organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o391-o392

2-Amino-6-methyl­pyridinium 2,2,2-tri­chloro­acetate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, Tamil Nadu, India, and bDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: mnizam_new@yahoo.in, professormohan@yahoo.co.in

(Received 26 February 2014; accepted 27 February 2014; online 5 March 2014)

In the asymmetric unit of the title mol­ecular salt, C6H9N2+·C2Cl3O2, there are two independent 2-amino-6-methyl­pyridinium cations and two independent tri­chloro­acetate anions. The pyridine N atom of the 2-amino-6-methyl­pyridine mol­ecule is protonated and the geometries of these cations reveal amine–imine tautomerism. Both protonated 2-amino-6-methyl­pyridinium cations are essentially planar [maximum deviations = 0.026 (2) and 0.012 (2) Å]. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. These motifs are connected via N—H⋯O and C—H⋯O hydrogen bonds to form slabs parallel to (101).

Related literature

For applications of pyridinium derivatives, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776-o778.]). For pyridine derivatives as templating agents, see: Desiraju (2001[Desiraju, G. R. (2001). Curr. Sci. 81, 1038-1055.]); Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.]). For details of 2-amino­pyridine and its derivatives, see: Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Tomaru et al. (1991[Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583-2585.]). For bond lengths and angles in similar structures, see: Jin, Shun et al. (2005[Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43-m45.]); Feng et al. (2007[Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.]); Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]). For other 2-amino­pyridinium structures, see: Jin et al. (2000[Jin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195-198.], 2001[Jin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191-195.]); Jin, Tu et al. (2005[Jin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197-m199.]). For studies on the tautomeric forms of 2-amino­pyridine systems, see: Ishikawa et al. (2002[Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305-2312.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C2Cl3O2

  • Mr = 271.52

  • Monoclinic, P 21 /n

  • a = 11.6376 (5) Å

  • b = 14.6648 (6) Å

  • c = 13.9100 (6) Å

  • β = 96.024 (1)°

  • V = 2360.81 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.777, Tmax = 0.805

  • 39609 measured reflections

  • 5784 independent reflections

  • 3922 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.04

  • 5784 reflections

  • 297 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.90 (1) 1.96 (1) 2.856 (3) 172 (3)
N2—H2B⋯O4i 0.89 (1) 1.95 (1) 2.825 (3) 167 (3)
N2—H2A⋯O1 0.89 (1) 2.11 (1) 2.982 (3) 167 (3)
N3—H3A⋯O2 0.90 (1) 1.84 (1) 2.729 (2) 175 (3)
N4—H4B⋯O1 0.88 (1) 2.06 (1) 2.929 (3) 167 (3)
N4—H4A⋯O3ii 0.88 (1) 2.29 (2) 3.096 (3) 152 (3)
C6—H6C⋯O1iii 0.96 2.50 3.413 (4) 158
C11—H11⋯O4iv 0.93 2.50 3.371 (4) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminopyridine and its derivatives play an important role in heterocyclic chemistry (Katritzky et al., 1996). Pyridine heterocycles and their derivatives are present in many large molecules having photo-chemical, electro-chemical and catalytic applications. Some pyridine derivatives possess nonlinear optical (NLO) properties (Tomaru et al., 1991) and often possess antibacterial and antifungal activities (Akkurt et al., 2005). The use of pyridine derivatives as templating agents for the self-assembly of organic-inorganic supramolecular materials has been widely studied (Desiraju, 2001). They are often involved in hydrogen bonding (Jeffrey, 1997). In order to further study the hydrogen bonding in these systems, the synthesis and structure of the title salt is presented herein.

The asymmetric unit of title compound, Fig. 1, consists of two crystallographically independent protonated 2-amino-6-methylpyridinium cation and trichloroacetate anion. The pyridinium rings are almost planar with mean deviations of only 0.011 (2) and 0.007 (2) Å for atoms N1 and N3, respectively. The dihedral angle between a 2-amino-6-methylpyridinium cation and trichloroacetate anion group is 18.3 (2) and 47.7 (2)° for the both molecules respectively. In both the molecules, the protonated 2-amino-6-methylpyridinium cations are essentially planar, with a maximum deviation of 0.026 (2) Å for atom N1 and 0.012 (2) Å for atom N3.

In the cations, the N2—C1 [1.324 (4) Å] and N4—C9 bonds [1.335 (3) Å] are shorter than the N1—C1 [1.357 (3) Å], N1—C5 [1.361 (3) Å], N3—C9[1.341 (3) Å] and N3—C13[1.360 (3) Å] bonds, and the C1—C2 [1.394 (4) Å], C3—C4 [1.401 (5) Å], C9—C10 [1.404 (3) Å] and C11—C12 [1.385 (5) Å] bonds are significantly longer than bonds C2—C3 [1.346 (5) Å], C4—C5 [1.360 (4) Å], C10—C11 [1.350 (5) Å] and C12—C13 [1.362 (4) Å]. This are similar to the bond distances observed previously for the amino-methylpridinium cation (Jin, Shun et al., 2005; Feng et al., 2007). In contrast, in the solid state structure of amino-methylpridinium, the exocyclic N—C bond is clearly longer than that in the ring (Nahringbauer & Kvick, 1977). The geometric features of amino-methylpridinium cation (N1/N2/C1/C6 and N3/N4/C9—C13) resemble those observed in other 2-aminopyridinium structures (Jin et al., 2000; Jin et al., 2001; Jin, Tu et al., 2005) that are believed to be involved in amine-imine tautomerism (Ishikawa et al., 2002). Similar features are also provided by the cation amino-methylpridinium (N3/N4/C7/C12). However,a previous study shows that a pyridinium cation always possesses an expanded angle of C—N—C [C1N1-C5 [123.7 (2)°] and C9—N3—C13 [124.6 (2)°] in comparison with the parent pyridine (Jin, Shun et al., 2005).

In the crystal, the protonated atoms (N1 and N3) and a nitrogen atom of the 2-amino group (N2 and N4) are hydrogen bonded to the carboxylate oxygen atoms (O1, O2, O3 and O4) via pairs of intermolecular N—H—O [(N1—H1A···O3 and N3—H3A—O2) and (N2—H2B···O4 and N4—H4B···O1)] hydrogen bonds (Fig. 2 and Table 1), forming an R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected via N2—H2A···O1, N4—H4A···O3 and C—H···O hydrogen bonds to form slabs parallel with (101) [Fig. 2 and Table 1].

Related literature top

For applications of pyridinium derivatives, see: Akkurt et al. (2005). For pyridine derivatives as templating agents, see: Desiraju (2001); Jeffrey (1997). For details of 2-aminopyridine and its derivatives, see: Katritzky et al. (1996); Tomaru et al. (1991). For bond lengths and angles in similar structures, see: Jin, Shun et al. (2005); Feng et al. (2007); Nahringbauer & Kvick (1977). For other 2-aminopyridinium structures, see: Jin et al. (2000, 2001); Jin, Tu et al. (2005). For studies on the tautomeric forms of 2-aminopyridine systems, see: Ishikawa et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of 2-Amino-6-methylpyridine and trichloroacetic acid in methanol at room temperature.

Refinement top

N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N-H = 0.89 (1) and 0.90 (1) Å for NH2 and NH H atoms, respectively; N—H distances of the NH2 groups were restrained to be equal. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent trichloroacetate anions and the two independent 2-amino-6-methylpyridinium cations of the title salt. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed normal to (101). The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
2-Amino-6-methylpyridinium 2,2,2-trichloroacetate top
Crystal data top
C6H9N2+·C2Cl3O2F(000) = 1104
Mr = 271.52Dx = 1.528 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5784 reflections
a = 11.6376 (5) Åθ = 2.0–28.1°
b = 14.6648 (6) ŵ = 0.76 mm1
c = 13.9100 (6) ÅT = 293 K
β = 96.024 (1)°Block, colourless
V = 2360.81 (17) Å30.35 × 0.30 × 0.30 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5784 independent reflections
Radiation source: fine-focus sealed tube3922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1512
Tmin = 0.777, Tmax = 0.805k = 1919
39609 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.4785P]
where P = (Fo2 + 2Fc2)/3
5784 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.66 e Å3
6 restraintsΔρmin = 0.64 e Å3
Crystal data top
C6H9N2+·C2Cl3O2V = 2360.81 (17) Å3
Mr = 271.52Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.6376 (5) ŵ = 0.76 mm1
b = 14.6648 (6) ÅT = 293 K
c = 13.9100 (6) Å0.35 × 0.30 × 0.30 mm
β = 96.024 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5784 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3922 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.805Rint = 0.032
39609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.66 e Å3
5784 reflectionsΔρmin = 0.64 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3813 (2)0.07767 (18)0.03971 (18)0.0507 (6)
C20.3271 (3)0.0212 (2)0.1018 (2)0.0713 (8)
H20.33430.03260.16790.086*
C30.2640 (3)0.0500 (3)0.0649 (3)0.0852 (10)
H30.22840.08800.10630.102*
C40.2509 (3)0.0681 (2)0.0346 (3)0.0751 (9)
H40.20710.11760.05880.090*
C50.3029 (2)0.01251 (17)0.0952 (2)0.0549 (6)
C60.2932 (3)0.0214 (2)0.2021 (2)0.0737 (9)
H6A0.27290.03660.23110.111*
H6B0.23450.06530.22260.111*
H6C0.36580.04120.22160.111*
C70.49848 (19)0.20079 (16)0.35230 (16)0.0429 (5)
C80.5578 (2)0.29325 (16)0.33022 (17)0.0464 (5)
C90.3521 (2)0.03512 (16)0.41212 (17)0.0476 (5)
C100.2838 (3)0.1102 (2)0.4323 (2)0.0663 (8)
H100.29520.16670.40440.080*
C110.2013 (3)0.0996 (2)0.4928 (2)0.0753 (9)
H110.15570.14920.50600.090*
C120.1831 (3)0.0162 (2)0.5356 (2)0.0710 (9)
H120.12540.01000.57660.085*
C130.2502 (2)0.0565 (2)0.51737 (16)0.0544 (6)
C140.2420 (3)0.1494 (2)0.5583 (2)0.0767 (9)
H14A0.30290.15800.60960.115*
H14B0.16860.15650.58320.115*
H14C0.24900.19390.50860.115*
C150.0091 (2)0.26412 (17)0.33994 (19)0.0491 (6)
C160.0641 (2)0.19779 (16)0.26897 (18)0.0460 (5)
N10.36821 (17)0.05787 (13)0.05609 (15)0.0459 (4)
N30.33292 (17)0.04379 (13)0.45650 (13)0.0437 (4)
N20.4457 (2)0.14867 (19)0.06970 (17)0.0668 (6)
N40.4353 (2)0.03672 (15)0.35294 (18)0.0605 (6)
O10.48960 (16)0.14569 (12)0.28478 (12)0.0549 (4)
O20.46713 (18)0.19317 (14)0.43335 (12)0.0660 (5)
O30.01711 (18)0.34018 (12)0.30739 (14)0.0637 (5)
O40.0005 (2)0.23281 (15)0.42110 (15)0.0791 (6)
Cl10.55673 (9)0.37373 (6)0.42317 (6)0.0896 (3)
Cl20.70242 (6)0.27091 (5)0.31008 (6)0.0710 (2)
Cl30.48451 (7)0.34145 (5)0.22382 (6)0.0752 (2)
Cl40.21459 (6)0.22009 (6)0.28120 (6)0.0697 (2)
Cl50.01042 (7)0.21709 (6)0.14738 (5)0.0719 (2)
Cl60.04405 (9)0.08231 (5)0.29620 (7)0.0861 (3)
H4B0.463 (2)0.0160 (11)0.3358 (19)0.059 (8)*
H2B0.474 (2)0.1848 (16)0.0269 (17)0.064 (9)*
H4A0.447 (3)0.0864 (14)0.320 (2)0.082 (10)*
H2A0.455 (3)0.157 (2)0.1332 (8)0.082 (10)*
H1A0.403 (2)0.0949 (15)0.0955 (16)0.057 (8)*
H3A0.379 (2)0.0908 (13)0.446 (2)0.061 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0481 (14)0.0549 (14)0.0483 (13)0.0081 (11)0.0017 (10)0.0075 (11)
C20.0690 (19)0.084 (2)0.0605 (17)0.0020 (16)0.0039 (14)0.0247 (16)
C30.078 (2)0.083 (2)0.095 (3)0.0068 (19)0.0106 (19)0.039 (2)
C40.0634 (19)0.0526 (16)0.108 (3)0.0103 (14)0.0013 (17)0.0084 (17)
C50.0451 (14)0.0417 (12)0.0764 (18)0.0072 (10)0.0007 (12)0.0040 (12)
C60.076 (2)0.0650 (18)0.079 (2)0.0008 (15)0.0022 (16)0.0237 (16)
C70.0384 (11)0.0478 (12)0.0423 (12)0.0102 (10)0.0031 (9)0.0052 (10)
C80.0464 (13)0.0488 (13)0.0453 (12)0.0116 (10)0.0105 (10)0.0016 (10)
C90.0539 (14)0.0453 (13)0.0428 (12)0.0052 (11)0.0019 (10)0.0071 (10)
C100.079 (2)0.0514 (15)0.0682 (18)0.0218 (14)0.0046 (15)0.0071 (13)
C110.077 (2)0.084 (2)0.0644 (18)0.0401 (18)0.0034 (15)0.0191 (16)
C120.0600 (17)0.104 (2)0.0517 (15)0.0272 (17)0.0167 (13)0.0075 (16)
C130.0502 (14)0.0788 (18)0.0352 (12)0.0098 (13)0.0087 (10)0.0016 (12)
C140.082 (2)0.092 (2)0.0611 (17)0.0084 (18)0.0311 (16)0.0186 (17)
C150.0401 (12)0.0493 (14)0.0595 (15)0.0035 (10)0.0123 (10)0.0009 (11)
C160.0422 (12)0.0440 (12)0.0525 (13)0.0031 (10)0.0074 (10)0.0012 (10)
N10.0439 (11)0.0427 (10)0.0513 (11)0.0070 (9)0.0057 (9)0.0027 (9)
N30.0475 (11)0.0494 (11)0.0349 (9)0.0116 (9)0.0073 (8)0.0031 (8)
N20.0811 (17)0.0736 (16)0.0452 (13)0.0144 (13)0.0042 (12)0.0005 (12)
N40.0733 (16)0.0448 (12)0.0675 (14)0.0029 (11)0.0263 (12)0.0012 (11)
O10.0684 (11)0.0488 (9)0.0492 (10)0.0155 (8)0.0144 (8)0.0021 (8)
O20.0833 (14)0.0737 (12)0.0437 (10)0.0383 (11)0.0188 (9)0.0022 (9)
O30.0745 (13)0.0496 (10)0.0696 (12)0.0085 (9)0.0205 (10)0.0019 (9)
O40.1060 (18)0.0731 (13)0.0642 (13)0.0115 (12)0.0377 (12)0.0076 (10)
Cl10.1227 (8)0.0727 (5)0.0798 (5)0.0399 (5)0.0406 (5)0.0284 (4)
Cl20.0438 (4)0.0737 (5)0.0975 (6)0.0119 (3)0.0168 (3)0.0099 (4)
Cl30.0823 (5)0.0593 (4)0.0805 (5)0.0066 (4)0.0083 (4)0.0246 (4)
Cl40.0392 (3)0.0947 (6)0.0764 (5)0.0005 (3)0.0112 (3)0.0015 (4)
Cl50.0810 (5)0.0774 (5)0.0538 (4)0.0001 (4)0.0092 (3)0.0080 (3)
Cl60.1113 (7)0.0446 (4)0.1068 (7)0.0056 (4)0.0323 (5)0.0062 (4)
Geometric parameters (Å, º) top
C1—N21.324 (4)C10—C111.350 (5)
C1—N11.357 (3)C10—H100.9300
C1—C21.394 (4)C11—C121.385 (5)
C2—C31.346 (5)C11—H110.9300
C2—H20.9300C12—C131.362 (4)
C3—C41.401 (5)C12—H120.9300
C3—H30.9300C13—N31.360 (3)
C4—C51.360 (4)C13—C141.483 (4)
C4—H40.9300C14—H14A0.9600
C5—N11.361 (3)C14—H14B0.9600
C5—C61.485 (4)C14—H14C0.9600
C6—H6A0.9600C15—O31.230 (3)
C6—H6B0.9600C15—O41.232 (3)
C6—H6C0.9600C15—C161.569 (3)
C7—O21.226 (3)C16—Cl61.756 (2)
C7—O11.235 (3)C16—Cl51.763 (3)
C7—C81.567 (3)C16—Cl41.772 (2)
C8—Cl11.752 (2)N1—H1A0.898 (10)
C8—Cl21.765 (3)N3—H3A0.896 (10)
C8—Cl31.776 (3)N2—H2B0.885 (10)
C9—N41.335 (3)N2—H2A0.886 (10)
C9—N31.341 (3)N4—H4B0.881 (10)
C9—C101.404 (3)N4—H4A0.879 (10)
N2—C1—N1118.6 (2)C10—C11—C12121.4 (3)
N2—C1—C2123.3 (3)C10—C11—H11119.3
N1—C1—C2118.0 (3)C12—C11—H11119.3
C3—C2—C1119.2 (3)C13—C12—C11119.7 (3)
C3—C2—H2120.4C13—C12—H12120.2
C1—C2—H2120.4C11—C12—H12120.2
C2—C3—C4121.5 (3)N3—C13—C12117.7 (3)
C2—C3—H3119.3N3—C13—C14116.3 (2)
C4—C3—H3119.3C12—C13—C14126.0 (3)
C5—C4—C3119.3 (3)C13—C14—H14A109.5
C5—C4—H4120.3C13—C14—H14B109.5
C3—C4—H4120.3H14A—C14—H14B109.5
C4—C5—N1118.2 (3)C13—C14—H14C109.5
C4—C5—C6125.2 (3)H14A—C14—H14C109.5
N1—C5—C6116.6 (2)H14B—C14—H14C109.5
C5—C6—H6A109.5O3—C15—O4129.4 (2)
C5—C6—H6B109.5O3—C15—C16115.6 (2)
H6A—C6—H6B109.5O4—C15—C16115.0 (2)
C5—C6—H6C109.5C15—C16—Cl6112.94 (17)
H6A—C6—H6C109.5C15—C16—Cl5112.14 (17)
H6B—C6—H6C109.5Cl6—C16—Cl5108.66 (13)
O2—C7—O1129.1 (2)C15—C16—Cl4106.82 (16)
O2—C7—C8116.1 (2)Cl6—C16—Cl4108.04 (13)
O1—C7—C8114.87 (19)Cl5—C16—Cl4108.03 (13)
C7—C8—Cl1113.64 (16)C1—N1—C5123.7 (2)
C7—C8—Cl2108.53 (17)C1—N1—H1A117.3 (18)
Cl1—C8—Cl2108.85 (13)C5—N1—H1A118.9 (18)
C7—C8—Cl3108.95 (16)C9—N3—C13124.6 (2)
Cl1—C8—Cl3107.87 (14)C9—N3—H3A117.3 (18)
Cl2—C8—Cl3108.92 (12)C13—N3—H3A118.1 (18)
N4—C9—N3117.7 (2)C1—N2—H2B120 (2)
N4—C9—C10124.9 (3)C1—N2—H2A115 (2)
N3—C9—C10117.4 (2)H2B—N2—H2A125 (3)
C11—C10—C9119.2 (3)C9—N4—H4B117.6 (19)
C11—C10—H10120.4C9—N4—H4A120 (2)
C9—C10—H10120.4H4B—N4—H4A120 (3)
N2—C1—C2—C3179.4 (3)C11—C12—C13—N30.3 (4)
N1—C1—C2—C30.2 (4)C11—C12—C13—C14179.4 (3)
C1—C2—C3—C40.6 (5)O3—C15—C16—Cl6154.9 (2)
C2—C3—C4—C50.0 (5)O4—C15—C16—Cl626.5 (3)
C3—C4—C5—N11.4 (4)O3—C15—C16—Cl531.7 (3)
C3—C4—C5—C6177.7 (3)O4—C15—C16—Cl5149.7 (2)
O2—C7—C8—Cl15.5 (3)O3—C15—C16—Cl486.5 (2)
O1—C7—C8—Cl1174.28 (18)O4—C15—C16—Cl492.2 (2)
O2—C7—C8—Cl2115.8 (2)N2—C1—N1—C5179.0 (2)
O1—C7—C8—Cl264.5 (2)C2—C1—N1—C51.7 (4)
O2—C7—C8—Cl3125.8 (2)C4—C5—N1—C12.3 (4)
O1—C7—C8—Cl354.0 (3)C6—C5—N1—C1176.9 (2)
N4—C9—C10—C11179.3 (3)N4—C9—N3—C13178.8 (2)
N3—C9—C10—C111.5 (4)C10—C9—N3—C131.9 (4)
C9—C10—C11—C120.3 (5)C12—C13—N3—C91.0 (4)
C10—C11—C12—C130.6 (5)C14—C13—N3—C9179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.90 (1)1.96 (1)2.856 (3)172 (3)
N2—H2B···O4i0.89 (1)1.95 (1)2.825 (3)167 (3)
N2—H2A···O10.89 (1)2.11 (1)2.982 (3)167 (3)
N3—H3A···O20.90 (1)1.84 (1)2.729 (2)175 (3)
N4—H4B···O10.88 (1)2.06 (1)2.929 (3)167 (3)
N4—H4A···O3ii0.88 (1)2.29 (2)3.096 (3)152 (3)
C6—H6C···O1iii0.962.503.413 (4)158
C11—H11···O4iv0.932.503.371 (4)157
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.90 (1)1.964 (11)2.856 (3)172 (3)
N2—H2B···O4i0.89 (1)1.954 (12)2.825 (3)167 (3)
N2—H2A···O10.89 (1)2.111 (13)2.982 (3)167 (3)
N3—H3A···O20.90 (1)1.836 (10)2.729 (2)175 (3)
N4—H4B···O10.88 (1)2.064 (12)2.929 (3)167 (3)
N4—H4A···O3ii0.88 (1)2.294 (18)3.096 (3)152 (3)
C6—H6C···O1iii0.962.503.413 (4)158
C11—H11···O4iv0.932.503.371 (4)157
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z+1.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2001). Curr. Sci. 81, 1038–1055.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.  Web of Science CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197–m199.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o391-o392
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds