organic compounds
2-Amino-6-methylpyridinium 2,2,2-trichloroacetate
aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, Tamil Nadu, India, and bDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: mnizam_new@yahoo.in, professormohan@yahoo.co.in
In the 6H9N2+·C2Cl3O2−, there are two independent 2-amino-6-methylpyridinium cations and two independent trichloroacetate anions. The pyridine N atom of the 2-amino-6-methylpyridine molecule is protonated and the geometries of these cations reveal amine–imine Both protonated 2-amino-6-methylpyridinium cations are essentially planar [maximum deviations = 0.026 (2) and 0.012 (2) Å]. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxylate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. These motifs are connected via N—H⋯O and C—H⋯O hydrogen bonds to form slabs parallel to (101).
of the title molecular salt, CCCDC reference: 988938
Related literature
For applications of pyridinium derivatives, see: Akkurt et al. (2005). For pyridine derivatives as templating agents, see: Desiraju (2001); Jeffrey (1997). For details of 2-aminopyridine and its derivatives, see: Katritzky et al. (1996); Tomaru et al. (1991). For bond lengths and angles in similar structures, see: Jin, Shun et al. (2005); Feng et al. (2007); Nahringbauer & Kvick (1977). For other 2-aminopyridinium structures, see: Jin et al. (2000, 2001); Jin, Tu et al. (2005). For studies on the tautomeric forms of 2-aminopyridine systems, see: Ishikawa et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 988938
10.1107/S1600536814004553/su2705sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004553/su2705Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814004553/su2705Isup3.cml
Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of 2-Amino-6-methylpyridine and trichloroacetic acid in methanol at room temperature.
N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N-H = 0.89 (1) and 0.90 (1) Å for NH2 and NH H atoms, respectively; N—H distances of the NH2 groups were restrained to be equal. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. A rotating group model was used for the methyl group.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. A view of the molecular structure of the two independent trichloroacetate anions and the two independent 2-amino-6-methylpyridinium cations of the title salt. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. The crystal packing of the title compound, viewed normal to (101). The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity). |
C6H9N2+·C2Cl3O2− | F(000) = 1104 |
Mr = 271.52 | Dx = 1.528 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5784 reflections |
a = 11.6376 (5) Å | θ = 2.0–28.1° |
b = 14.6648 (6) Å | µ = 0.76 mm−1 |
c = 13.9100 (6) Å | T = 293 K |
β = 96.024 (1)° | Block, colourless |
V = 2360.81 (17) Å3 | 0.35 × 0.30 × 0.30 mm |
Z = 8 |
Bruker Kappa APEXII CCD diffractometer | 5784 independent reflections |
Radiation source: fine-focus sealed tube | 3922 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω and ϕ scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −15→12 |
Tmin = 0.777, Tmax = 0.805 | k = −19→19 |
39609 measured reflections | l = −16→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0512P)2 + 1.4785P] where P = (Fo2 + 2Fc2)/3 |
5784 reflections | (Δ/σ)max < 0.001 |
297 parameters | Δρmax = 0.66 e Å−3 |
6 restraints | Δρmin = −0.64 e Å−3 |
C6H9N2+·C2Cl3O2− | V = 2360.81 (17) Å3 |
Mr = 271.52 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.6376 (5) Å | µ = 0.76 mm−1 |
b = 14.6648 (6) Å | T = 293 K |
c = 13.9100 (6) Å | 0.35 × 0.30 × 0.30 mm |
β = 96.024 (1)° |
Bruker Kappa APEXII CCD diffractometer | 5784 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3922 reflections with I > 2σ(I) |
Tmin = 0.777, Tmax = 0.805 | Rint = 0.032 |
39609 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 6 restraints |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.66 e Å−3 |
5784 reflections | Δρmin = −0.64 e Å−3 |
297 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3813 (2) | 0.07767 (18) | 0.03971 (18) | 0.0507 (6) | |
C2 | 0.3271 (3) | 0.0212 (2) | 0.1018 (2) | 0.0713 (8) | |
H2 | 0.3343 | 0.0326 | 0.1679 | 0.086* | |
C3 | 0.2640 (3) | −0.0500 (3) | 0.0649 (3) | 0.0852 (10) | |
H3 | 0.2284 | −0.0880 | 0.1063 | 0.102* | |
C4 | 0.2509 (3) | −0.0681 (2) | −0.0346 (3) | 0.0751 (9) | |
H4 | 0.2071 | −0.1176 | −0.0588 | 0.090* | |
C5 | 0.3029 (2) | −0.01251 (17) | −0.0952 (2) | 0.0549 (6) | |
C6 | 0.2932 (3) | −0.0214 (2) | −0.2021 (2) | 0.0737 (9) | |
H6A | 0.2729 | 0.0366 | −0.2311 | 0.111* | |
H6B | 0.2345 | −0.0653 | −0.2226 | 0.111* | |
H6C | 0.3658 | −0.0412 | −0.2216 | 0.111* | |
C7 | 0.49848 (19) | 0.20079 (16) | 0.35230 (16) | 0.0429 (5) | |
C8 | 0.5578 (2) | 0.29325 (16) | 0.33022 (17) | 0.0464 (5) | |
C9 | 0.3521 (2) | −0.03512 (16) | 0.41212 (17) | 0.0476 (5) | |
C10 | 0.2838 (3) | −0.1102 (2) | 0.4323 (2) | 0.0663 (8) | |
H10 | 0.2952 | −0.1667 | 0.4044 | 0.080* | |
C11 | 0.2013 (3) | −0.0996 (2) | 0.4928 (2) | 0.0753 (9) | |
H11 | 0.1557 | −0.1492 | 0.5060 | 0.090* | |
C12 | 0.1831 (3) | −0.0162 (2) | 0.5356 (2) | 0.0710 (9) | |
H12 | 0.1254 | −0.0100 | 0.5766 | 0.085* | |
C13 | 0.2502 (2) | 0.0565 (2) | 0.51737 (16) | 0.0544 (6) | |
C14 | 0.2420 (3) | 0.1494 (2) | 0.5583 (2) | 0.0767 (9) | |
H14A | 0.3029 | 0.1580 | 0.6096 | 0.115* | |
H14B | 0.1686 | 0.1565 | 0.5832 | 0.115* | |
H14C | 0.2490 | 0.1939 | 0.5086 | 0.115* | |
C15 | 0.0091 (2) | 0.26412 (17) | 0.33994 (19) | 0.0491 (6) | |
C16 | 0.0641 (2) | 0.19779 (16) | 0.26897 (18) | 0.0460 (5) | |
N1 | 0.36821 (17) | 0.05787 (13) | −0.05609 (15) | 0.0459 (4) | |
N3 | 0.33292 (17) | 0.04379 (13) | 0.45650 (13) | 0.0437 (4) | |
N2 | 0.4457 (2) | 0.14867 (19) | 0.06970 (17) | 0.0668 (6) | |
N4 | 0.4353 (2) | −0.03672 (15) | 0.35294 (18) | 0.0605 (6) | |
O1 | 0.48960 (16) | 0.14569 (12) | 0.28478 (12) | 0.0549 (4) | |
O2 | 0.46713 (18) | 0.19317 (14) | 0.43335 (12) | 0.0660 (5) | |
O3 | −0.01711 (18) | 0.34018 (12) | 0.30739 (14) | 0.0637 (5) | |
O4 | 0.0005 (2) | 0.23281 (15) | 0.42110 (15) | 0.0791 (6) | |
Cl1 | 0.55673 (9) | 0.37373 (6) | 0.42317 (6) | 0.0896 (3) | |
Cl2 | 0.70242 (6) | 0.27091 (5) | 0.31008 (6) | 0.0710 (2) | |
Cl3 | 0.48451 (7) | 0.34145 (5) | 0.22382 (6) | 0.0752 (2) | |
Cl4 | 0.21459 (6) | 0.22009 (6) | 0.28120 (6) | 0.0697 (2) | |
Cl5 | 0.01042 (7) | 0.21709 (6) | 0.14738 (5) | 0.0719 (2) | |
Cl6 | 0.04405 (9) | 0.08231 (5) | 0.29620 (7) | 0.0861 (3) | |
H4B | 0.463 (2) | 0.0160 (11) | 0.3358 (19) | 0.059 (8)* | |
H2B | 0.474 (2) | 0.1848 (16) | 0.0269 (17) | 0.064 (9)* | |
H4A | 0.447 (3) | −0.0864 (14) | 0.320 (2) | 0.082 (10)* | |
H2A | 0.455 (3) | 0.157 (2) | 0.1332 (8) | 0.082 (10)* | |
H1A | 0.403 (2) | 0.0949 (15) | −0.0955 (16) | 0.057 (8)* | |
H3A | 0.379 (2) | 0.0908 (13) | 0.446 (2) | 0.061 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0481 (14) | 0.0549 (14) | 0.0483 (13) | 0.0081 (11) | 0.0017 (10) | 0.0075 (11) |
C2 | 0.0690 (19) | 0.084 (2) | 0.0605 (17) | −0.0020 (16) | 0.0039 (14) | 0.0247 (16) |
C3 | 0.078 (2) | 0.083 (2) | 0.095 (3) | −0.0068 (19) | 0.0106 (19) | 0.039 (2) |
C4 | 0.0634 (19) | 0.0526 (16) | 0.108 (3) | −0.0103 (14) | 0.0013 (17) | 0.0084 (17) |
C5 | 0.0451 (14) | 0.0417 (12) | 0.0764 (18) | 0.0072 (10) | −0.0007 (12) | −0.0040 (12) |
C6 | 0.076 (2) | 0.0650 (18) | 0.079 (2) | 0.0008 (15) | 0.0022 (16) | −0.0237 (16) |
C7 | 0.0384 (11) | 0.0478 (12) | 0.0423 (12) | −0.0102 (10) | 0.0031 (9) | 0.0052 (10) |
C8 | 0.0464 (13) | 0.0488 (13) | 0.0453 (12) | −0.0116 (10) | 0.0105 (10) | 0.0016 (10) |
C9 | 0.0539 (14) | 0.0453 (13) | 0.0428 (12) | −0.0052 (11) | 0.0019 (10) | 0.0071 (10) |
C10 | 0.079 (2) | 0.0514 (15) | 0.0682 (18) | −0.0218 (14) | 0.0046 (15) | 0.0071 (13) |
C11 | 0.077 (2) | 0.084 (2) | 0.0644 (18) | −0.0401 (18) | 0.0034 (15) | 0.0191 (16) |
C12 | 0.0600 (17) | 0.104 (2) | 0.0517 (15) | −0.0272 (17) | 0.0167 (13) | 0.0075 (16) |
C13 | 0.0502 (14) | 0.0788 (18) | 0.0352 (12) | −0.0098 (13) | 0.0087 (10) | 0.0016 (12) |
C14 | 0.082 (2) | 0.092 (2) | 0.0611 (17) | −0.0084 (18) | 0.0311 (16) | −0.0186 (17) |
C15 | 0.0401 (12) | 0.0493 (14) | 0.0595 (15) | −0.0035 (10) | 0.0123 (10) | −0.0009 (11) |
C16 | 0.0422 (12) | 0.0440 (12) | 0.0525 (13) | −0.0031 (10) | 0.0074 (10) | 0.0012 (10) |
N1 | 0.0439 (11) | 0.0427 (10) | 0.0513 (11) | 0.0070 (9) | 0.0057 (9) | 0.0027 (9) |
N3 | 0.0475 (11) | 0.0494 (11) | 0.0349 (9) | −0.0116 (9) | 0.0073 (8) | 0.0031 (8) |
N2 | 0.0811 (17) | 0.0736 (16) | 0.0452 (13) | −0.0144 (13) | 0.0042 (12) | −0.0005 (12) |
N4 | 0.0733 (16) | 0.0448 (12) | 0.0675 (14) | −0.0029 (11) | 0.0263 (12) | −0.0012 (11) |
O1 | 0.0684 (11) | 0.0488 (9) | 0.0492 (10) | −0.0155 (8) | 0.0144 (8) | −0.0021 (8) |
O2 | 0.0833 (14) | 0.0737 (12) | 0.0437 (10) | −0.0383 (11) | 0.0188 (9) | −0.0022 (9) |
O3 | 0.0745 (13) | 0.0496 (10) | 0.0696 (12) | 0.0085 (9) | 0.0205 (10) | 0.0019 (9) |
O4 | 0.1060 (18) | 0.0731 (13) | 0.0642 (13) | 0.0115 (12) | 0.0377 (12) | 0.0076 (10) |
Cl1 | 0.1227 (8) | 0.0727 (5) | 0.0798 (5) | −0.0399 (5) | 0.0406 (5) | −0.0284 (4) |
Cl2 | 0.0438 (4) | 0.0737 (5) | 0.0975 (6) | −0.0119 (3) | 0.0168 (3) | 0.0099 (4) |
Cl3 | 0.0823 (5) | 0.0593 (4) | 0.0805 (5) | −0.0066 (4) | −0.0083 (4) | 0.0246 (4) |
Cl4 | 0.0392 (3) | 0.0947 (6) | 0.0764 (5) | 0.0005 (3) | 0.0112 (3) | −0.0015 (4) |
Cl5 | 0.0810 (5) | 0.0774 (5) | 0.0538 (4) | 0.0001 (4) | −0.0092 (3) | −0.0080 (3) |
Cl6 | 0.1113 (7) | 0.0446 (4) | 0.1068 (7) | −0.0056 (4) | 0.0323 (5) | 0.0062 (4) |
C1—N2 | 1.324 (4) | C10—C11 | 1.350 (5) |
C1—N1 | 1.357 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.394 (4) | C11—C12 | 1.385 (5) |
C2—C3 | 1.346 (5) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—C13 | 1.362 (4) |
C3—C4 | 1.401 (5) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—N3 | 1.360 (3) |
C4—C5 | 1.360 (4) | C13—C14 | 1.483 (4) |
C4—H4 | 0.9300 | C14—H14A | 0.9600 |
C5—N1 | 1.361 (3) | C14—H14B | 0.9600 |
C5—C6 | 1.485 (4) | C14—H14C | 0.9600 |
C6—H6A | 0.9600 | C15—O3 | 1.230 (3) |
C6—H6B | 0.9600 | C15—O4 | 1.232 (3) |
C6—H6C | 0.9600 | C15—C16 | 1.569 (3) |
C7—O2 | 1.226 (3) | C16—Cl6 | 1.756 (2) |
C7—O1 | 1.235 (3) | C16—Cl5 | 1.763 (3) |
C7—C8 | 1.567 (3) | C16—Cl4 | 1.772 (2) |
C8—Cl1 | 1.752 (2) | N1—H1A | 0.898 (10) |
C8—Cl2 | 1.765 (3) | N3—H3A | 0.896 (10) |
C8—Cl3 | 1.776 (3) | N2—H2B | 0.885 (10) |
C9—N4 | 1.335 (3) | N2—H2A | 0.886 (10) |
C9—N3 | 1.341 (3) | N4—H4B | 0.881 (10) |
C9—C10 | 1.404 (3) | N4—H4A | 0.879 (10) |
N2—C1—N1 | 118.6 (2) | C10—C11—C12 | 121.4 (3) |
N2—C1—C2 | 123.3 (3) | C10—C11—H11 | 119.3 |
N1—C1—C2 | 118.0 (3) | C12—C11—H11 | 119.3 |
C3—C2—C1 | 119.2 (3) | C13—C12—C11 | 119.7 (3) |
C3—C2—H2 | 120.4 | C13—C12—H12 | 120.2 |
C1—C2—H2 | 120.4 | C11—C12—H12 | 120.2 |
C2—C3—C4 | 121.5 (3) | N3—C13—C12 | 117.7 (3) |
C2—C3—H3 | 119.3 | N3—C13—C14 | 116.3 (2) |
C4—C3—H3 | 119.3 | C12—C13—C14 | 126.0 (3) |
C5—C4—C3 | 119.3 (3) | C13—C14—H14A | 109.5 |
C5—C4—H4 | 120.3 | C13—C14—H14B | 109.5 |
C3—C4—H4 | 120.3 | H14A—C14—H14B | 109.5 |
C4—C5—N1 | 118.2 (3) | C13—C14—H14C | 109.5 |
C4—C5—C6 | 125.2 (3) | H14A—C14—H14C | 109.5 |
N1—C5—C6 | 116.6 (2) | H14B—C14—H14C | 109.5 |
C5—C6—H6A | 109.5 | O3—C15—O4 | 129.4 (2) |
C5—C6—H6B | 109.5 | O3—C15—C16 | 115.6 (2) |
H6A—C6—H6B | 109.5 | O4—C15—C16 | 115.0 (2) |
C5—C6—H6C | 109.5 | C15—C16—Cl6 | 112.94 (17) |
H6A—C6—H6C | 109.5 | C15—C16—Cl5 | 112.14 (17) |
H6B—C6—H6C | 109.5 | Cl6—C16—Cl5 | 108.66 (13) |
O2—C7—O1 | 129.1 (2) | C15—C16—Cl4 | 106.82 (16) |
O2—C7—C8 | 116.1 (2) | Cl6—C16—Cl4 | 108.04 (13) |
O1—C7—C8 | 114.87 (19) | Cl5—C16—Cl4 | 108.03 (13) |
C7—C8—Cl1 | 113.64 (16) | C1—N1—C5 | 123.7 (2) |
C7—C8—Cl2 | 108.53 (17) | C1—N1—H1A | 117.3 (18) |
Cl1—C8—Cl2 | 108.85 (13) | C5—N1—H1A | 118.9 (18) |
C7—C8—Cl3 | 108.95 (16) | C9—N3—C13 | 124.6 (2) |
Cl1—C8—Cl3 | 107.87 (14) | C9—N3—H3A | 117.3 (18) |
Cl2—C8—Cl3 | 108.92 (12) | C13—N3—H3A | 118.1 (18) |
N4—C9—N3 | 117.7 (2) | C1—N2—H2B | 120 (2) |
N4—C9—C10 | 124.9 (3) | C1—N2—H2A | 115 (2) |
N3—C9—C10 | 117.4 (2) | H2B—N2—H2A | 125 (3) |
C11—C10—C9 | 119.2 (3) | C9—N4—H4B | 117.6 (19) |
C11—C10—H10 | 120.4 | C9—N4—H4A | 120 (2) |
C9—C10—H10 | 120.4 | H4B—N4—H4A | 120 (3) |
N2—C1—C2—C3 | −179.4 (3) | C11—C12—C13—N3 | 0.3 (4) |
N1—C1—C2—C3 | −0.2 (4) | C11—C12—C13—C14 | −179.4 (3) |
C1—C2—C3—C4 | −0.6 (5) | O3—C15—C16—Cl6 | −154.9 (2) |
C2—C3—C4—C5 | 0.0 (5) | O4—C15—C16—Cl6 | 26.5 (3) |
C3—C4—C5—N1 | 1.4 (4) | O3—C15—C16—Cl5 | −31.7 (3) |
C3—C4—C5—C6 | −177.7 (3) | O4—C15—C16—Cl5 | 149.7 (2) |
O2—C7—C8—Cl1 | −5.5 (3) | O3—C15—C16—Cl4 | 86.5 (2) |
O1—C7—C8—Cl1 | 174.28 (18) | O4—C15—C16—Cl4 | −92.2 (2) |
O2—C7—C8—Cl2 | 115.8 (2) | N2—C1—N1—C5 | −179.0 (2) |
O1—C7—C8—Cl2 | −64.5 (2) | C2—C1—N1—C5 | 1.7 (4) |
O2—C7—C8—Cl3 | −125.8 (2) | C4—C5—N1—C1 | −2.3 (4) |
O1—C7—C8—Cl3 | 54.0 (3) | C6—C5—N1—C1 | 176.9 (2) |
N4—C9—C10—C11 | −179.3 (3) | N4—C9—N3—C13 | 178.8 (2) |
N3—C9—C10—C11 | 1.5 (4) | C10—C9—N3—C13 | −1.9 (4) |
C9—C10—C11—C12 | −0.3 (5) | C12—C13—N3—C9 | 1.0 (4) |
C10—C11—C12—C13 | −0.6 (5) | C14—C13—N3—C9 | −179.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.90 (1) | 1.96 (1) | 2.856 (3) | 172 (3) |
N2—H2B···O4i | 0.89 (1) | 1.95 (1) | 2.825 (3) | 167 (3) |
N2—H2A···O1 | 0.89 (1) | 2.11 (1) | 2.982 (3) | 167 (3) |
N3—H3A···O2 | 0.90 (1) | 1.84 (1) | 2.729 (2) | 175 (3) |
N4—H4B···O1 | 0.88 (1) | 2.06 (1) | 2.929 (3) | 167 (3) |
N4—H4A···O3ii | 0.88 (1) | 2.29 (2) | 3.096 (3) | 152 (3) |
C6—H6C···O1iii | 0.96 | 2.50 | 3.413 (4) | 158 |
C11—H11···O4iv | 0.93 | 2.50 | 3.371 (4) | 157 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.90 (1) | 1.964 (11) | 2.856 (3) | 172 (3) |
N2—H2B···O4i | 0.89 (1) | 1.954 (12) | 2.825 (3) | 167 (3) |
N2—H2A···O1 | 0.89 (1) | 2.111 (13) | 2.982 (3) | 167 (3) |
N3—H3A···O2 | 0.90 (1) | 1.836 (10) | 2.729 (2) | 175 (3) |
N4—H4B···O1 | 0.88 (1) | 2.064 (12) | 2.929 (3) | 167 (3) |
N4—H4A···O3ii | 0.88 (1) | 2.294 (18) | 3.096 (3) | 152 (3) |
C6—H6C···O1iii | 0.96 | 2.50 | 3.413 (4) | 158 |
C11—H11···O4iv | 0.93 | 2.50 | 3.371 (4) | 157 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) −x, −y, −z+1. |
Acknowledgements
The authors are thankful to the SAIF, IIT Madras, for the data collection.
References
Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (2001). Curr. Sci. 81, 1038–1055. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312. Web of Science CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195. Web of Science CSD CrossRef CAS Google Scholar
Jin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195–198. Web of Science CSD CrossRef CAS Google Scholar
Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197–m199. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Aminopyridine and its derivatives play an important role in heterocyclic chemistry (Katritzky et al., 1996). Pyridine heterocycles and their derivatives are present in many large molecules having photo-chemical, electro-chemical and catalytic applications. Some pyridine derivatives possess nonlinear optical (NLO) properties (Tomaru et al., 1991) and often possess antibacterial and antifungal activities (Akkurt et al., 2005). The use of pyridine derivatives as templating agents for the self-assembly of organic-inorganic supramolecular materials has been widely studied (Desiraju, 2001). They are often involved in hydrogen bonding (Jeffrey, 1997). In order to further study the hydrogen bonding in these systems, the synthesis and structure of the title salt is presented herein.
The asymmetric unit of title compound, Fig. 1, consists of two crystallographically independent protonated 2-amino-6-methylpyridinium cation and trichloroacetate anion. The pyridinium rings are almost planar with mean deviations of only 0.011 (2) and 0.007 (2) Å for atoms N1 and N3, respectively. The dihedral angle between a 2-amino-6-methylpyridinium cation and trichloroacetate anion group is 18.3 (2) and 47.7 (2)° for the both molecules respectively. In both the molecules, the protonated 2-amino-6-methylpyridinium cations are essentially planar, with a maximum deviation of 0.026 (2) Å for atom N1 and 0.012 (2) Å for atom N3.
In the cations, the N2—C1 [1.324 (4) Å] and N4—C9 bonds [1.335 (3) Å] are shorter than the N1—C1 [1.357 (3) Å], N1—C5 [1.361 (3) Å], N3—C9[1.341 (3) Å] and N3—C13[1.360 (3) Å] bonds, and the C1—C2 [1.394 (4) Å], C3—C4 [1.401 (5) Å], C9—C10 [1.404 (3) Å] and C11—C12 [1.385 (5) Å] bonds are significantly longer than bonds C2—C3 [1.346 (5) Å], C4—C5 [1.360 (4) Å], C10—C11 [1.350 (5) Å] and C12—C13 [1.362 (4) Å]. This are similar to the bond distances observed previously for the amino-methylpridinium cation (Jin, Shun et al., 2005; Feng et al., 2007). In contrast, in the solid state structure of amino-methylpridinium, the exocyclic N—C bond is clearly longer than that in the ring (Nahringbauer & Kvick, 1977). The geometric features of amino-methylpridinium cation (N1/N2/C1/C6 and N3/N4/C9—C13) resemble those observed in other 2-aminopyridinium structures (Jin et al., 2000; Jin et al., 2001; Jin, Tu et al., 2005) that are believed to be involved in amine-imine tautomerism (Ishikawa et al., 2002). Similar features are also provided by the cation amino-methylpridinium (N3/N4/C7/C12). However,a previous study shows that a pyridinium cation always possesses an expanded angle of C—N—C [C1N1-C5 [123.7 (2)°] and C9—N3—C13 [124.6 (2)°] in comparison with the parent pyridine (Jin, Shun et al., 2005).
In the crystal, the protonated atoms (N1 and N3) and a nitrogen atom of the 2-amino group (N2 and N4) are hydrogen bonded to the carboxylate oxygen atoms (O1, O2, O3 and O4) via pairs of intermolecular N—H—O [(N1—H1A···O3 and N3—H3A—O2) and (N2—H2B···O4 and N4—H4B···O1)] hydrogen bonds (Fig. 2 and Table 1), forming an R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected via N2—H2A···O1, N4—H4A···O3 and C—H···O hydrogen bonds to form slabs parallel with (101) [Fig. 2 and Table 1].