organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Di­nitro-1,1′-(ethane-1,2-di­yl)di(1H-indazole)

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: assoman_k@yahoo.fr

(Received 24 February 2014; accepted 26 February 2014; online 5 March 2014)

The mol­ecule of the title compound, C16H12N6O4, is built up from two fused five- and six-membered rings linked by an ethyl­ene group. The dihedral angle between the planes through the indazole ring systems is 39.74 (5)°. The nitro groups are tilted by 7.2 (2) and 8.5 (2)° with respect to planes of the fused-ring systems. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯O hydrogen bonds into chains running parallel to the c axis.

Related literature

For biological activities of the indazole moiety, see: Ali et al. (2012[Ali, N. A. S., Zakir, S., Patel, M. & Farooqui, M. (2012). Eur. J. Med. Chem. 50, 39-43.]); Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]); Plescia et al. (2010[Plescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). ARKIVOC, x, 163-177.]); Lee et al. (2001[Lee, F.-Y., Lien, J.-C., Huang, L.-J., Huang, T.-M., Tsai, S.-C., Teng, C.-M., Wu, C.-C., Cheng, F.-C. & Kuo, S.-C. (2001). J. Med. Chem. 44, 3746-3749.]); Liu et al. (2011[Liu, K. G., Robichaud, A. J., Greenfield, A. A., Lo, J. R., Grosanu, C., Mattes, J. F., Cai, Y., Zhang, G. M., Zhang, J. Y., Kowal, D. M., Smith, D. L., Di, L., Kerns, E. H., Schechter, L. E. & Comery, T. A. (2011). Bioorg. Med. Chem. 19, 650-662.]). For related compounds, see: Kouakou et al. (2013[Kouakou, A., Rakib, E. M., Spinelli, D., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1603-o1604.]); Chicha et al. (2013[Chicha, H., Rakib, E. M., Spinelli, D., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1410.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N6O4

  • Mr = 352.32

  • Monoclinic, P 21 /c

  • a = 9.410 (5) Å

  • b = 12.064 (5) Å

  • c = 14.804 (4) Å

  • β = 109.01 (2)°

  • V = 1588.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.37 × 0.32 × 0.26 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 16446 measured reflections

  • 3503 independent reflections

  • 2667 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.03

  • 3503 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N5i 0.93 2.48 3.344 (2) 154
C15—H15⋯O1i 0.93 2.47 3.401 (2) 179
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indazole moiety have been nucleus is a pharmaceutically important and emerging heterocycle with a broad spectrum of activities including anti-microbial1, anti-cancer, anti-inflammatory, anti- platelet, and selective 5-HT6 antagonists (Ali et al., 2012; Abbassi et al., 2012; Plescia et al., 2010; Lee et al., 2001; Liu et al., 2011). The present work is a continuation of the investigation on the indazole derivatives published recently by our team (Kouakou et al., 2013; Chicha et al., 2013).

The molecule of the title compound is formed by two fused five- and six-membered rings linked by an ethylene group and connected to two nitro groups as shown in Fig. 1. The two fused ring systems (N2/N3/C1–C7 and N4/N5C10–C16) make dihedral angles of 7.2 (2)° and 8.5 (2)° with the planes through the attached nitro groups (N1/O1/O2 and N6/O3(O4), respectively. The dihedral angle between the indazole ring systems is 39.74 (5)°. In the crystal, molecules are linked by C7—H7···N5 and C15—H15···O1 hydrogen interactions (Table 1) into chains running parallel to the [0 0 1] direction as shown in Fig. 2.

Related literature top

For biological activities of the indazole moiety, see: Ali et al. (2012); Abbassi et al. (2012); Plescia et al. (2010); Lee et al. (2001); Liu et al. (2011). For related compounds, see: Kouakou et al. (2013); Chicha et al. (2013).

Experimental top

A solution of 6-nitroindazole (0.5 g, 3.06 mmol) and KOH (0.17 g, 3.08 mmol) in EtOH (15 ml) was heated under reflux for 48 h. The mixture was cooled and the solvent removed from the filtrate in vacuo. The formed 6-nitroindazole potassium salt and 1,2-ethylene dibromide (0.27 ml, 1.48 mmol) was heated in dimethylformamide (5 ml) under reflux for 3 h. The mixture was then cooled, all volatiles were removed in vacuo and water was added. The precipitate was filtered and was purified by column chromatography (EtOAc/hexane 2:8 v/v). The title compound was recrystallized from acetone (yield: 35%; m. p.: 468 K).

Refinement top

H atoms were located in a difference Fourier map and treated as riding, with C–H = 0.93-0.97 Å and with Uiso(H) = 1.2 Ueq(C). One outlier (0 1 1) was omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing a chain of molecules linked by hydrogen bonds (dashed lines).
6,6'-Dinitro-1,1'-(ethane-1,2-diyl)di(1H-indazole) top
Crystal data top
C16H12N6O4F(000) = 728
Mr = 352.32Dx = 1.473 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3672 reflections
a = 9.410 (5) Åθ = 1.5–27.1°
b = 12.064 (5) ŵ = 0.11 mm1
c = 14.804 (4) ÅT = 296 K
β = 109.01 (2)°Block, colourless
V = 1588.9 (12) Å30.37 × 0.32 × 0.26 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
2667 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.1°, θmin = 2.8°
ϕ and ω scansh = 1212
16446 measured reflectionsk = 1515
3503 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.3594P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3503 reflectionsΔρmax = 0.20 e Å3
236 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (10)
Crystal data top
C16H12N6O4V = 1588.9 (12) Å3
Mr = 352.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.410 (5) ŵ = 0.11 mm1
b = 12.064 (5) ÅT = 296 K
c = 14.804 (4) Å0.37 × 0.32 × 0.26 mm
β = 109.01 (2)°
Data collection top
Bruker X8 APEX
diffractometer
2667 reflections with I > 2σ(I)
16446 measured reflectionsRint = 0.033
3503 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3503 reflectionsΔρmin = 0.19 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72668 (16)0.44512 (14)0.20575 (10)0.0753 (4)
O20.8642 (2)0.57503 (14)0.28985 (14)0.1037 (6)
O31.06798 (18)0.14604 (14)0.75890 (9)0.0817 (5)
O41.28535 (16)0.17800 (15)0.74730 (11)0.0990 (6)
N10.78171 (17)0.49484 (13)0.28105 (13)0.0617 (4)
N20.53003 (16)0.25102 (14)0.54188 (9)0.0580 (4)
N30.54014 (13)0.24766 (11)0.45233 (8)0.0435 (3)
N40.74940 (12)0.09097 (10)0.40649 (8)0.0384 (3)
N50.74567 (15)0.09998 (12)0.31430 (8)0.0487 (3)
N61.15060 (18)0.16124 (12)0.71175 (11)0.0612 (4)
C10.74301 (17)0.45822 (13)0.36515 (12)0.0474 (4)
C20.7928 (2)0.52228 (15)0.44873 (15)0.0630 (5)
H20.85350.58390.45150.076*
C30.7517 (2)0.49382 (17)0.52569 (14)0.0669 (5)
H30.78170.53670.58090.080*
C40.66362 (18)0.39900 (15)0.52037 (11)0.0504 (4)
C50.62089 (15)0.33505 (12)0.43641 (10)0.0386 (3)
C60.65760 (16)0.36455 (12)0.35590 (10)0.0407 (3)
H60.62630.32340.29970.049*
C70.6008 (2)0.34107 (18)0.58152 (12)0.0645 (5)
H70.60900.36440.64290.077*
C80.49431 (15)0.14827 (13)0.39587 (11)0.0439 (4)
H8A0.47470.16590.32900.053*
H8B0.40170.12080.40300.053*
C90.61375 (15)0.05839 (13)0.42568 (11)0.0443 (4)
H9A0.63750.04360.49340.053*
H9B0.57480.00940.39120.053*
C100.87881 (19)0.13663 (14)0.31726 (11)0.0505 (4)
H100.90670.15010.26350.061*
C110.97408 (16)0.15298 (12)0.41201 (10)0.0401 (3)
C121.12332 (17)0.18656 (13)0.45625 (13)0.0511 (4)
H121.18300.20740.41990.061*
C131.17921 (16)0.18815 (13)0.55331 (13)0.0520 (4)
H131.27850.20870.58410.062*
C141.08659 (16)0.15870 (12)0.60685 (11)0.0433 (4)
C150.93939 (15)0.12611 (12)0.56797 (10)0.0375 (3)
H150.88020.10760.60520.045*
C160.88544 (14)0.12277 (11)0.46851 (9)0.0337 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0816 (9)0.0892 (11)0.0650 (9)0.0071 (8)0.0377 (7)0.0152 (8)
O20.1124 (13)0.0726 (11)0.1501 (16)0.0232 (10)0.0756 (12)0.0175 (10)
O30.0884 (10)0.1023 (12)0.0437 (7)0.0028 (9)0.0066 (7)0.0094 (7)
O40.0647 (9)0.1077 (13)0.0874 (11)0.0184 (8)0.0262 (8)0.0118 (9)
N10.0585 (9)0.0505 (9)0.0863 (12)0.0087 (7)0.0376 (8)0.0203 (8)
N20.0521 (8)0.0823 (11)0.0423 (8)0.0015 (8)0.0193 (6)0.0077 (7)
N30.0397 (6)0.0518 (8)0.0396 (7)0.0015 (6)0.0139 (5)0.0034 (5)
N40.0345 (6)0.0445 (7)0.0350 (6)0.0009 (5)0.0096 (5)0.0047 (5)
N50.0539 (8)0.0556 (8)0.0348 (7)0.0022 (6)0.0122 (5)0.0045 (6)
N60.0602 (9)0.0482 (9)0.0565 (9)0.0003 (7)0.0065 (7)0.0092 (7)
C10.0448 (8)0.0398 (9)0.0594 (10)0.0049 (7)0.0195 (7)0.0067 (7)
C20.0607 (11)0.0428 (10)0.0824 (13)0.0098 (8)0.0189 (9)0.0067 (9)
C30.0704 (12)0.0604 (12)0.0614 (12)0.0067 (9)0.0098 (9)0.0233 (9)
C40.0484 (8)0.0589 (11)0.0403 (8)0.0030 (8)0.0096 (7)0.0072 (7)
C50.0340 (7)0.0411 (8)0.0386 (7)0.0026 (6)0.0088 (6)0.0006 (6)
C60.0425 (8)0.0388 (8)0.0402 (8)0.0044 (6)0.0126 (6)0.0003 (6)
C70.0645 (11)0.0929 (15)0.0362 (9)0.0050 (10)0.0164 (8)0.0053 (9)
C80.0307 (7)0.0476 (9)0.0490 (8)0.0051 (6)0.0068 (6)0.0043 (7)
C90.0341 (7)0.0446 (9)0.0510 (9)0.0058 (6)0.0095 (6)0.0098 (7)
C100.0589 (10)0.0556 (10)0.0445 (9)0.0084 (8)0.0272 (7)0.0085 (7)
C110.0410 (7)0.0369 (8)0.0481 (8)0.0058 (6)0.0221 (6)0.0066 (6)
C120.0387 (8)0.0456 (9)0.0772 (12)0.0017 (7)0.0300 (8)0.0100 (8)
C130.0307 (7)0.0395 (9)0.0805 (12)0.0024 (6)0.0110 (7)0.0025 (8)
C140.0396 (7)0.0328 (8)0.0494 (9)0.0009 (6)0.0035 (6)0.0035 (6)
C150.0376 (7)0.0354 (7)0.0399 (7)0.0015 (6)0.0132 (6)0.0017 (6)
C160.0304 (6)0.0311 (7)0.0397 (7)0.0020 (5)0.0117 (5)0.0027 (5)
Geometric parameters (Å, º) top
O1—N11.223 (2)C4—C71.416 (3)
O2—N11.220 (2)C5—C61.391 (2)
O3—N61.216 (2)C6—H60.9300
O4—N61.221 (2)C7—H70.9300
N1—C11.474 (2)C8—C91.520 (2)
N2—C71.309 (3)C8—H8A0.9700
N2—N31.3603 (18)C8—H8B0.9700
N3—C51.3643 (19)C9—H9A0.9700
N3—C81.445 (2)C9—H9B0.9700
N4—N51.3581 (17)C10—C111.411 (2)
N4—C161.3650 (18)C10—H100.9300
N4—C91.4494 (19)C11—C121.402 (2)
N5—C101.316 (2)C11—C161.4082 (19)
N6—C141.472 (2)C12—C131.360 (2)
C1—C61.367 (2)C12—H120.9300
C1—C21.404 (2)C13—C141.401 (2)
C2—C31.361 (3)C13—H130.9300
C2—H20.9300C14—C151.373 (2)
C3—C41.400 (3)C15—C161.3929 (19)
C3—H30.9300C15—H150.9300
C4—C51.406 (2)
O2—N1—O1123.51 (18)C4—C7—H7123.8
O2—N1—C1118.09 (18)N3—C8—C9111.77 (12)
O1—N1—C1118.37 (15)N3—C8—H8A109.3
C7—N2—N3105.94 (14)C9—C8—H8A109.3
N2—N3—C5111.41 (13)N3—C8—H8B109.3
N2—N3—C8119.09 (13)C9—C8—H8B109.3
C5—N3—C8128.28 (12)H8A—C8—H8B107.9
N5—N4—C16111.41 (11)N4—C9—C8111.39 (12)
N5—N4—C9118.85 (11)N4—C9—H9A109.3
C16—N4—C9129.58 (12)C8—C9—H9A109.3
C10—N5—N4106.31 (12)N4—C9—H9B109.3
O3—N6—O4123.09 (18)C8—C9—H9B109.3
O3—N6—C14118.95 (15)H9A—C9—H9B108.0
O4—N6—C14117.96 (18)N5—C10—C11111.71 (13)
C6—C1—C2124.04 (16)N5—C10—H10124.1
C6—C1—N1117.51 (15)C11—C10—H10124.1
C2—C1—N1118.44 (16)C12—C11—C16119.62 (14)
C3—C2—C1119.66 (17)C12—C11—C10136.07 (14)
C3—C2—H2120.2C16—C11—C10104.29 (13)
C1—C2—H2120.2C13—C12—C11118.78 (14)
C2—C3—C4118.92 (16)C13—C12—H12120.6
C2—C3—H3120.5C11—C12—H12120.6
C4—C3—H3120.5C12—C13—C14119.75 (14)
C3—C4—C5119.45 (16)C12—C13—H13120.1
C3—C4—C7136.90 (17)C14—C13—H13120.1
C5—C4—C7103.63 (16)C15—C14—C13124.32 (15)
N3—C5—C6130.81 (13)C15—C14—N6117.30 (15)
N3—C5—C4106.64 (13)C13—C14—N6118.38 (14)
C6—C5—C4122.54 (15)C14—C15—C16114.97 (13)
C1—C6—C5115.31 (14)C14—C15—H15122.5
C1—C6—H6122.3C16—C15—H15122.5
C5—C6—H6122.3N4—C16—C15131.16 (12)
N2—C7—C4112.36 (15)N4—C16—C11106.28 (12)
N2—C7—H7123.8C15—C16—C11122.54 (13)
C7—N2—N3—C51.38 (17)C5—N3—C8—C987.72 (18)
C7—N2—N3—C8169.77 (14)N5—N4—C9—C868.45 (17)
C16—N4—N5—C100.40 (17)C16—N4—C9—C8106.61 (16)
C9—N4—N5—C10176.31 (14)N3—C8—C9—N465.19 (17)
O2—N1—C1—C6176.34 (16)N4—N5—C10—C110.10 (18)
O1—N1—C1—C65.4 (2)N5—C10—C11—C12177.90 (17)
O2—N1—C1—C25.0 (2)N5—C10—C11—C160.21 (18)
O1—N1—C1—C2173.22 (15)C16—C11—C12—C130.6 (2)
C6—C1—C2—C32.2 (3)C10—C11—C12—C13177.33 (17)
N1—C1—C2—C3176.39 (16)C11—C12—C13—C141.3 (2)
C1—C2—C3—C41.7 (3)C12—C13—C14—C150.8 (2)
C2—C3—C4—C50.6 (3)C12—C13—C14—N6179.97 (14)
C2—C3—C4—C7178.7 (2)O3—N6—C14—C157.5 (2)
N2—N3—C5—C6179.39 (14)O4—N6—C14—C15172.00 (16)
C8—N3—C5—C613.6 (2)O3—N6—C14—C13173.18 (16)
N2—N3—C5—C40.72 (16)O4—N6—C14—C137.3 (2)
C8—N3—C5—C4167.77 (13)C13—C14—C15—C160.6 (2)
C3—C4—C5—N3178.52 (15)N6—C14—C15—C16178.62 (12)
C7—C4—C5—N30.18 (17)N5—N4—C16—C15179.32 (14)
C3—C4—C5—C62.7 (2)C9—N4—C16—C155.3 (3)
C7—C4—C5—C6178.62 (14)N5—N4—C16—C110.53 (15)
C2—C1—C6—C50.2 (2)C9—N4—C16—C11175.88 (14)
N1—C1—C6—C5178.41 (12)C14—C15—C16—N4177.23 (14)
N3—C5—C6—C1179.27 (14)C14—C15—C16—C111.4 (2)
C4—C5—C6—C12.2 (2)C12—C11—C16—N4178.06 (13)
N3—N2—C7—C41.5 (2)C10—C11—C16—N40.43 (15)
C3—C4—C7—N2177.3 (2)C12—C11—C16—C150.9 (2)
C5—C4—C7—N21.1 (2)C10—C11—C16—C15179.35 (13)
N2—N3—C8—C978.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N5i0.932.483.344 (2)154
C15—H15···O1i0.932.473.401 (2)179
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N5i0.932.483.344 (2)154.4
C15—H15···O1i0.932.473.401 (2)178.7
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAli, N. A. S., Zakir, S., Patel, M. & Farooqui, M. (2012). Eur. J. Med. Chem. 50, 39–43.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Rakib, E. M., Spinelli, D., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1410.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKouakou, A., Rakib, E. M., Spinelli, D., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1603–o1604.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, F.-Y., Lien, J.-C., Huang, L.-J., Huang, T.-M., Tsai, S.-C., Teng, C.-M., Wu, C.-C., Cheng, F.-C. & Kuo, S.-C. (2001). J. Med. Chem. 44, 3746–3749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, K. G., Robichaud, A. J., Greenfield, A. A., Lo, J. R., Grosanu, C., Mattes, J. F., Cai, Y., Zhang, G. M., Zhang, J. Y., Kowal, D. M., Smith, D. L., Di, L., Kerns, E. H., Schechter, L. E. & Comery, T. A. (2011). Bioorg. Med. Chem. 19, 650–662.  Web of Science CrossRef PubMed Google Scholar
First citationPlescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). ARKIVOC, x, 163–177.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds