0502 (14)0.0269 (12)0.0030 (10)0.0071 (10)0.0011 (10)
C140.0376 (14)0.091 (2)0.0374 (14)0.0103 (14)0.0063 (12)0.0137 (14)
C150.0536 (17)0.083 (2)0.0293 (14)0.0117 (15)0.0015 (12)0.0181 (13)
C160.0531 (16)0.0521 (15)0.0250 (12)0.0016 (12)0.0086 (11)0.0034 (10)
S20.0351 (4)0.0610 (4)0.0287 (3)0.0006 (3)0.0088 (2)0.0068 (3)
C710.0706 (19)0.0691 (19)0.0331 (14)0.0073 (15)0.0167 (13)0.0052 (13)
Geometric parameters (Å, º) top
C1—N11.379 (4)C204—C2051.413 (17)
C1—C21.399 (4)C204—C2411.515 (18)
C1—C61.400 (5)C205—C2061.390 (19)
C2—N21.382 (4)C205—C2511.500 (18)
C2—C31.392 (7)C206—H2060.95
C3—C41.429 (6)C241—H24A0.98
C3—H30.95C241—H24B0.98
C4—C51.419 (4)C241—H24C0.98
C4—C411.508 (4)C251—H25A0.98
C5—C61.382 (5)C251—H25B0.98
C5—C511.509 (5)C251—H25C0.98
C6—H60.95N201—C2071.357 (15)
C41—H41A0.98N201—C121.498 (15)
C41—H41B0.98C207—N2021.312 (16)
C41—H41C0.98C207—C2081.435 (16)
C51—H51A0.98C208—C2091.393 (19)
C51—H51B0.98C208—S2011.716 (17)
C51—H51C0.98C209—C2101.40 (2)
N1—C71.377 (3)C209—H2090.95
N1—C121.458 (3)C210—C2111.351 (18)
C7—N21.317 (4)C210—H2100.95
C7—C81.443 (4)C211—C2611.516 (18)
C8—C91.384 (4)C211—S2011.666 (17)
C8—S11.723 (3)C261—H26A0.98
C9—C101.402 (5)C261—H26B0.98
C9—H90.95C261—H26C0.98
C10—C111.359 (5)C12—C131.505 (3)
C10—H100.95C12—H12A0.99
C11—C611.498 (4)C12—H12B0.99
C11—S11.703 (4)C13—C141.338 (3)
C61—H61C0.98C13—S21.718 (2)
C61—H61A0.98C14—C151.426 (3)
C61—H61B0.98C14—H140.95
C201—C2061.396 (18)C15—C161.333 (4)
C201—C2021.397 (16)C15—H150.95
C201—N2011.406 (16)C16—C711.504 (3)
C202—N2021.403 (18)C16—S21.724 (2)
C202—C2031.425 (17)C71—H71B0.98
C203—C2041.450 (18)C71—H71C0.98
C203—H2030.95C71—H71A0.98
N1—C1—C2105.5 (2)C206—C205—C251114.9 (18)
N1—C1—C6132.9 (3)C204—C205—C251127.0 (18)
C2—C1—C6121.6 (3)C205—C206—C201122 (2)
N2—C2—C3128.4 (3)C205—C206—H206118.9
N2—C2—C1110.1 (2)C201—C206—H206118.9
C3—C2—C1121.5 (3)C204—C241—H24A109.5
C2—C3—C4116.8 (3)C204—C241—H24B109.5
C2—C3—H3121.6H24A—C241—H24B109.5
C4—C3—H3121.6C204—C241—H24C109.5
C5—C4—C3121.2 (4)H24A—C241—H24C109.5
C5—C4—C41120.0 (3)H24B—C241—H24C109.5
C3—C4—C41118.8 (3)C205—C251—H25A109.5
C6—C5—C4120.5 (3)C205—C251—H25B109.5
C6—C5—C51118.7 (3)H25A—C251—H25B109.5
C4—C5—C51120.8 (3)C205—C251—H25C109.5
C5—C6—C1118.4 (4)H25A—C251—H25C109.5
C5—C6—H6120.8H25B—C251—H25C109.5
C1—C6—H6120.8C207—N201—C201104.4 (13)
C4—C41—H41A109.5C207—N201—C12128.0 (13)
C4—C41—H41B109.5C201—N201—C12126.7 (13)
H41A—C41—H41B109.5N202—C207—N201114.7 (14)
C4—C41—H41C109.5N202—C207—C208123.7 (15)
H41A—C41—H41C109.5N201—C207—C208121.2 (14)
H41B—C41—H41C109.5C207—N202—C202105.3 (15)
C5—C51—H51A109.5C209—C208—C207133.4 (18)
C5—C51—H51B109.5C209—C208—S201108.7 (15)
H51A—C51—H51B109.5C207—C208—S201117.9 (15)
C5—C51—H51C109.5C208—C209—C210111 (2)
H51A—C51—H51C109.5C208—C209—H209124.3
H51B—C51—H51C109.5C210—C209—H209124.3
C7—N1—C1106.5 (2)C211—C210—C209115 (2)
C7—N1—C12128.7 (2)C211—C210—H210122.5
C1—N1—C12124.2 (2)C209—C210—H210122.5
N2—C7—N1112.8 (3)C210—C211—C261130 (2)
N2—C7—C8122.1 (2)C210—C211—S201110.0 (15)
N1—C7—C8125.1 (2)C261—C211—S201120.0 (18)
C7—N2—C2105.1 (2)C211—S201—C20894.6 (11)
C9—C8—C7132.5 (3)C211—C261—H26A109.5
C9—C8—S1109.7 (3)C211—C261—H26B109.5
C7—C8—S1117.7 (2)H26A—C261—H26B109.5
C8—C9—C10112.3 (3)C211—C261—H26C109.5
C8—C9—H9123.8H26A—C261—H26C109.5
C10—C9—H9123.8H26B—C261—H26C109.5
C11—C10—C9114.6 (3)N1—C12—C13112.70 (19)
C11—C10—H10122.7N201—C12—C13110.9 (7)
C9—C10—H10122.7N1—C12—H12A109.1
C10—C11—C61129.0 (3)C13—C12—H12A109.1
C10—C11—S1110.1 (3)N1—C12—H12B109.1
C61—C11—S1120.9 (3)C13—C12—H12B109.1
C11—S1—C893.33 (15)H12A—C12—H12B107.8
C11—C61—H61C109.5C14—C13—C12129.4 (2)
C11—C61—H61A109.5C14—C13—S2110.64 (18)
H61C—C61—H61A109.5C12—C13—S2119.96 (16)
C11—C61—H61B109.5C13—C14—C15113.1 (2)
H61C—C61—H61B109.5C13—C14—H14123.5
H61A—C61—H61B109.5C15—C14—H14123.5
C206—C201—C202117.6 (16)C16—C15—C14113.6 (2)
C206—C201—N201135.0 (17)C16—C15—H15123.2
C202—C201—N201107.3 (13)C14—C15—H15123.2
C201—C202—N202108.0 (13)C15—C16—C71129.8 (2)
C201—C202—C203125.5 (15)C15—C16—S2110.34 (18)
N202—C202—C203126.1 (15)C71—C16—S2119.9 (2)
C202—C203—C204112.3 (17)C13—S2—C1692.37 (11)
C202—C203—H203123.8C16—C71—H71B109.5
C204—C203—H203123.8C16—C71—H71C109.5
C205—C204—C203124.0 (17)H71B—C71—H71C109.5
C205—C204—C241119.6 (17)C16—C71—H71A109.5
C203—C204—C241116.2 (17)H71B—C71—H71A109.5
C206—C205—C204118.0 (17)H71C—C71—H71A109.5
N1—C1—C2—N20.8 (3)C241—C204—C205—C2515 (5)
C6—C1—C2—N2177.5 (6)C204—C205—C206—C2010 (5)
N1—C1—C2—C3178.7 (4)C251—C205—C206—C201176 (3)
C6—C1—C2—C33.1 (7)C202—C201—C206—C2055 (5)
N2—C2—C3—C4177.7 (4)N201—C201—C206—C205179 (3)
C1—C2—C3—C42.9 (7)C206—C201—N201—C207175 (3)
C2—C3—C4—C51.3 (8)C202—C201—N201—C2071 (2)
C2—C3—C4—C41179.0 (4)C206—C201—N201—C126 (5)
C3—C4—C5—C60.3 (9)C202—C201—N201—C12170.8 (17)
C41—C4—C5—C6179.4 (7)C201—N201—C207—N2025 (3)
C3—C4—C5—C51178.0 (4)C12—N201—C207—N202174 (2)
C41—C4—C5—C512.3 (6)C201—N201—C207—C208177 (2)
C4—C5—C6—C10.3 (12)C12—N201—C207—C20813 (3)
C51—C5—C6—C1178.1 (6)N201—C207—N202—C2026 (4)
N1—C1—C6—C5179.0 (5)C208—C207—N202—C202179 (2)
C2—C1—C6—C51.4 (12)C201—C202—N202—C2075 (3)
C2—C1—N1—C71.6 (3)C203—C202—N202—C207178 (3)
C6—C1—N1—C7176.3 (7)N202—C207—C208—C209171 (7)
C2—C1—N1—C12170.2 (2)N201—C207—C208—C2091 (8)
C6—C1—N1—C1211.8 (8)N202—C207—C208—S20111 (4)
C1—N1—C7—N22.1 (3)N201—C207—C208—S201177.4 (18)
C12—N1—C7—N2169.3 (3)C207—C208—C209—C210177 (4)
C1—N1—C7—C8175.5 (2)S201—C208—C209—C2105 (9)
C12—N1—C7—C813.1 (4)C208—C209—C210—C2113 (11)
N1—C7—N2—C21.6 (4)C209—C210—C211—C261176 (6)
C8—C7—N2—C2176.1 (3)C209—C210—C211—S2010 (8)
C3—C2—N2—C7179.8 (4)C210—C211—S201—C2083 (4)
C1—C2—N2—C70.5 (4)C261—C211—S201—C208179 (3)
N2—C7—C8—C9166.6 (4)C209—C208—S201—C2114 (5)
N1—C7—C8—C910.7 (5)C207—C208—S201—C211177 (2)
N2—C7—C8—S19.6 (4)C7—N1—C12—N2019.2 (15)
N1—C7—C8—S1173.04 (19)C1—N1—C12—N201179.2 (17)
C7—C8—C9—C10177.2 (3)C7—N1—C12—C13101.5 (3)
S1—C8—C9—C100.8 (4)C1—N1—C12—C1388.5 (3)
C8—C9—C10—C110.6 (5)C207—N201—C12—N18.3 (10)
C9—C10—C11—C61178.8 (4)C201—N201—C12—N1176 (3)
C9—C10—C11—S10.2 (4)C207—N201—C12—C13107.7 (18)
C10—C11—S1—C80.2 (3)C201—N201—C12—C1385 (2)
C61—C11—S1—C8179.3 (3)N1—C12—C13—C1410.1 (4)
C9—C8—S1—C110.6 (3)N201—C12—C13—C1420.7 (7)
C7—C8—S1—C11177.6 (2)N1—C12—C13—S2168.13 (18)
C206—C201—C202—N202180 (3)N201—C12—C13—S2161.1 (6)
N201—C201—C202—N2022 (3)C12—C13—C14—C15179.1 (3)
C206—C201—C202—C2038 (4)S2—C13—C14—C150.7 (3)
N201—C201—C202—C203175 (2)C13—C14—C15—C160.6 (4)
C201—C202—C203—C2044 (4)C14—C15—C16—C71178.7 (3)
N202—C202—C203—C204176 (3)C14—C15—C16—S20.1 (3)
C202—C203—C204—C2051 (5)C14—C13—S2—C160.6 (2)
C202—C203—C204—C241177 (3)C12—C13—S2—C16179.1 (2)
C203—C204—C205—C2064 (5)C15—C16—S2—C130.3 (2)
C241—C204—C205—C206180 (3)C71—C16—S2—C13179.2 (2)
C203—C204—C205—C251179 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N2i0.992.483.195 (4)129
C71—H71B···S201ii0.982.943.912 (17)170
C61—H61B···C3iii0.982.883.793 (8)155
C71—H71B···C4ii0.982.893.815 (4)157
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N2i0.992.483.195 (4)128.9
C61—H61B···C3ii0.982.883.793 (8)154.8
C71—H71B···C4iii0.982.893.815 (4)156.9
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y, z+1.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeiger, D. K. & Destefano, M. R. (2012). Acta Cryst. E68, o3123.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Nellist, M. R. (2013a). Acta Cryst. E69, o1539–o1540.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Nellist, M. R. (2013b). Acta Cryst. E69, o807.  CSD CrossRef IUCr Journals Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, YoungJa & Scheidt, W. R. (1986). Acta Cryst. C42, 1652–1654.  Google Scholar
First citationLópez-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020–5028.  Web of Science PubMed Google Scholar
First citationReich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357–1359.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o488-o489
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds