organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o424-o425

2-(4,5-Dimeth­­oxy-2-nitro­phen­yl)-4-meth­­oxy-9-phenyl­sulfonyl-9H-carbazole-3-carbaldehyde

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 6 February 2014; accepted 6 March 2014; online 12 March 2014)

In the title compound, C28H22N2O8S, the carbazole ring system is roughly planar, with a maximum deviation of 0.084 (3) Å for the C atom connected to the 4,5-dimeth­oxy-2-nitro­phenyl ring. The dihedral angle between the carbazole system and the dimeth­oxy-substituted nitro­phenyl ring is 57.05 (10)°. The aldehyde C atom deviates by 0.164 (5) Å from its attached carbazole ring system. The mol­ecular structure is stabilized by C—H⋯O inter­actions which generate two S(6) and one S(7) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming R33(15) ring motifs, which are further crosslinked by R32(19) ring motifs, resulting in (002) layers. The crystal packing also features C—H⋯π inter­actions.

Related literature

For the biological activities and uses of carbazole derivatives, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). For electronic properties and applications of carbazole derivatives, see: Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-127.]); Zhang et al. (2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). For related structures, see: Gopinath et al. (2013[Gopinath, S., Sethusankar, K., Ramalingam, B. M. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o1420-o1421.]); Narayanan et al. (2014[Narayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o212-o213.]). For the Thorpe–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]). For graph-set notation: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22N2O8S

  • Mr = 546.55

  • Orthorhombic, P c a 21

  • a = 8.3976 (6) Å

  • b = 13.7584 (9) Å

  • c = 21.7971 (12) Å

  • V = 2518.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 295 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.971

  • 16717 measured reflections

  • 5538 independent reflections

  • 4047 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.01

  • 5538 reflections

  • 355 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.35 2.942 (5) 122
C11—H11⋯O2 0.93 2.32 2.927 (3) 122
C25—H25B⋯O8 0.96 2.60 3.194 (5) 120
C17—H17⋯O7i 0.93 2.56 3.384 (3) 148
C27—H27B⋯O3ii 0.96 2.56 3.239 (5) 128
C27—H27B⋯O8iii 0.96 2.58 2.943 (5) 103
C25—H25ACg1iv 0.96 2.97 3.675 (4) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y, z]; (iv) [-x-{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP–3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole and its derivative have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor (Itoigawa et al., 2000), anti–inflammatory and antimutagenic (Ramsewak et al., 1999). Carbazole derivatives also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic semiconductors, laser and solar cells (Friend et al., 1999; Zhang et al., 2004).

The title compound, C28H22N2O8S, comprises a carbazole ring system which is attached to a phenylsulfonyl ring, a dimethoxy substituted nitrophenyl ring, a methoxy group and a aldehyde group. The carbazole ring system is essentially planar with maximum deviation of 0.084 (3)Å for the carbon (C10) atom connected to 4,5–dimethoxy–2–nitrophenyl ring. The aldehyde group carbon (C26) atom and methoxy group oxygen (O5) atom are deviate from the adjacent carbazole ring by -0.164 (5)Å and -0.017 (2)Å, respectively. The carbazole ring system is almost orthogonal to phenyl ring (C19–C24) attached to sulfonyl group with dihedral angle of 88.31 (13)°. The dihedral angle between the carbazole ring and the dimethoxy substituted nitrophenyl ring (C13–C18) is 57.05 (10)°.

The atom S1 has a distorted tetrahedral configuration. The widening of angle O2S1O1 (119.83 (15)°) and narrowing of angle N1—S1—C19 (104.91 (12)°) from the ideal tetrahedral value are attributed to the Thorpe–Ingold effect (Bassindale, 1984). As a result of electron–withdrawing character of the phenylsulfonyl group, the bond lengths N1—C1 = 1.430 (3)Å and N1—C12 = 1.417 (3)Å in the molecule are longer than the mean value of 1.355 (14)Å (Allen et al., 1987). The sum of the bond angles around N1 (356.4°) indicate the sp2 hybridization. The oxygen atoms O6 & O7 are deviated by 0.025 (2)Å and -0.0105 (19)Å, respectively from the phenyl ring (C13–C18). The title compound exihibits the structural similarities with the already reported related stuctures (Gopinath et al., 2013; Narayanan et al., 2014).

The molecular structure is stabilized by C2—H2···O1, C11—H11···O2 and C25—H25B···O8 intramolecular interactions, which are generate two S(6) and one S(7) ring motifs (Fig. 1). In the crystal packing, molecules are linked by C17—H17···O7i and C27—H27B···O3ii intermolecular hydrogen bondings form R33(15) ring motifs and these ring motifs are further cross linked by C27—H27B···O8iii hydrogen bond forms R32(19) ring motifs, resulting in two dimensional supramolecular networks (Fig. 2) (Bernstein et al., 1995). The crystal packing is also characterized by C25—H25A···Cg1iv interactions. The packing view of the title compound is shown in Fig. 2. Symmetry codes: (i) 1/2+x, 1-y, z; (ii) -1+x, y, z; (iii) -1/2+x, -y, z; (vi) -1/2-x, y,, 1/2+z.

Related literature top

For the biological activities and uses of carbazole derivatives, see: Itoigawa et al. (2000); Ramsewak et al. (1999). For electronic properties and applications of carbazole derivatives, see: Friend et al. (1999); Zhang et al. (2004). For related structures, see: Gopinath et al. (2013); Narayanan et al. (2014). For the Thorpe–Ingold effect, see: Bassindale (1984). For bond-length distortions, see: Allen et al. (1987). For graph-set notation: Bernstein et al. (1995).

Experimental top

A solution of 3–(bromomethyl)–2–(4,5–dimethoxy–2–nitrophenyl)– 4–methoxy–9–(phenylsulfonyl)–9H–carbazole (1.53 g, 2.5 mmol) and bis(tetrabutylammonium) dichromate (2.63 g, 3.75 mmol) in dry CHCl3 (50 ml) was refluxed for 10 h. The susequent removal of solvent in vacuo followed by column chromatographic (silica gel; hexane–ethyl acetate, 4:1) purification afforded 9–(phenylsulfonyl)–2–(4,5–dimethoxy– 2–nitrophenyl)–4–methoxy–9H–carbazole–3–carbaldehyde (1.19 g, 86%) as a colourless solid. Single crystal suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform (CHCl3) at room temperature. M.p. 471–473 K.

Refinement top

The positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C—H)=0.93 and Uiso(H) = 1.2Ueq(C) for aromatic and aldehyde group, d(C—H)=0.96 and Uiso(H) =1.5Ueq(C) for methyl groups. The rotation angles for methyl groups were optimized by least squares. In the absence of significant anomalous dispersion effects, an absolute structure was not determined and 1310 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP–3 (Farrugia, 2012) & Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) & PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius. The intramolecular non–classical C—H···O hydrogen bonds, which are generate S(6) and S(7) ring motifs, shown as a dashed lines.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down b axis. The dashed lines indicate C—H···O intermolecular interactions, which are results in R33(15) and R32(19) ring motifs. The hydrogen atoms not involved in the hydrogen bonding and phenylsulfonyl group have been excluded for clarity. Symmetry codes: (i) 1/2+x, 1-y, z; (ii) -1+x, y, z; (iii). -1/2+x, -y, z.
2-(4,5-Dimethoxy-2-nitrophenyl)-4-methoxy-9-phenylsulfonyl-9H-carbazole-3-carbaldehyde top
Crystal data top
C28H22N2O8SDx = 1.441 Mg m3
Mr = 546.55Melting point = 471–473 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4047 reflections
a = 8.3976 (6) Åθ = 2.4–29.9°
b = 13.7584 (9) ŵ = 0.19 mm1
c = 21.7971 (12) ÅT = 295 K
V = 2518.4 (3) Å3Block, colourless
Z = 40.25 × 0.25 × 0.20 mm
F(000) = 1136
Data collection top
Bruker Kappa APEX–II CCD
diffractometer
5538 independent reflections
Radiation source: fine–focus sealed tube4047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω– & ϕ–scansθmax = 29.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.949, Tmax = 0.971k = 1912
16717 measured reflectionsl = 1630
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2808P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5538 reflectionsΔρmax = 0.37 e Å3
355 parametersΔρmin = 0.35 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C28H22N2O8SV = 2518.4 (3) Å3
Mr = 546.55Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.3976 (6) ŵ = 0.19 mm1
b = 13.7584 (9) ÅT = 295 K
c = 21.7971 (12) Å0.25 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEX–II CCD
diffractometer
5538 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4047 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.971Rint = 0.030
16717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.37 e Å3
S = 1.01Δρmin = 0.35 e Å3
5538 reflectionsAbsolute structure: Flack (1983)
355 parametersAbsolute structure parameter: 0.02 (8)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8650 (3)0.1054 (2)0.40810 (13)0.0448 (6)
C20.9302 (4)0.0894 (3)0.35094 (14)0.0615 (8)
H20.93770.13910.32210.074*
C30.9838 (4)0.0031 (3)0.33812 (16)0.0708 (10)
H31.02980.01560.30010.085*
C40.9712 (4)0.0772 (3)0.37992 (15)0.0598 (8)
H41.00670.13910.36940.072*
C50.9070 (3)0.0617 (2)0.43698 (14)0.0511 (7)
H50.89940.11210.46520.061*
C60.8536 (3)0.0312 (2)0.45165 (12)0.0396 (6)
C70.7830 (3)0.07281 (18)0.50642 (12)0.0366 (5)
C80.7490 (3)0.03425 (17)0.56383 (12)0.0371 (5)
C90.6929 (3)0.09573 (19)0.61001 (12)0.0434 (6)
C100.6676 (3)0.19546 (18)0.59770 (12)0.0382 (5)
C110.6948 (3)0.23323 (19)0.53996 (12)0.0391 (6)
H110.67320.29810.53130.047*
C120.7553 (3)0.17175 (18)0.49529 (11)0.0365 (5)
C130.6053 (3)0.26215 (18)0.64630 (12)0.0387 (5)
C140.4585 (3)0.24500 (19)0.67360 (12)0.0419 (6)
H140.40160.18950.66300.050*
C150.3949 (3)0.30877 (18)0.71640 (13)0.0417 (6)
C160.4779 (3)0.39378 (19)0.73222 (11)0.0393 (5)
C170.6221 (3)0.41252 (19)0.70510 (12)0.0408 (6)
H170.67780.46900.71460.049*
C180.6841 (3)0.34688 (19)0.66353 (12)0.0401 (6)
C191.0216 (3)0.3359 (2)0.43564 (14)0.0496 (7)
C201.1564 (4)0.3137 (2)0.4026 (2)0.0661 (9)
H201.14860.28350.36460.079*
C211.3031 (4)0.3368 (3)0.4268 (2)0.0798 (12)
H211.39490.32260.40470.096*
C221.3149 (4)0.3804 (3)0.4830 (2)0.0792 (12)
H221.41460.39460.49930.095*
C231.1808 (5)0.4032 (3)0.5151 (2)0.0798 (11)
H231.18960.43410.55290.096*
C241.0324 (4)0.3809 (2)0.49226 (17)0.0599 (8)
H240.94100.39570.51450.072*
C250.6625 (4)0.1291 (2)0.55932 (18)0.0603 (8)
H25A0.63110.11810.51760.090*
H25B0.57210.12100.58580.090*
H25C0.70310.19400.56340.090*
C260.6670 (6)0.0594 (3)0.67271 (17)0.0833 (12)
H260.70820.09520.70520.100*
C270.1723 (4)0.2068 (2)0.73733 (17)0.0636 (9)
H27A0.24070.15380.74850.095*
H27B0.14180.20050.69510.095*
H27C0.07880.20580.76270.095*
C280.4937 (4)0.5310 (2)0.79770 (17)0.0663 (9)
H28A0.51440.57650.76530.099*
H28B0.59280.50810.81420.099*
H28C0.43350.56230.82950.099*
N10.8002 (3)0.19235 (16)0.43400 (11)0.0443 (5)
N20.8427 (3)0.3687 (2)0.63994 (11)0.0508 (6)
O10.8401 (3)0.2956 (2)0.34239 (11)0.0744 (7)
O20.7169 (2)0.36484 (15)0.43482 (11)0.0597 (5)
O30.9392 (3)0.30255 (18)0.63549 (13)0.0732 (7)
O40.8724 (3)0.45314 (18)0.62628 (12)0.0744 (7)
O50.7846 (2)0.06046 (13)0.57617 (9)0.0473 (5)
O60.2548 (3)0.29660 (14)0.74591 (10)0.0550 (5)
O70.4055 (2)0.45109 (14)0.77418 (9)0.0497 (5)
O80.5939 (8)0.0159 (2)0.68447 (18)0.168 (2)
S10.83364 (8)0.30432 (5)0.40724 (4)0.05068 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (13)0.0577 (17)0.0356 (13)0.0009 (12)0.0036 (11)0.0048 (13)
C20.0640 (19)0.079 (2)0.0416 (17)0.0063 (17)0.0054 (14)0.0041 (15)
C30.063 (2)0.102 (3)0.0476 (19)0.0011 (19)0.0092 (15)0.0243 (19)
C40.0575 (18)0.069 (2)0.0532 (19)0.0106 (15)0.0038 (14)0.0212 (16)
C50.0435 (14)0.0604 (18)0.0495 (17)0.0090 (13)0.0059 (12)0.0139 (14)
C60.0319 (12)0.0496 (16)0.0372 (14)0.0014 (11)0.0048 (9)0.0059 (11)
C70.0321 (11)0.0412 (13)0.0367 (13)0.0015 (10)0.0052 (9)0.0046 (10)
C80.0418 (13)0.0336 (13)0.0358 (13)0.0038 (11)0.0059 (10)0.0001 (10)
C90.0535 (15)0.0396 (14)0.0369 (14)0.0042 (12)0.0008 (11)0.0023 (11)
C100.0444 (13)0.0344 (13)0.0358 (14)0.0015 (11)0.0004 (10)0.0023 (10)
C110.0442 (13)0.0333 (13)0.0397 (14)0.0042 (11)0.0053 (11)0.0003 (11)
C120.0371 (11)0.0414 (14)0.0311 (13)0.0015 (11)0.0049 (9)0.0038 (10)
C130.0473 (14)0.0354 (13)0.0334 (13)0.0037 (11)0.0032 (10)0.0016 (10)
C140.0547 (15)0.0324 (13)0.0387 (14)0.0034 (11)0.0003 (11)0.0033 (10)
C150.0460 (13)0.0398 (14)0.0395 (14)0.0009 (11)0.0019 (11)0.0026 (11)
C160.0452 (13)0.0356 (13)0.0370 (14)0.0048 (11)0.0026 (10)0.0033 (10)
C170.0459 (13)0.0328 (12)0.0437 (15)0.0005 (11)0.0039 (11)0.0010 (11)
C180.0422 (13)0.0408 (15)0.0372 (14)0.0006 (11)0.0010 (10)0.0009 (11)
C190.0480 (14)0.0421 (15)0.0588 (19)0.0000 (12)0.0029 (13)0.0186 (14)
C200.0587 (18)0.068 (2)0.072 (2)0.0017 (16)0.0180 (16)0.0060 (18)
C210.0464 (18)0.070 (2)0.123 (4)0.0021 (17)0.020 (2)0.011 (2)
C220.0528 (19)0.056 (2)0.129 (4)0.0050 (16)0.009 (2)0.013 (2)
C230.073 (2)0.062 (2)0.104 (3)0.0222 (19)0.012 (2)0.004 (2)
C240.0561 (17)0.0543 (18)0.069 (2)0.0086 (14)0.0060 (15)0.0004 (16)
C250.0645 (19)0.0419 (16)0.075 (2)0.0013 (14)0.0089 (16)0.0048 (15)
C260.157 (4)0.0522 (18)0.0410 (18)0.0338 (19)0.011 (2)0.0073 (16)
C270.0669 (19)0.058 (2)0.065 (2)0.0191 (16)0.0083 (15)0.0023 (15)
C280.0626 (19)0.0521 (19)0.084 (3)0.0076 (15)0.0101 (16)0.0333 (17)
N10.0502 (12)0.0490 (13)0.0336 (12)0.0035 (10)0.0008 (9)0.0015 (10)
N20.0500 (14)0.0579 (16)0.0446 (14)0.0007 (12)0.0018 (10)0.0125 (11)
O10.0811 (17)0.0983 (19)0.0439 (14)0.0043 (13)0.0030 (11)0.0244 (12)
O20.0505 (11)0.0575 (12)0.0710 (14)0.0094 (9)0.0002 (10)0.0204 (11)
O30.0489 (12)0.0819 (17)0.0890 (19)0.0147 (12)0.0014 (12)0.0089 (13)
O40.0733 (15)0.0623 (15)0.0878 (19)0.0204 (12)0.0230 (13)0.0121 (13)
O50.0556 (11)0.0359 (10)0.0504 (12)0.0089 (8)0.0117 (8)0.0006 (8)
O60.0559 (11)0.0523 (12)0.0570 (13)0.0130 (10)0.0151 (9)0.0105 (9)
O70.0508 (10)0.0424 (11)0.0559 (12)0.0031 (9)0.0052 (9)0.0143 (9)
O80.346 (7)0.068 (2)0.090 (3)0.015 (3)0.072 (3)0.0203 (17)
S10.0495 (4)0.0595 (5)0.0431 (4)0.0009 (3)0.0010 (3)0.0174 (3)
Geometric parameters (Å, º) top
C1—C21.379 (4)C18—N21.459 (4)
C1—C61.398 (4)C19—C201.376 (4)
C1—N11.430 (3)C19—C241.383 (5)
C2—C31.379 (5)C19—S11.751 (3)
C2—H20.9300C20—C211.377 (5)
C3—C41.371 (5)C20—H200.9300
C3—H30.9300C21—C221.368 (7)
C4—C51.372 (4)C21—H210.9300
C4—H40.9300C22—C231.363 (6)
C5—C61.391 (4)C22—H220.9300
C5—H50.9300C23—C241.377 (5)
C6—C71.451 (3)C23—H230.9300
C7—C81.389 (4)C24—H240.9300
C7—C121.402 (3)C25—O51.442 (4)
C8—O51.364 (3)C25—H25A0.9600
C8—C91.397 (4)C25—H25B0.9600
C9—C101.414 (3)C25—H25C0.9600
C9—C261.471 (4)C26—O81.231 (5)
C10—C111.381 (4)C26—H260.9300
C10—C131.496 (4)C27—O61.429 (3)
C11—C121.386 (4)C27—H27A0.9600
C11—H110.9300C27—H27B0.9600
C12—N11.417 (3)C27—H27C0.9600
C13—C141.388 (4)C28—O71.422 (3)
C13—C181.392 (4)C28—H28A0.9600
C14—C151.388 (4)C28—H28B0.9600
C14—H140.9300C28—H28C0.9600
C15—O61.351 (3)N1—S11.671 (2)
C15—C161.404 (4)N2—O31.223 (3)
C16—O71.352 (3)N2—O41.225 (3)
C16—C171.372 (4)O1—S11.420 (2)
C17—C181.381 (4)O2—S11.420 (2)
C17—H170.9300
C2—C1—C6121.6 (3)C20—C19—C24120.8 (3)
C2—C1—N1129.9 (3)C20—C19—S1120.1 (3)
C6—C1—N1108.5 (2)C24—C19—S1119.0 (2)
C1—C2—C3117.4 (3)C19—C20—C21119.0 (4)
C1—C2—H2121.3C19—C20—H20120.5
C3—C2—H2121.3C21—C20—H20120.5
C4—C3—C2121.8 (3)C22—C21—C20120.6 (4)
C4—C3—H3119.1C22—C21—H21119.7
C2—C3—H3119.1C20—C21—H21119.7
C3—C4—C5121.1 (3)C23—C22—C21120.1 (4)
C3—C4—H4119.4C23—C22—H22120.0
C5—C4—H4119.4C21—C22—H22120.0
C4—C5—C6118.6 (3)C22—C23—C24120.7 (4)
C4—C5—H5120.7C22—C23—H23119.6
C6—C5—H5120.7C24—C23—H23119.6
C5—C6—C1119.5 (2)C23—C24—C19118.8 (3)
C5—C6—C7133.1 (3)C23—C24—H24120.6
C1—C6—C7107.4 (2)C19—C24—H24120.6
C8—C7—C12119.5 (2)O5—C25—H25A109.5
C8—C7—C6132.4 (2)O5—C25—H25B109.5
C12—C7—C6108.0 (2)H25A—C25—H25B109.5
O5—C8—C7119.9 (2)O5—C25—H25C109.5
O5—C8—C9120.7 (2)H25A—C25—H25C109.5
C7—C8—C9119.2 (2)H25B—C25—H25C109.5
C8—C9—C10120.1 (2)O8—C26—C9123.6 (4)
C8—C9—C26120.9 (2)O8—C26—H26118.2
C10—C9—C26118.9 (2)C9—C26—H26118.2
C11—C10—C9120.9 (2)O6—C27—H27A109.5
C11—C10—C13118.2 (2)O6—C27—H27B109.5
C9—C10—C13120.9 (2)H27A—C27—H27B109.5
C10—C11—C12118.1 (2)O6—C27—H27C109.5
C10—C11—H11120.9H27A—C27—H27C109.5
C12—C11—H11120.9H27B—C27—H27C109.5
C11—C12—C7122.1 (2)O7—C28—H28A109.5
C11—C12—N1129.6 (2)O7—C28—H28B109.5
C7—C12—N1108.3 (2)H28A—C28—H28B109.5
C14—C13—C18116.7 (2)O7—C28—H28C109.5
C14—C13—C10120.6 (2)H28A—C28—H28C109.5
C18—C13—C10122.6 (2)H28B—C28—H28C109.5
C15—C14—C13121.5 (2)C12—N1—C1107.8 (2)
C15—C14—H14119.3C12—N1—S1123.94 (18)
C13—C14—H14119.3C1—N1—S1124.68 (19)
O6—C15—C14125.2 (2)O3—N2—O4123.5 (3)
O6—C15—C16114.7 (2)O3—N2—C18118.7 (3)
C14—C15—C16120.0 (2)O4—N2—C18117.9 (2)
O7—C16—C17125.4 (2)C8—O5—C25114.8 (2)
O7—C16—C15115.4 (2)C15—O6—C27117.9 (2)
C17—C16—C15119.2 (2)C16—O7—C28117.4 (2)
C16—C17—C18119.5 (2)O1—S1—O2119.83 (15)
C16—C17—H17120.3O1—S1—N1106.05 (14)
C18—C17—H17120.3O2—S1—N1106.06 (12)
C17—C18—C13123.1 (2)O1—S1—C19109.79 (15)
C17—C18—N2116.1 (2)O2—S1—C19109.09 (15)
C13—C18—N2120.8 (2)N1—S1—C19104.91 (12)
C6—C1—C2—C30.1 (4)C15—C16—C17—C181.0 (4)
N1—C1—C2—C3179.8 (3)C16—C17—C18—C131.4 (4)
C1—C2—C3—C41.0 (5)C16—C17—C18—N2175.9 (2)
C2—C3—C4—C51.3 (5)C14—C13—C18—C170.6 (4)
C3—C4—C5—C60.4 (4)C10—C13—C18—C17175.2 (2)
C4—C5—C6—C10.6 (4)C14—C13—C18—N2176.7 (2)
C4—C5—C6—C7179.2 (3)C10—C13—C18—N27.6 (4)
C2—C1—C6—C50.9 (4)C24—C19—C20—C210.0 (5)
N1—C1—C6—C5179.0 (2)S1—C19—C20—C21178.1 (3)
C2—C1—C6—C7178.9 (2)C19—C20—C21—C220.6 (5)
N1—C1—C6—C71.1 (3)C20—C21—C22—C231.3 (6)
C5—C6—C7—C82.3 (4)C21—C22—C23—C241.4 (6)
C1—C6—C7—C8177.5 (2)C22—C23—C24—C190.8 (6)
C5—C6—C7—C12178.9 (3)C20—C19—C24—C230.1 (5)
C1—C6—C7—C120.9 (3)S1—C19—C24—C23178.2 (3)
C12—C7—C8—O5176.0 (2)C8—C9—C26—O848.4 (6)
C6—C7—C8—O50.3 (4)C10—C9—C26—O8134.7 (4)
C12—C7—C8—C92.1 (3)C11—C12—N1—C1176.3 (2)
C6—C7—C8—C9174.2 (2)C7—C12—N1—C13.2 (3)
O5—C8—C9—C10175.3 (2)C11—C12—N1—S116.8 (4)
C7—C8—C9—C101.5 (4)C7—C12—N1—S1162.79 (18)
O5—C8—C9—C261.5 (4)C2—C1—N1—C12177.3 (3)
C7—C8—C9—C26175.3 (3)C6—C1—N1—C122.7 (3)
C8—C9—C10—C111.2 (4)C2—C1—N1—S118.0 (4)
C26—C9—C10—C11178.1 (3)C6—C1—N1—S1162.05 (18)
C8—C9—C10—C13179.1 (2)C17—C18—N2—O3137.1 (3)
C26—C9—C10—C134.0 (4)C13—C18—N2—O340.3 (4)
C9—C10—C11—C123.2 (4)C17—C18—N2—O442.0 (3)
C13—C10—C11—C12178.8 (2)C13—C18—N2—O4140.5 (3)
C10—C11—C12—C72.6 (3)C7—C8—O5—C2586.9 (3)
C10—C11—C12—N1176.9 (2)C9—C8—O5—C2599.3 (3)
C8—C7—C12—C110.1 (4)C14—C15—O6—C276.6 (4)
C6—C7—C12—C11177.0 (2)C16—C15—O6—C27173.2 (3)
C8—C7—C12—N1179.7 (2)C17—C16—O7—C288.0 (4)
C6—C7—C12—N12.6 (3)C15—C16—O7—C28171.9 (3)
C11—C10—C13—C14118.4 (3)C12—N1—S1—O1167.4 (2)
C9—C10—C13—C1459.5 (3)C1—N1—S1—O136.5 (3)
C11—C10—C13—C1857.2 (3)C12—N1—S1—O238.9 (2)
C9—C10—C13—C18124.9 (3)C1—N1—S1—O2164.9 (2)
C18—C13—C14—C150.7 (4)C12—N1—S1—C1976.5 (2)
C10—C13—C14—C15176.5 (2)C1—N1—S1—C1979.7 (2)
C13—C14—C15—O6178.7 (2)C20—C19—S1—O124.5 (3)
C13—C14—C15—C161.1 (4)C24—C19—S1—O1157.3 (2)
O6—C15—C16—O70.4 (3)C20—C19—S1—O2157.6 (2)
C14—C15—C16—O7179.8 (2)C24—C19—S1—O224.2 (3)
O6—C15—C16—C17179.5 (2)C20—C19—S1—N189.1 (3)
C14—C15—C16—C170.3 (4)C24—C19—S1—N189.1 (3)
O7—C16—C17—C18178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.352.942 (5)122
C11—H11···O20.932.322.927 (3)122
C25—H25B···O80.962.603.194 (5)120
C17—H17···O7i0.932.563.384 (3)148
C27—H27B···O3ii0.962.563.239 (5)128
C27—H27B···O8iii0.962.582.943 (5)103
C25—H25A···Cg1iv0.962.973.675 (4)131
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1, y, z; (iii) x1/2, y, z; (iv) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.352.942 (5)122
C11—H11···O20.932.322.927 (3)122
C25—H25B···O80.962.603.194 (5)120
C17—H17···O7i0.932.563.384 (3)148.0
C27—H27B···O3ii0.962.563.239 (5)127.9
C27—H27B···O8iii0.962.582.943 (5)102.5
C25—H25A···Cg1iv0.962.973.675 (4)131.0
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1, y, z; (iii) x1/2, y, z; (iv) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationGopinath, S., Sethusankar, K., Ramalingam, B. M. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o1420–o1421.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o212–o213.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o424-o425
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds