organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o476-o477

{2-[(2-Hy­dr­oxy­benzyl­­idene)amino]-4,5,6,7-tetra­hydro-1-benzo­thio­phen-3-yl}(phen­yl)methanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 19 March 2014; accepted 20 March 2014; online 26 March 2014)

In the title compound, C22H19NO2S, the cyclo­hexene ring adopts a slightly distorted half-chair conformation. The dihedral angles between the mean planes of the thio­phene ring and the phenyl and 2-hy­droxy­phenyl rings are 70.4 (5) and 12.1 (9)°, respectively. The phenyl and 2-hy­droxy­phenyl rings are twisted with respect to one another by 81.0 (6)°. A short intra­molecular O—H⋯N hydrogen bond is observed. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into zigzag chains diagonally along [100] .

Related literature

For the importance of thio­phene derivatives, see: Molvi et al. (2007[Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049-1058.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem., 43, 1715-1720.]); Asthalatha et al. (2007[Asthalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719-728.]). For applications of 2-amino­thio­phene derivatives, see: Sabnis et al. (1999[Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem., 36, 333-345.]); Puterová et al. (2010[Puterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, i, 209-246.]); Cannito et al. (1990[Cannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635-639.]); Nikolakopoulos et al. (2006[Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358-2365.]); Lütjens et al. (2005[Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem., 46, 1870-1877.]). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun., 7, 83-90.]); Karia & Parsania (1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem., 11, 991-995.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119-122.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For a related structure, see: Kubicki et al. (2012[Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NO2S

  • Mr = 361.44

  • Monoclinic, P 21 /n

  • a = 9.26395 (15) Å

  • b = 14.2886 (2) Å

  • c = 13.6476 (2) Å

  • β = 96.7581 (15)°

  • V = 1793.97 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.73 mm−1

  • T = 173 K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.658, Tmax = 1.000

  • 11611 measured reflections

  • 3462 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.06

  • 3462 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.92 2.641 (2) 146
C18—H18⋯O1i 0.93 2.51 3.436 (2) 174
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiophene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, analgesic, antidepressant, antimicrobial and anticonvulsant activities (Molvi et al., 2007; Rai et al., 2008; Asthalatha et al. , 2007). 2-Aminothiophene derivatives have been used in a number of applications as pesticides, dyes and pharmaceuticals. Reviews of the synthesis and properties of these compounds have been reported (Sabnis et al. 1999; Puterová et al. 2010). Substituted 2-aminothiophenes are active as allosteric enhancers at the human A1 adenosine receptor (Cannito et al.,1990; Nikolakopoulos et al., 2006; Lütjens et al., 2005). Schiff base compounds are an important class of compounds both synthetically and biologically. These compounds also show biological activities including antibacterial, antifungal, anticancer and herbicidal activities (Desai et al., 2001; Karia & Parsania, 1999; Samadhiya & Halve, 2001; Singh & Dash, 1988). Furthermore, Schiff bases are utilized as starting materials in the synthesis of compounds of industrial (Aydogan et al., 2001) and biological interest such as β-lactams (Taggi et al., 2002). The crystal and molecular structures of two 2-aminothiphenes have been previously reported by our group (Kubicki et al., 2012). In continuation of our work on 2-aminothiophenes and Schiff bases, we report here the crystal structure of the title compound, (I), C22H19NO2S.

In the title compound, (I), the cyclohexene ring adopts a slightly distorted half-chair conformation (puckering parameters Q, θ, and ϕ = 0.459 (3)Å, 48.9 (2)° and 138.1 (4)°, respectively; Cremer & Pople, 1975) (Fig. 1). The dihedral angles between the mean planes of the thiophene and phenyl rings and the 2-hydroxyphenyl ring are 70.4 (5)° and 12.1 (9)°, respectively. The phenyl and the 2-hydroxyphenyl rings are twisted with respect to each other by 81.0 (6)°. Bond lengths are in normal ranges (Allen et al., 1987). A short intramolecular O2—H2···N1 hydrogen bond is observed. In the crystal, a single weak intermolecular C18–H18···O1 interaction links the molecules into zig-zag chains along [101] which influences the crystal packing (Fig. 2).

Related literature top

For the importance of thiophene derivatives, see: Molvi et al. (2007); Rai et al. (2008); Asthalatha et al. (2007). For applications of 2-aminothiophene derivatives, see: Sabnis et al. (1999); Puterová et al. (2010); Cannito et al. (1990); Nikolakopoulos et al. (2006); Lütjens et al. (2005). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001); Karia & Parsania (1999); Samadhiya & Halve (2001); Singh & Dash (1988); Aydogan et al. (2001); Taggi et al. (2002). For a related structure, see: Kubicki et al. (2012). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of (2-Amino-4,5,6,7-tetrahydro-benzo[b]thiophen-3-yl)- phenyl-methanone (200 mg, 0.79 mmol) in 10 ml of methanol an equimolar amount of 2-hydroxybenzaldehyde (97 mg, 0.79 mmol) was added dropwise with constant stirring. The mixture was refluxed for 3 hours. A yellow precipitate was obtained. The reaction completion was confirmed by thin layer chromatography. The resulting precipitate was filtered and dried at room temperature overnight. The solid was recrystallized from dichloromethane and the crystals were used as such for x-ray diffraction studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.99Å (CH2) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (OH) times Ueq of the parent atom. The idealised tetrahedral OH was refined as a rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C22H19NO2S) showing the labeling scheme of molecule with 30% probability displacement ellipsoids. The dashed line indicates a short O2—H2···N1 intramolecular hydrogen bond.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the c axis. Dashed lines indicate weak intermolecular C—H···O interactions which link the molecules into zig-zag chains along [101]. H atoms not involved in these weak intermolecular interactions have been removed for clarity.
{2-[(2-Hydroxybenzylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophen-3-yl}(phenyl)methanone top
Crystal data top
C22H19NO2SF(000) = 760
Mr = 361.44Dx = 1.338 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.26395 (15) ÅCell parameters from 5377 reflections
b = 14.2886 (2) Åθ = 4.5–71.3°
c = 13.6476 (2) ŵ = 1.73 mm1
β = 96.7581 (15)°T = 173 K
V = 1793.97 (5) Å3Block, yellow
Z = 40.24 × 0.14 × 0.08 mm
Data collection top
Agilent Eos Gemini
diffractometer
3462 independent reflections
Radiation source: Enhance (Cu) X-ray Source3113 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.053
ω scansθmax = 71.5°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1110
Tmin = 0.658, Tmax = 1.000k = 1717
11611 measured reflectionsl = 1614
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.6814P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.03 e Å3
3462 reflectionsΔρmin = 0.26 e Å3
237 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0024 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C22H19NO2SV = 1793.97 (5) Å3
Mr = 361.44Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.26395 (15) ŵ = 1.73 mm1
b = 14.2886 (2) ÅT = 173 K
c = 13.6476 (2) Å0.24 × 0.14 × 0.08 mm
β = 96.7581 (15)°
Data collection top
Agilent Eos Gemini
diffractometer
3462 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3113 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 1.000Rint = 0.053
11611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.06Δρmax = 1.03 e Å3
3462 reflectionsΔρmin = 0.26 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55854 (5)0.11521 (3)0.69557 (3)0.02933 (18)
O10.74691 (15)0.17574 (10)0.38642 (9)0.0336 (3)
O20.69355 (16)0.45879 (10)0.56596 (11)0.0364 (4)
H20.69280.40140.56630.055*
N10.61684 (16)0.29064 (11)0.62125 (11)0.0259 (3)
C10.77920 (18)0.19624 (12)0.47290 (13)0.0243 (4)
C20.70603 (18)0.14805 (12)0.55066 (13)0.0248 (4)
C30.70100 (18)0.04840 (12)0.56039 (13)0.0255 (4)
C40.7719 (2)0.02126 (13)0.49863 (15)0.0312 (4)
H4A0.86410.00340.48320.037*
H4B0.71030.03160.43700.037*
C50.7967 (3)0.11336 (16)0.5535 (2)0.0470 (6)
H5A0.82540.16060.50860.056*
H5B0.87570.10590.60630.056*
C60.6632 (3)0.14608 (16)0.5964 (2)0.0502 (6)
H6A0.68400.20580.62880.060*
H6B0.58580.15600.54300.060*
C70.6102 (2)0.07799 (14)0.67023 (15)0.0340 (4)
H7A0.50880.09020.67670.041*
H7B0.66580.08680.73440.041*
C80.62751 (19)0.02115 (12)0.63622 (14)0.0271 (4)
C90.63331 (18)0.19440 (12)0.61848 (13)0.0249 (4)
C100.89550 (18)0.26513 (12)0.50409 (13)0.0243 (4)
C110.9396 (2)0.32721 (14)0.43438 (13)0.0304 (4)
H110.89300.32710.37020.036*
C121.0525 (2)0.38872 (15)0.46073 (15)0.0364 (5)
H121.08060.43070.41450.044*
C131.1242 (2)0.38818 (15)0.55585 (16)0.0369 (5)
H131.20100.42920.57300.044*
C141.0813 (2)0.32637 (16)0.62539 (14)0.0345 (4)
H141.12970.32570.68910.041*
C150.96629 (19)0.26566 (14)0.59984 (13)0.0291 (4)
H150.93640.22520.64680.035*
C160.52973 (19)0.33090 (13)0.67519 (14)0.0272 (4)
H160.47640.29420.71430.033*
C170.51257 (19)0.43151 (13)0.67668 (13)0.0261 (4)
C180.4120 (2)0.47131 (14)0.73438 (14)0.0309 (4)
H180.36030.43290.77280.037*
C190.3894 (2)0.56679 (15)0.73455 (15)0.0359 (5)
H190.32250.59240.77270.043*
C200.4668 (2)0.62451 (14)0.67759 (16)0.0361 (5)
H200.45010.68870.67690.043*
C210.5681 (2)0.58765 (14)0.62214 (16)0.0355 (4)
H210.62050.62710.58520.043*
C220.5925 (2)0.49131 (13)0.62120 (14)0.0281 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0347 (3)0.0245 (3)0.0310 (3)0.00448 (16)0.01296 (19)0.00091 (16)
O10.0390 (7)0.0356 (8)0.0264 (7)0.0060 (6)0.0048 (5)0.0032 (5)
O20.0406 (8)0.0252 (7)0.0470 (8)0.0044 (6)0.0205 (6)0.0017 (6)
N10.0265 (7)0.0222 (7)0.0295 (8)0.0025 (6)0.0055 (6)0.0010 (6)
C10.0241 (8)0.0230 (8)0.0260 (8)0.0024 (6)0.0046 (6)0.0006 (7)
C20.0220 (8)0.0239 (9)0.0284 (9)0.0022 (7)0.0027 (6)0.0012 (7)
C30.0225 (8)0.0228 (8)0.0309 (9)0.0020 (6)0.0017 (7)0.0018 (7)
C40.0310 (9)0.0273 (9)0.0359 (10)0.0022 (7)0.0063 (7)0.0044 (8)
C50.0515 (13)0.0336 (12)0.0557 (14)0.0093 (9)0.0060 (11)0.0040 (9)
C60.0622 (15)0.0241 (10)0.0659 (16)0.0026 (10)0.0144 (12)0.0007 (10)
C70.0365 (10)0.0248 (9)0.0407 (11)0.0068 (8)0.0042 (8)0.0043 (8)
C80.0277 (9)0.0215 (9)0.0322 (9)0.0019 (7)0.0034 (7)0.0023 (7)
C90.0251 (8)0.0234 (9)0.0266 (8)0.0039 (7)0.0047 (6)0.0002 (7)
C100.0230 (8)0.0255 (9)0.0255 (8)0.0007 (7)0.0067 (6)0.0001 (7)
C110.0321 (9)0.0353 (10)0.0238 (8)0.0046 (8)0.0041 (7)0.0038 (7)
C120.0396 (11)0.0389 (11)0.0319 (10)0.0114 (8)0.0097 (8)0.0040 (8)
C130.0311 (10)0.0429 (12)0.0372 (11)0.0131 (8)0.0064 (8)0.0058 (8)
C140.0297 (9)0.0467 (12)0.0266 (9)0.0043 (8)0.0016 (7)0.0025 (8)
C150.0281 (9)0.0347 (10)0.0253 (9)0.0013 (7)0.0060 (7)0.0028 (7)
C160.0271 (8)0.0250 (9)0.0303 (9)0.0034 (7)0.0063 (7)0.0006 (7)
C170.0246 (8)0.0245 (9)0.0288 (9)0.0011 (7)0.0008 (7)0.0033 (7)
C180.0301 (9)0.0309 (10)0.0320 (9)0.0011 (7)0.0051 (7)0.0033 (7)
C190.0351 (10)0.0345 (10)0.0381 (10)0.0081 (8)0.0043 (8)0.0079 (8)
C200.0435 (11)0.0239 (9)0.0393 (11)0.0051 (8)0.0021 (8)0.0044 (8)
C210.0428 (11)0.0259 (10)0.0378 (10)0.0047 (8)0.0047 (8)0.0006 (8)
C220.0287 (9)0.0255 (9)0.0300 (9)0.0029 (7)0.0027 (7)0.0036 (7)
Geometric parameters (Å, º) top
S1—C81.7299 (18)C7—C81.505 (3)
S1—C91.7432 (18)C10—C111.397 (3)
O1—C11.219 (2)C10—C151.392 (3)
O2—H20.8200C11—H110.9300
O2—C221.351 (2)C11—C121.381 (3)
N1—C91.385 (2)C12—H120.9300
N1—C161.290 (2)C12—C131.387 (3)
C1—C21.493 (2)C13—H130.9300
C1—C101.484 (2)C13—C141.388 (3)
C2—C31.431 (2)C14—H140.9300
C2—C91.377 (2)C14—C151.386 (3)
C3—C41.504 (2)C15—H150.9300
C3—C81.361 (3)C16—H160.9300
C4—H4A0.9700C16—C171.447 (3)
C4—H4B0.9700C17—C181.409 (3)
C4—C51.518 (3)C17—C221.409 (3)
C5—H5A0.9700C18—H180.9300
C5—H5B0.9700C18—C191.380 (3)
C5—C61.504 (4)C19—H190.9300
C6—H6A0.9700C19—C201.390 (3)
C6—H6B0.9700C20—H200.9300
C6—C71.523 (3)C20—C211.378 (3)
C7—H7A0.9700C21—H210.9300
C7—H7B0.9700C21—C221.395 (3)
C8—S1—C991.53 (9)C2—C9—N1124.08 (16)
C22—O2—H2109.5C11—C10—C1119.12 (16)
C16—N1—C9122.47 (15)C15—C10—C1121.26 (16)
O1—C1—C2119.82 (16)C15—C10—C11119.53 (17)
O1—C1—C10121.62 (16)C10—C11—H11120.0
C10—C1—C2118.49 (15)C12—C11—C10120.01 (18)
C3—C2—C1123.18 (15)C12—C11—H11120.0
C9—C2—C1123.70 (16)C11—C12—H12119.8
C9—C2—C3113.09 (16)C11—C12—C13120.33 (18)
C2—C3—C4125.81 (16)C13—C12—H12119.8
C8—C3—C2112.33 (16)C12—C13—H13120.0
C8—C3—C4121.83 (17)C12—C13—C14119.94 (18)
C3—C4—H4A109.6C14—C13—H13120.0
C3—C4—H4B109.6C13—C14—H14120.0
C3—C4—C5110.36 (17)C15—C14—C13119.98 (18)
H4A—C4—H4B108.1C15—C14—H14120.0
C5—C4—H4A109.6C10—C15—H15119.9
C5—C4—H4B109.6C14—C15—C10120.19 (17)
C4—C5—H5A109.2C14—C15—H15119.9
C4—C5—H5B109.2N1—C16—H16119.1
H5A—C5—H5B107.9N1—C16—C17121.89 (16)
C6—C5—C4112.2 (2)C17—C16—H16119.1
C6—C5—H5A109.2C18—C17—C16119.34 (17)
C6—C5—H5B109.2C22—C17—C16121.99 (16)
C5—C6—H6A108.8C22—C17—C18118.67 (17)
C5—C6—H6B108.8C17—C18—H18119.7
C5—C6—C7113.75 (19)C19—C18—C17120.70 (18)
H6A—C6—H6B107.7C19—C18—H18119.7
C7—C6—H6A108.8C18—C19—H19120.1
C7—C6—H6B108.8C18—C19—C20119.81 (18)
C6—C7—H7A109.6C20—C19—H19120.1
C6—C7—H7B109.6C19—C20—H20119.7
H7A—C7—H7B108.2C21—C20—C19120.70 (18)
C8—C7—C6110.05 (17)C21—C20—H20119.7
C8—C7—H7A109.6C20—C21—H21119.9
C8—C7—H7B109.6C20—C21—C22120.24 (19)
C3—C8—S1112.29 (14)C22—C21—H21119.9
C3—C8—C7125.78 (17)O2—C22—C17122.26 (17)
C7—C8—S1121.89 (14)O2—C22—C21117.89 (17)
N1—C9—S1125.12 (13)C21—C22—C17119.85 (18)
C2—C9—S1110.74 (13)
O1—C1—C2—C353.9 (2)C8—C3—C4—C520.5 (3)
O1—C1—C2—C9124.32 (19)C9—S1—C8—C31.22 (14)
O1—C1—C10—C1118.8 (3)C9—S1—C8—C7176.49 (16)
O1—C1—C10—C15157.73 (17)C9—N1—C16—C17179.41 (16)
N1—C16—C17—C18177.77 (17)C9—C2—C3—C4178.91 (16)
N1—C16—C17—C221.6 (3)C9—C2—C3—C81.2 (2)
C1—C2—C3—C42.7 (3)C10—C1—C2—C3123.18 (18)
C1—C2—C3—C8179.58 (16)C10—C1—C2—C958.6 (2)
C1—C2—C9—S1178.63 (13)C10—C11—C12—C131.1 (3)
C1—C2—C9—N11.4 (3)C11—C10—C15—C141.0 (3)
C1—C10—C11—C12176.81 (18)C11—C12—C13—C140.8 (3)
C1—C10—C15—C14175.54 (17)C12—C13—C14—C150.4 (3)
C2—C1—C10—C11164.18 (16)C13—C14—C15—C101.3 (3)
C2—C1—C10—C1519.2 (2)C15—C10—C11—C120.2 (3)
C2—C3—C4—C5156.98 (18)C16—N1—C9—S17.9 (3)
C2—C3—C8—S11.60 (19)C16—N1—C9—C2168.92 (17)
C2—C3—C8—C7176.01 (17)C16—C17—C18—C19177.65 (17)
C3—C2—C9—S10.30 (19)C16—C17—C22—O22.3 (3)
C3—C2—C9—N1176.90 (16)C16—C17—C22—C21177.57 (17)
C3—C4—C5—C648.4 (3)C17—C18—C19—C200.3 (3)
C4—C3—C8—S1179.39 (13)C18—C17—C22—O2178.33 (17)
C4—C3—C8—C71.8 (3)C18—C17—C22—C211.8 (3)
C4—C5—C6—C760.2 (3)C18—C19—C20—C211.2 (3)
C5—C6—C7—C838.5 (3)C19—C20—C21—C221.1 (3)
C6—C7—C8—S1172.38 (16)C20—C21—C22—O2179.69 (18)
C6—C7—C8—C310.2 (3)C20—C21—C22—C170.4 (3)
C8—S1—C9—N1177.66 (16)C22—C17—C18—C191.7 (3)
C8—S1—C9—C20.50 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.922.641 (2)146
C18—H18···O1i0.932.513.436 (2)174
Symmetry code: (i) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.922.641 (2)146.2
C18—H18···O1i0.932.513.436 (2)173.8
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

MK is grateful to the CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAsthalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728.  Web of Science PubMed Google Scholar
First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationCannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun., 7, 83–90.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem., 11, 991–995.  CAS Google Scholar
First citationKubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.  CSD CrossRef CAS Google Scholar
First citationLütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem., 46, 1870–1877.  Google Scholar
First citationMolvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, i, 209–246.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem., 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem., 36, 333–345.  CrossRef CAS Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o476-o477
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds