organic compounds
4-Phenyl-1,2,4-triazaspiro[4.4]non-1-ene-3-thione
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C12H13N3S, the 4,5-dihydro-3H-1,2,4-triazole system is nearly planar [maximum deviation = 0.014 (2) Å], while the cyclopentane ring adopts a half-chair conformation. The dihedral angle between the mean plane of the 4,5-dihydro-3H-1,2,4-triazole-3-thione ring and the phenyl ring is 85.49 (14)°, with the S atom 0.046 (1) Å out of the former plane. The is stabilized only by van der Waals interactions. The investigated crystal was found to be a non-merohedral two-component twin by a 180° rotation about c*, with a refined value of the minor twin fraction of 0.12203 (18).
CCDC reference: 990878
Related literature
For wide-spectrum medicinal applications of et al. (2006); Park et al. (2007); Nakao et al. (2008); Obniska & Kamiński (2006); Kamiński et al. (2008); Obniska et al. (2006); Chin et al. (2008); Wang et al. (2007); Pawar et al. (2009); Thadhaney et al. (2010); (Chande et al., 2005); Shimakawa et al. (2003); Sarma et al. (2010). For industrial uses of heterocyclic see: Rongbao et al. (2009); Hu et al. (2006); Méhes et al. (2012); Billah et al. (2008). For the of a similar compound, see: Akkurt et al. (2013). For ring-puckering parameters, see: Cremer & Pople (1975). For the indexing program for twinned crystals, see: Sheldrick (2008a).
incorporating heterocyclic substructures, see: SarExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 990878
10.1107/S1600536814005418/rz5108sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814005418/rz5108Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814005418/rz5108Isup3.cml
The title compound was prepared according to our previous reported method (Akkurt et al. 2013). Orange block crystals suitable for X-ray diffraction were obtained from ethylacetate solution of I at room temperature (m.p. 455 – 457 K).
The crystal used proved to be twinned by a 180° rotation about c* (CELL_NOW, Sheldrick, 2008a) and the final structure was refined as a 2-component twin with a refined value of the minor twin fraction of 0.12203 (18). All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.85 Å, N—H = 0.88 Å, C—H = 0.95 Å and 0.98 Å, with Uiso(H) = 1.5 Uiso(C) for methyl H atoms and Uiso(H) = 1.2 Uiso(C,N,O) for other H atoms. Restraints (DELU instructions in SHELXL-97) were used to reduce the components of the anisotropic displacement parameters of all atoms along the chemical bonds.
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).C12H13N3S | F(000) = 976 |
Mr = 231.32 | Dx = 1.330 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8834 reflections |
a = 11.4780 (12) Å | θ = 2.4–29.1° |
b = 12.0452 (12) Å | µ = 0.26 mm−1 |
c = 17.0439 (17) Å | T = 150 K |
β = 101.3060 (14)° | Block, orange |
V = 2310.7 (4) Å3 | 0.15 × 0.13 × 0.12 mm |
Z = 8 |
Bruker SMART APEX CCD diffractometer | 29725 independent reflections |
Radiation source: fine-focus sealed tube | 21519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 29.2°, θmin = 2.4° |
ϕ and ω scans | h = −15→15 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = −16→16 |
Tmin = 0.96, Tmax = 0.97 | l = −23→23 |
29725 measured reflections |
Refinement on F2 | 44 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.168 | w = 1/[σ2(Fo2) + (0.0674P)2 + 1.7625P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
29725 reflections | Δρmax = 0.62 e Å−3 |
146 parameters | Δρmin = −0.65 e Å−3 |
C12H13N3S | V = 2310.7 (4) Å3 |
Mr = 231.32 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.4780 (12) Å | µ = 0.26 mm−1 |
b = 12.0452 (12) Å | T = 150 K |
c = 17.0439 (17) Å | 0.15 × 0.13 × 0.12 mm |
β = 101.3060 (14)° |
Bruker SMART APEX CCD diffractometer | 29725 independent reflections |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | 21519 reflections with I > 2σ(I) |
Tmin = 0.96, Tmax = 0.97 | Rint = 0.050 |
29725 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 44 restraints |
wR(F2) = 0.168 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.62 e Å−3 |
29725 reflections | Δρmin = −0.65 e Å−3 |
146 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.33502 (7) | 0.94435 (6) | 1.03564 (4) | 0.0358 (2) | |
N1 | 0.42067 (18) | 0.80829 (17) | 0.93431 (12) | 0.0221 (6) | |
N2 | 0.5566 (2) | 0.7153 (2) | 1.02559 (14) | 0.0355 (8) | |
N3 | 0.5050 (2) | 0.7828 (2) | 1.06315 (14) | 0.0364 (8) | |
C1 | 0.4168 (2) | 0.8470 (2) | 1.00689 (15) | 0.0259 (8) | |
C2 | 0.5122 (2) | 0.7230 (2) | 0.93878 (15) | 0.0252 (7) | |
C3 | 0.4680 (2) | 0.6091 (2) | 0.90472 (18) | 0.0321 (9) | |
C4 | 0.5715 (3) | 0.5557 (3) | 0.8784 (3) | 0.0627 (14) | |
C5 | 0.6575 (4) | 0.6450 (3) | 0.8686 (3) | 0.0695 (16) | |
C6 | 0.6150 (2) | 0.7526 (2) | 0.89633 (17) | 0.0321 (9) | |
C7 | 0.3486 (2) | 0.8458 (2) | 0.86065 (14) | 0.0214 (7) | |
C8 | 0.2459 (2) | 0.7876 (2) | 0.82843 (16) | 0.0289 (8) | |
C9 | 0.1807 (3) | 0.8195 (3) | 0.75431 (17) | 0.0374 (9) | |
C10 | 0.2175 (3) | 0.9075 (3) | 0.71427 (16) | 0.0389 (10) | |
C11 | 0.3174 (3) | 0.9671 (2) | 0.74808 (16) | 0.0358 (9) | |
C12 | 0.3844 (2) | 0.9370 (2) | 0.82186 (16) | 0.0280 (8) | |
H3A | 0.44130 | 0.56350 | 0.94620 | 0.0380* | |
H3B | 0.40080 | 0.61790 | 0.85890 | 0.0380* | |
H4A | 0.60970 | 0.50130 | 0.91890 | 0.0750* | |
H4B | 0.54480 | 0.51630 | 0.82710 | 0.0750* | |
H5A | 0.66400 | 0.65090 | 0.81160 | 0.0840* | |
H5B | 0.73710 | 0.62700 | 0.90030 | 0.0840* | |
H6A | 0.58690 | 0.80240 | 0.85030 | 0.0380* | |
H6B | 0.67980 | 0.79020 | 0.93380 | 0.0380* | |
H8 | 0.22050 | 0.72710 | 0.85660 | 0.0350* | |
H9 | 0.11060 | 0.78020 | 0.73130 | 0.0450* | |
H10 | 0.17400 | 0.92750 | 0.66290 | 0.0470* | |
H11 | 0.34040 | 1.02950 | 0.72060 | 0.0430* | |
H12 | 0.45330 | 0.97790 | 0.84520 | 0.0340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0424 (4) | 0.0413 (4) | 0.0254 (4) | 0.0049 (3) | 0.0109 (3) | −0.0062 (3) |
N1 | 0.0225 (10) | 0.0259 (11) | 0.0175 (10) | 0.0026 (9) | 0.0027 (8) | 0.0011 (8) |
N2 | 0.0318 (13) | 0.0438 (14) | 0.0288 (13) | 0.0038 (11) | 0.0009 (10) | 0.0069 (11) |
N3 | 0.0341 (13) | 0.0498 (15) | 0.0227 (12) | 0.0028 (12) | −0.0006 (10) | 0.0044 (11) |
C1 | 0.0259 (13) | 0.0331 (14) | 0.0181 (12) | −0.0035 (11) | 0.0030 (10) | 0.0014 (10) |
C2 | 0.0227 (12) | 0.0273 (13) | 0.0252 (13) | 0.0043 (10) | 0.0040 (11) | 0.0036 (10) |
C3 | 0.0322 (15) | 0.0253 (14) | 0.0392 (16) | 0.0011 (11) | 0.0082 (13) | 0.0029 (12) |
C4 | 0.042 (2) | 0.050 (2) | 0.101 (3) | −0.0047 (16) | 0.026 (2) | −0.026 (2) |
C5 | 0.070 (3) | 0.049 (2) | 0.107 (3) | −0.008 (2) | 0.060 (3) | −0.016 (2) |
C6 | 0.0243 (13) | 0.0354 (16) | 0.0385 (16) | 0.0022 (11) | 0.0110 (12) | 0.0045 (12) |
C7 | 0.0243 (12) | 0.0245 (13) | 0.0151 (11) | 0.0056 (10) | 0.0030 (9) | −0.0012 (9) |
C8 | 0.0264 (13) | 0.0304 (14) | 0.0291 (14) | 0.0015 (11) | 0.0038 (11) | 0.0004 (11) |
C9 | 0.0290 (15) | 0.0458 (18) | 0.0329 (16) | 0.0075 (13) | −0.0051 (12) | −0.0081 (13) |
C10 | 0.0472 (18) | 0.0466 (18) | 0.0201 (13) | 0.0245 (15) | −0.0004 (13) | −0.0006 (12) |
C11 | 0.0524 (18) | 0.0318 (16) | 0.0253 (14) | 0.0142 (14) | 0.0130 (13) | 0.0076 (11) |
C12 | 0.0329 (14) | 0.0266 (14) | 0.0252 (14) | 0.0027 (11) | 0.0075 (11) | −0.0001 (10) |
S1—C1 | 1.636 (3) | C10—C11 | 1.380 (5) |
N1—C1 | 1.331 (3) | C11—C12 | 1.387 (4) |
N1—C2 | 1.461 (3) | C3—H3A | 0.9900 |
N1—C7 | 1.434 (3) | C3—H3B | 0.9900 |
N2—N3 | 1.253 (3) | C4—H4A | 0.9900 |
N2—C2 | 1.470 (3) | C4—H4B | 0.9900 |
N3—C1 | 1.470 (3) | C5—H5A | 0.9900 |
C2—C3 | 1.537 (3) | C5—H5B | 0.9900 |
C2—C6 | 1.542 (3) | C6—H6A | 0.9900 |
C3—C4 | 1.495 (4) | C6—H6B | 0.9900 |
C4—C5 | 1.491 (6) | C8—H8 | 0.9500 |
C5—C6 | 1.494 (5) | C9—H9 | 0.9500 |
C7—C8 | 1.389 (3) | C10—H10 | 0.9500 |
C7—C12 | 1.385 (3) | C11—H11 | 0.9500 |
C8—C9 | 1.390 (4) | C12—H12 | 0.9500 |
C9—C10 | 1.371 (5) | ||
C1—N1—C2 | 110.7 (2) | C4—C3—H3A | 111.00 |
C1—N1—C7 | 125.8 (2) | C4—C3—H3B | 111.00 |
C2—N1—C7 | 123.6 (2) | H3A—C3—H3B | 109.00 |
N3—N2—C2 | 111.6 (2) | C3—C4—H4A | 110.00 |
N2—N3—C1 | 110.0 (2) | C3—C4—H4B | 110.00 |
S1—C1—N1 | 130.9 (2) | C5—C4—H4A | 110.00 |
S1—C1—N3 | 122.94 (19) | C5—C4—H4B | 110.00 |
N1—C1—N3 | 106.1 (2) | H4A—C4—H4B | 108.00 |
N1—C2—N2 | 101.58 (19) | C4—C5—H5A | 110.00 |
N1—C2—C3 | 115.3 (2) | C4—C5—H5B | 110.00 |
N1—C2—C6 | 114.9 (2) | C6—C5—H5A | 110.00 |
N2—C2—C3 | 110.3 (2) | C6—C5—H5B | 110.00 |
N2—C2—C6 | 109.9 (2) | H5A—C5—H5B | 108.00 |
C3—C2—C6 | 104.8 (2) | C2—C6—H6A | 111.00 |
C2—C3—C4 | 105.9 (2) | C2—C6—H6B | 111.00 |
C3—C4—C5 | 107.8 (3) | C5—C6—H6A | 111.00 |
C4—C5—C6 | 109.0 (3) | C5—C6—H6B | 111.00 |
C2—C6—C5 | 106.0 (2) | H6A—C6—H6B | 109.00 |
N1—C7—C8 | 119.1 (2) | C7—C8—H8 | 121.00 |
N1—C7—C12 | 119.6 (2) | C9—C8—H8 | 121.00 |
C8—C7—C12 | 121.3 (2) | C8—C9—H9 | 120.00 |
C7—C8—C9 | 118.9 (2) | C10—C9—H9 | 120.00 |
C8—C9—C10 | 120.2 (3) | C9—C10—H10 | 120.00 |
C9—C10—C11 | 120.4 (3) | C11—C10—H10 | 120.00 |
C10—C11—C12 | 120.7 (2) | C10—C11—H11 | 120.00 |
C7—C12—C11 | 118.4 (2) | C12—C11—H11 | 120.00 |
C2—C3—H3A | 111.00 | C7—C12—H12 | 121.00 |
C2—C3—H3B | 111.00 | C11—C12—H12 | 121.00 |
C2—N1—C1—S1 | 177.9 (2) | N2—N3—C1—N1 | 1.5 (3) |
C2—N1—C1—N3 | −2.4 (3) | N1—C2—C3—C4 | 153.1 (3) |
C7—N1—C1—S1 | −0.4 (4) | N2—C2—C3—C4 | −92.6 (3) |
C7—N1—C1—N3 | 179.3 (2) | C6—C2—C3—C4 | 25.7 (3) |
C1—N1—C2—N2 | 2.4 (3) | N1—C2—C6—C5 | −149.9 (3) |
C1—N1—C2—C3 | 121.7 (2) | N2—C2—C6—C5 | 96.3 (3) |
C1—N1—C2—C6 | −116.2 (2) | C3—C2—C6—C5 | −22.2 (3) |
C7—N1—C2—N2 | −179.3 (2) | C2—C3—C4—C5 | −19.6 (4) |
C7—N1—C2—C3 | −60.0 (3) | C3—C4—C5—C6 | 5.6 (5) |
C7—N1—C2—C6 | 62.1 (3) | C4—C5—C6—C2 | 10.6 (4) |
C1—N1—C7—C8 | −96.5 (3) | N1—C7—C8—C9 | −175.6 (2) |
C1—N1—C7—C12 | 85.5 (3) | C12—C7—C8—C9 | 2.5 (4) |
C2—N1—C7—C8 | 85.5 (3) | N1—C7—C12—C11 | 175.7 (2) |
C2—N1—C7—C12 | −92.6 (3) | C8—C7—C12—C11 | −2.3 (4) |
C2—N2—N3—C1 | 0.1 (3) | C7—C8—C9—C10 | −0.4 (4) |
N3—N2—C2—N1 | −1.5 (3) | C8—C9—C10—C11 | −1.9 (5) |
N3—N2—C2—C3 | −124.2 (2) | C9—C10—C11—C12 | 2.1 (5) |
N3—N2—C2—C6 | 120.7 (2) | C10—C11—C12—C7 | 0.0 (4) |
N2—N3—C1—S1 | −178.8 (2) |
Experimental details
Crystal data | |
Chemical formula | C12H13N3S |
Mr | 231.32 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 11.4780 (12), 12.0452 (12), 17.0439 (17) |
β (°) | 101.3060 (14) |
V (Å3) | 2310.7 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.15 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (TWINABS; Sheldrick, 2009) |
Tmin, Tmax | 0.96, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29725, 29725, 21519 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.168, 1.05 |
No. of reflections | 29725 |
No. of parameters | 146 |
No. of restraints | 44 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.65 |
Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXTL (Sheldrick, 2008b), SHELXL2014 (Sheldrick, 2008b), DIAMOND (Brandenburg & Putz, 2012) and ORTEP-3 for Windows (Farrugia, 2012).
Acknowledgements
Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.
References
Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1259. CSD CrossRef IUCr Journals Google Scholar
Billah, S. M. R., Christie, R. M. & Morgan, K. M. (2008). Coloration Technol. 124, 229–233. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148. Web of Science CrossRef PubMed CAS Google Scholar
Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 3, 390–395. Web of Science CrossRef Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hu, H., Guo, H., Li, E., Liu, X., Zhou, Y. & Che, Y. (2006). J. Nat. Prod. 69, 1672–1675. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kamiński, K., Obniska, J. & Dybała, M. (2008). Eur. J. Med. Chem. 43, 53–61. Web of Science PubMed Google Scholar
Méhes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. (2012). Angew. Chem. Int. Ed. 51, 11311–11315. Google Scholar
Nakao, K., Ikeda, K., Kurokawa, T., Togashi, Y., Umeuchi, H., Honda, T., Okano, K. & Mochizuki, H. (2008). Nihon Shinkei Seishin Yakurigaku Zasshi, 28, 75–83. PubMed CAS Google Scholar
Obniska, J. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108. PubMed CAS Google Scholar
Obniska, J., Kamiński, K. & Tatarczynska, E. (2006). Pharmacol. Rep. 58, 207–214. Web of Science PubMed CAS Google Scholar
Park, H. B., Jo, N. H., Hong, J. H., Choi, J. H., Cho, J.-H., Yoo, K. H. & Oh, C.-H. (2007). Arch. Pharm. 340, 530–537. Web of Science CrossRef CAS Google Scholar
Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107. CrossRef Google Scholar
Rongbao, W., Yang, L. & Ya, L. (2009). Chin. J. Org. Chem. 12, 476–487. Google Scholar
Sar, S., Blunt, J. & Munro, M. (2006). Org. Lett. 8, 2059–2069. Web of Science PubMed Google Scholar
Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany. Google Scholar
Shimakawa, S., Yoshida, Y. & Niki, E. (2003). Lipids, 38, 225–231. Web of Science CrossRef PubMed CAS Google Scholar
Thadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368–373. Google Scholar
Wang, W.-L., Zhu, T.-J., Tao, H.-W., Lu, Z.-Y., Fang, Y.-C., Gu, Q.-Q. & Zhu, W.-M. (2007). Chem. Biodivers. 4, 2913–2919. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic spirocompounds are an important class of chemicals due to their great applications in medicinal and industrial fields. Beside the wide spectrum of their biological activities such as antibacterial agents (Sar et al., 2006; Park et al., 2007), anti-dermatitis agents (Nakao et al., 2008), anticonvulsant agents (Obniska et al., 2006; Kamiński et al., 2008; Obniska et al., 2006), anticancer agents (Chin et al., 2008; Wang et al., 2007), antimicrobial agents (Pawar et al., 2009; Thadhaney et al., 2010), anti-tuberculosis agents (Chande et al., 2005), and recently as anti-oxidants (Shimakawa et al., 2003; Sarma et al., 2010), they act also as pesticides (Rongbao et al., 2009), antifungal agents (Hu et al., 2006), electroluminescent devices (Méhes et al., 2012) and laser dyes (Billah et al., 2008). We were inspired by these findings to synthesize the title compound as part of our on-going study on synthesis and biological activity of spirocompound-based triazole derivatives.
The five-membered cyclopentane ring (C2–C6) of the title compound (I, Fig. 1), adopts a half-chair conformation with the puckering parameters (Cremer & Pople, 1975) of Q(2) = 0.250 (3) Å and ϕ(2) = 191.9 (9)°. The dihedral angle between the mean plane of the 4,5-dihydro-3H-1,2,4-triazole-3-thione ring (N1–N3/C1/C2) and the phenyl ring (C7–C12) is 85.49 (14)° with the S1 atom 0.046 (1) Å out of the former plane.
All bond lengths and bond angles in (I) are comparable with those for the similar compound "4-Phenyl-1,2,4-triazaspiro[4.5]dec-1-ene-3-thione" that we have reported previously (Akkurt et al., 2013). The crystal structure is stabilized only by van der Waals interactions.