organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o433-o434

4-Phenyl-1,2,4-tri­aza­spiro­[4.4]non-1-ene-3-thione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 6 March 2014; accepted 10 March 2014; online 15 March 2014)

In the title compound, C12H13N3S, the 4,5-di­hydro-3H-1,2,4-triazole system is nearly planar [maximum deviation = 0.014 (2) Å], while the cyclo­pentane ring adopts a half-chair conformation. The dihedral angle between the mean plane of the 4,5-di­hydro-3H-1,2,4-triazole-3-thione ring and the phenyl ring is 85.49 (14)°, with the S atom 0.046 (1) Å out of the former plane. The crystal structure is stabilized only by van der Waals inter­actions. The investigated crystal was found to be a non-merohedral two-component twin by a 180° rotation about c*, with a refined value of the minor twin fraction of 0.12203 (18).

Related literature

For wide-spectrum medicinal applications of spiro compounds incorporating heterocyclic substructures, see: Sar et al. (2006[Sar, S., Blunt, J. & Munro, M. (2006). Org. Lett. 8, 2059-2069.]); Park et al. (2007[Park, H. B., Jo, N. H., Hong, J. H., Choi, J. H., Cho, J.-H., Yoo, K. H. & Oh, C.-H. (2007). Arch. Pharm. 340, 530-537.]); Nakao et al. (2008[Nakao, K., Ikeda, K., Kurokawa, T., Togashi, Y., Umeuchi, H., Honda, T., Okano, K. & Mochizuki, H. (2008). Nihon Shinkei Seishin Yakurigaku Zasshi, 28, 75-83.]); Obniska & Kamiński (2006[Obniska, J. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101-108.]); Kamiński et al. (2008[Kamiński, K., Obniska, J. & Dybała, M. (2008). Eur. J. Med. Chem. 43, 53-61.]); Obniska et al. (2006[Obniska, J., Kamiński, K. & Tatarczynska, E. (2006). Pharmacol. Rep. 58, 207-214.]); Chin et al. (2008[Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 3, 390-395.]); Wang et al. (2007[Wang, W.-L., Zhu, T.-J., Tao, H.-W., Lu, Z.-Y., Fang, Y.-C., Gu, Q.-Q. & Zhu, W.-M. (2007). Chem. Biodivers. 4, 2913-2919.]); Pawar et al. (2009[Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97-107.]); Thadhaney et al. (2010[Thadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368-373.]); (Chande et al., 2005[Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Shimakawa et al. (2003[Shimakawa, S., Yoshida, Y. & Niki, E. (2003). Lipids, 38, 225-231.]); Sarma et al. (2010[Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364-5374.]). For industrial uses of heterocyclic spiro compounds, see: Rongbao et al. (2009[Rongbao, W., Yang, L. & Ya, L. (2009). Chin. J. Org. Chem. 12, 476-487.]); Hu et al. (2006[Hu, H., Guo, H., Li, E., Liu, X., Zhou, Y. & Che, Y. (2006). J. Nat. Prod. 69, 1672-1675.]); Méhes et al. (2012[Méhes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. (2012). Angew. Chem. Int. Ed. 51, 11311-11315.]); Billah et al. (2008[Billah, S. M. R., Christie, R. M. & Morgan, K. M. (2008). Coloration Technol. 124, 229-233.]). For the crystal structure of a similar compound, see: Akkurt et al. (2013[Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1259.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the indexing program for twinned crystals, see: Sheldrick (2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N3S

  • Mr = 231.32

  • Monoclinic, C 2/c

  • a = 11.4780 (12) Å

  • b = 12.0452 (12) Å

  • c = 17.0439 (17) Å

  • β = 101.3060 (14)°

  • V = 2310.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) Tmin = 0.96, Tmax = 0.97

  • 29725 measured reflections

  • 29725 independent reflections

  • 21519 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.168

  • S = 1.05

  • 29725 reflections

  • 146 parameters

  • 44 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterocyclic spirocompounds are an important class of chemicals due to their great applications in medicinal and industrial fields. Beside the wide spectrum of their biological activities such as antibacterial agents (Sar et al., 2006; Park et al., 2007), anti-dermatitis agents (Nakao et al., 2008), anticonvulsant agents (Obniska et al., 2006; Kamiński et al., 2008; Obniska et al., 2006), anticancer agents (Chin et al., 2008; Wang et al., 2007), antimicrobial agents (Pawar et al., 2009; Thadhaney et al., 2010), anti-tuberculosis agents (Chande et al., 2005), and recently as anti-oxidants (Shimakawa et al., 2003; Sarma et al., 2010), they act also as pesticides (Rongbao et al., 2009), antifungal agents (Hu et al., 2006), electroluminescent devices (Méhes et al., 2012) and laser dyes (Billah et al., 2008). We were inspired by these findings to synthesize the title compound as part of our on-going study on synthesis and biological activity of spirocompound-based triazole derivatives.

The five-membered cyclopentane ring (C2–C6) of the title compound (I, Fig. 1), adopts a half-chair conformation with the puckering parameters (Cremer & Pople, 1975) of Q(2) = 0.250 (3) Å and ϕ(2) = 191.9 (9)°. The dihedral angle between the mean plane of the 4,5-dihydro-3H-1,2,4-triazole-3-thione ring (N1–N3/C1/C2) and the phenyl ring (C7–C12) is 85.49 (14)° with the S1 atom 0.046 (1) Å out of the former plane.

All bond lengths and bond angles in (I) are comparable with those for the similar compound "4-Phenyl-1,2,4-triazaspiro[4.5]dec-1-ene-3-thione" that we have reported previously (Akkurt et al., 2013). The crystal structure is stabilized only by van der Waals interactions.

Related literature top

For wide-spectrum medicinal applications of spiro compounds incorporating heterocyclic substructures, see: Sar et al. (2006); Park et al. (2007); Nakao et al. (2008); Obniska & Kamiński (2006); Kamiński et al. (2008); Obniska et al. (2006); Chin et al. (2008); Wang et al. (2007); Pawar et al. (2009); Thadhaney et al. (2010); (Chande et al., 2005); Shimakawa et al. (2003); Sarma et al. (2010). For industrial uses of heterocyclic spiro compounds, see: Rongbao et al. (2009); Hu et al. (2006); Méhes et al. (2012); Billah et al. (2008). For the crystal structure of a similar compound, see: Akkurt et al. (2013). For ring-puckering parameters, see: Cremer & Pople (1975). For the indexing program for twinned crystals, see: Sheldrick (2008a).

Experimental top

The title compound was prepared according to our previous reported method (Akkurt et al. 2013). Orange block crystals suitable for X-ray diffraction were obtained from ethylacetate solution of I at room temperature (m.p. 455 – 457 K).

Refinement top

The crystal used proved to be twinned by a 180° rotation about c* (CELL_NOW, Sheldrick, 2008a) and the final structure was refined as a 2-component twin with a refined value of the minor twin fraction of 0.12203 (18). All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.85 Å, N—H = 0.88 Å, C—H = 0.95 Å and 0.98 Å, with Uiso(H) = 1.5 Uiso(C) for methyl H atoms and Uiso(H) = 1.2 Uiso(C,N,O) for other H atoms. Restraints (DELU instructions in SHELXL-97) were used to reduce the components of the anisotropic displacement parameters of all atoms along the chemical bonds.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 30% displacement ellipsoids.
4-Phenyl-1,2,4-triazaspiro[4.4]non-1-ene-3-thione top
Crystal data top
C12H13N3SF(000) = 976
Mr = 231.32Dx = 1.330 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8834 reflections
a = 11.4780 (12) Åθ = 2.4–29.1°
b = 12.0452 (12) ŵ = 0.26 mm1
c = 17.0439 (17) ÅT = 150 K
β = 101.3060 (14)°Block, orange
V = 2310.7 (4) Å30.15 × 0.13 × 0.12 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
29725 independent reflections
Radiation source: fine-focus sealed tube21519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.3660 pixels mm-1θmax = 29.2°, θmin = 2.4°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1616
Tmin = 0.96, Tmax = 0.97l = 2323
29725 measured reflections
Refinement top
Refinement on F244 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0674P)2 + 1.7625P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
29725 reflectionsΔρmax = 0.62 e Å3
146 parametersΔρmin = 0.65 e Å3
Crystal data top
C12H13N3SV = 2310.7 (4) Å3
Mr = 231.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.4780 (12) ŵ = 0.26 mm1
b = 12.0452 (12) ÅT = 150 K
c = 17.0439 (17) Å0.15 × 0.13 × 0.12 mm
β = 101.3060 (14)°
Data collection top
Bruker SMART APEX CCD
diffractometer
29725 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
21519 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.97Rint = 0.050
29725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05944 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.05Δρmax = 0.62 e Å3
29725 reflectionsΔρmin = 0.65 e Å3
146 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33502 (7)0.94435 (6)1.03564 (4)0.0358 (2)
N10.42067 (18)0.80829 (17)0.93431 (12)0.0221 (6)
N20.5566 (2)0.7153 (2)1.02559 (14)0.0355 (8)
N30.5050 (2)0.7828 (2)1.06315 (14)0.0364 (8)
C10.4168 (2)0.8470 (2)1.00689 (15)0.0259 (8)
C20.5122 (2)0.7230 (2)0.93878 (15)0.0252 (7)
C30.4680 (2)0.6091 (2)0.90472 (18)0.0321 (9)
C40.5715 (3)0.5557 (3)0.8784 (3)0.0627 (14)
C50.6575 (4)0.6450 (3)0.8686 (3)0.0695 (16)
C60.6150 (2)0.7526 (2)0.89633 (17)0.0321 (9)
C70.3486 (2)0.8458 (2)0.86065 (14)0.0214 (7)
C80.2459 (2)0.7876 (2)0.82843 (16)0.0289 (8)
C90.1807 (3)0.8195 (3)0.75431 (17)0.0374 (9)
C100.2175 (3)0.9075 (3)0.71427 (16)0.0389 (10)
C110.3174 (3)0.9671 (2)0.74808 (16)0.0358 (9)
C120.3844 (2)0.9370 (2)0.82186 (16)0.0280 (8)
H3A0.441300.563500.946200.0380*
H3B0.400800.617900.858900.0380*
H4A0.609700.501300.918900.0750*
H4B0.544800.516300.827100.0750*
H5A0.664000.650900.811600.0840*
H5B0.737100.627000.900300.0840*
H6A0.586900.802400.850300.0380*
H6B0.679800.790200.933800.0380*
H80.220500.727100.856600.0350*
H90.110600.780200.731300.0450*
H100.174000.927500.662900.0470*
H110.340401.029500.720600.0430*
H120.453300.977900.845200.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0424 (4)0.0413 (4)0.0254 (4)0.0049 (3)0.0109 (3)0.0062 (3)
N10.0225 (10)0.0259 (11)0.0175 (10)0.0026 (9)0.0027 (8)0.0011 (8)
N20.0318 (13)0.0438 (14)0.0288 (13)0.0038 (11)0.0009 (10)0.0069 (11)
N30.0341 (13)0.0498 (15)0.0227 (12)0.0028 (12)0.0006 (10)0.0044 (11)
C10.0259 (13)0.0331 (14)0.0181 (12)0.0035 (11)0.0030 (10)0.0014 (10)
C20.0227 (12)0.0273 (13)0.0252 (13)0.0043 (10)0.0040 (11)0.0036 (10)
C30.0322 (15)0.0253 (14)0.0392 (16)0.0011 (11)0.0082 (13)0.0029 (12)
C40.042 (2)0.050 (2)0.101 (3)0.0047 (16)0.026 (2)0.026 (2)
C50.070 (3)0.049 (2)0.107 (3)0.008 (2)0.060 (3)0.016 (2)
C60.0243 (13)0.0354 (16)0.0385 (16)0.0022 (11)0.0110 (12)0.0045 (12)
C70.0243 (12)0.0245 (13)0.0151 (11)0.0056 (10)0.0030 (9)0.0012 (9)
C80.0264 (13)0.0304 (14)0.0291 (14)0.0015 (11)0.0038 (11)0.0004 (11)
C90.0290 (15)0.0458 (18)0.0329 (16)0.0075 (13)0.0051 (12)0.0081 (13)
C100.0472 (18)0.0466 (18)0.0201 (13)0.0245 (15)0.0004 (13)0.0006 (12)
C110.0524 (18)0.0318 (16)0.0253 (14)0.0142 (14)0.0130 (13)0.0076 (11)
C120.0329 (14)0.0266 (14)0.0252 (14)0.0027 (11)0.0075 (11)0.0001 (10)
Geometric parameters (Å, º) top
S1—C11.636 (3)C10—C111.380 (5)
N1—C11.331 (3)C11—C121.387 (4)
N1—C21.461 (3)C3—H3A0.9900
N1—C71.434 (3)C3—H3B0.9900
N2—N31.253 (3)C4—H4A0.9900
N2—C21.470 (3)C4—H4B0.9900
N3—C11.470 (3)C5—H5A0.9900
C2—C31.537 (3)C5—H5B0.9900
C2—C61.542 (3)C6—H6A0.9900
C3—C41.495 (4)C6—H6B0.9900
C4—C51.491 (6)C8—H80.9500
C5—C61.494 (5)C9—H90.9500
C7—C81.389 (3)C10—H100.9500
C7—C121.385 (3)C11—H110.9500
C8—C91.390 (4)C12—H120.9500
C9—C101.371 (5)
C1—N1—C2110.7 (2)C4—C3—H3A111.00
C1—N1—C7125.8 (2)C4—C3—H3B111.00
C2—N1—C7123.6 (2)H3A—C3—H3B109.00
N3—N2—C2111.6 (2)C3—C4—H4A110.00
N2—N3—C1110.0 (2)C3—C4—H4B110.00
S1—C1—N1130.9 (2)C5—C4—H4A110.00
S1—C1—N3122.94 (19)C5—C4—H4B110.00
N1—C1—N3106.1 (2)H4A—C4—H4B108.00
N1—C2—N2101.58 (19)C4—C5—H5A110.00
N1—C2—C3115.3 (2)C4—C5—H5B110.00
N1—C2—C6114.9 (2)C6—C5—H5A110.00
N2—C2—C3110.3 (2)C6—C5—H5B110.00
N2—C2—C6109.9 (2)H5A—C5—H5B108.00
C3—C2—C6104.8 (2)C2—C6—H6A111.00
C2—C3—C4105.9 (2)C2—C6—H6B111.00
C3—C4—C5107.8 (3)C5—C6—H6A111.00
C4—C5—C6109.0 (3)C5—C6—H6B111.00
C2—C6—C5106.0 (2)H6A—C6—H6B109.00
N1—C7—C8119.1 (2)C7—C8—H8121.00
N1—C7—C12119.6 (2)C9—C8—H8121.00
C8—C7—C12121.3 (2)C8—C9—H9120.00
C7—C8—C9118.9 (2)C10—C9—H9120.00
C8—C9—C10120.2 (3)C9—C10—H10120.00
C9—C10—C11120.4 (3)C11—C10—H10120.00
C10—C11—C12120.7 (2)C10—C11—H11120.00
C7—C12—C11118.4 (2)C12—C11—H11120.00
C2—C3—H3A111.00C7—C12—H12121.00
C2—C3—H3B111.00C11—C12—H12121.00
C2—N1—C1—S1177.9 (2)N2—N3—C1—N11.5 (3)
C2—N1—C1—N32.4 (3)N1—C2—C3—C4153.1 (3)
C7—N1—C1—S10.4 (4)N2—C2—C3—C492.6 (3)
C7—N1—C1—N3179.3 (2)C6—C2—C3—C425.7 (3)
C1—N1—C2—N22.4 (3)N1—C2—C6—C5149.9 (3)
C1—N1—C2—C3121.7 (2)N2—C2—C6—C596.3 (3)
C1—N1—C2—C6116.2 (2)C3—C2—C6—C522.2 (3)
C7—N1—C2—N2179.3 (2)C2—C3—C4—C519.6 (4)
C7—N1—C2—C360.0 (3)C3—C4—C5—C65.6 (5)
C7—N1—C2—C662.1 (3)C4—C5—C6—C210.6 (4)
C1—N1—C7—C896.5 (3)N1—C7—C8—C9175.6 (2)
C1—N1—C7—C1285.5 (3)C12—C7—C8—C92.5 (4)
C2—N1—C7—C885.5 (3)N1—C7—C12—C11175.7 (2)
C2—N1—C7—C1292.6 (3)C8—C7—C12—C112.3 (4)
C2—N2—N3—C10.1 (3)C7—C8—C9—C100.4 (4)
N3—N2—C2—N11.5 (3)C8—C9—C10—C111.9 (5)
N3—N2—C2—C3124.2 (2)C9—C10—C11—C122.1 (5)
N3—N2—C2—C6120.7 (2)C10—C11—C12—C70.0 (4)
N2—N3—C1—S1178.8 (2)

Experimental details

Crystal data
Chemical formulaC12H13N3S
Mr231.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)11.4780 (12), 12.0452 (12), 17.0439 (17)
β (°) 101.3060 (14)
V3)2310.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2009)
Tmin, Tmax0.96, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
29725, 29725, 21519
Rint0.050
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.168, 1.05
No. of reflections29725
No. of parameters146
No. of restraints44
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.65

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXTL (Sheldrick, 2008b), SHELXL2014 (Sheldrick, 2008b), DIAMOND (Brandenburg & Putz, 2012) and ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.

References

First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1259.  CSD CrossRef IUCr Journals Google Scholar
First citationBillah, S. M. R., Christie, R. M. & Morgan, K. M. (2008). Coloration Technol. 124, 229–233.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 3, 390–395.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, H., Guo, H., Li, E., Liu, X., Zhou, Y. & Che, Y. (2006). J. Nat. Prod. 69, 1672–1675.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKamiński, K., Obniska, J. & Dybała, M. (2008). Eur. J. Med. Chem. 43, 53–61.  Web of Science PubMed Google Scholar
First citationMéhes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. (2012). Angew. Chem. Int. Ed. 51, 11311–11315.  Google Scholar
First citationNakao, K., Ikeda, K., Kurokawa, T., Togashi, Y., Umeuchi, H., Honda, T., Okano, K. & Mochizuki, H. (2008). Nihon Shinkei Seishin Yakurigaku Zasshi, 28, 75–83.  PubMed CAS Google Scholar
First citationObniska, J. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108.  PubMed CAS Google Scholar
First citationObniska, J., Kamiński, K. & Tatarczynska, E. (2006). Pharmacol. Rep. 58, 207–214.  Web of Science PubMed CAS Google Scholar
First citationPark, H. B., Jo, N. H., Hong, J. H., Choi, J. H., Cho, J.-H., Yoo, K. H. & Oh, C.-H. (2007). Arch. Pharm. 340, 530–537.  Web of Science CrossRef CAS Google Scholar
First citationPawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107.  CrossRef Google Scholar
First citationRongbao, W., Yang, L. & Ya, L. (2009). Chin. J. Org. Chem. 12, 476–487.  Google Scholar
First citationSar, S., Blunt, J. & Munro, M. (2006). Org. Lett. 8, 2059–2069.  Web of Science PubMed Google Scholar
First citationSarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationShimakawa, S., Yoshida, Y. & Niki, E. (2003). Lipids, 38, 225–231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368–373.  Google Scholar
First citationWang, W.-L., Zhu, T.-J., Tao, H.-W., Lu, Z.-Y., Fang, Y.-C., Gu, Q.-Q. & Zhu, W.-M. (2007). Chem. Biodivers. 4, 2913–2919.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o433-o434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds