organic compounds
3,5-Dimethyl-2,6-diphenylpiperidine
aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bPG and Research Department of Chemistry, Government Arts College, Coimbatore 641 018, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com
In the title compound, C19H23N, the piperidine ring has a chair conformation. The phenyl rings are inclined to one another by 52.76 (16)°. One of the methyl substituents on the piperidine ring is axial while the other is equatorial, like the phenyl rings. In the crystal, molecules are linked via C—H⋯π interactions, forming zigzag chains along [001].
CCDC reference: 989359
Related literature
For the biological activity of piperidine derivatives, see: Parthiban et al. (2005, 2009a,b, 2011); Aridoss et al. (2007). For related structures, see: Aravindhan et al. (2009); Sugumar et al. (2013). For ring puckering analysis, see: Cremer & Pople (1975); Nardelli (1983).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 989359
10.1107/S160053681400470X/su2706sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681400470X/su2706Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681400470X/su2706Isup3.cml
A mixture of 3,5-dimethyl-2,6-diphenylpiperidin-4-one (10 mmol) and 80% hydrazine hydrate (3.1 ml) in diethylene glycol (40 ml) was heated on a steam bath for 2 h. Potassium hydroxide pellets (2.8 g) were added to the mixture and the contents were refluxed vigorously on a heating mantle for another 2 h and then the reaction mixture was cooled. The product was filtered and recrystallized from ethanol yielding block-like colourless crystals.
H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93–0.98 Å, N—H =0.86 Å with Uiso(H)= 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A view along the a axis of the crystal packing of the title compound. The centroids of phenyl rings C1—C6 and C12—C17 are marked with red dots and the dashed lines indicate the C—H···π interactions (see Table 1). |
C19H23N | Z = 8 |
Mr = 265.38 | F(000) = 1152 |
Orthorhombic, Iba2 | Dx = 1.106 Mg m−3 |
Hall symbol: I 2 -2 c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1689 (8) Å | µ = 0.06 mm−1 |
b = 43.141 (3) Å | T = 293 K |
c = 7.2658 (5) Å | Block, colourless |
V = 3187.5 (4) Å3 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 3900 independent reflections |
Radiation source: fine-focus sealed tube | 2652 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω and ϕ scan | θmax = 28.3°, θmin = 0.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −9→13 |
Tmin = 0.978, Tmax = 0.984 | k = −57→45 |
8658 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.216 | H-atom parameters constrained |
S = 0.78 | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
3900 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.22 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
C19H23N | V = 3187.5 (4) Å3 |
Mr = 265.38 | Z = 8 |
Orthorhombic, Iba2 | Mo Kα radiation |
a = 10.1689 (8) Å | µ = 0.06 mm−1 |
b = 43.141 (3) Å | T = 293 K |
c = 7.2658 (5) Å | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 3900 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2652 reflections with I > 2σ(I) |
Tmin = 0.978, Tmax = 0.984 | Rint = 0.022 |
8658 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 1 restraint |
wR(F2) = 0.216 | H-atom parameters constrained |
S = 0.78 | Δρmax = 0.22 e Å−3 |
3900 reflections | Δρmin = −0.24 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2691 (3) | 0.31401 (6) | 0.3689 (4) | 0.0682 (6) | |
H1 | 0.3282 | 0.3302 | 0.3853 | 0.082* | |
C2 | 0.2822 (3) | 0.28735 (6) | 0.4756 (5) | 0.0776 (7) | |
H2 | 0.3496 | 0.2857 | 0.5614 | 0.093* | |
C3 | 0.1939 (3) | 0.26338 (6) | 0.4524 (5) | 0.0800 (8) | |
H3 | 0.2025 | 0.2453 | 0.5211 | 0.096* | |
C4 | 0.0933 (3) | 0.26627 (6) | 0.3277 (4) | 0.0763 (7) | |
H4 | 0.0329 | 0.2503 | 0.3138 | 0.092* | |
C5 | 0.0812 (2) | 0.29289 (5) | 0.2223 (3) | 0.0661 (6) | |
H5 | 0.0121 | 0.2946 | 0.1391 | 0.079* | |
C6 | 0.1706 (2) | 0.31695 (5) | 0.2394 (3) | 0.0562 (5) | |
C7 | 0.1597 (2) | 0.34446 (5) | 0.1132 (3) | 0.0573 (5) | |
H7 | 0.0660 | 0.3479 | 0.0886 | 0.069* | |
C8 | 0.2284 (2) | 0.33925 (6) | −0.0733 (3) | 0.0670 (6) | |
H8 | 0.1847 | 0.3219 | −0.1349 | 0.080* | |
C9 | 0.2068 (3) | 0.36835 (7) | −0.1906 (4) | 0.0779 (7) | |
H9A | 0.2541 | 0.3660 | −0.3058 | 0.093* | |
H9B | 0.1140 | 0.3701 | −0.2194 | 0.093* | |
C10 | 0.2518 (3) | 0.39803 (6) | −0.0974 (4) | 0.0702 (7) | |
H10 | 0.3471 | 0.3968 | −0.0789 | 0.084* | |
C11 | 0.1862 (2) | 0.40069 (5) | 0.0914 (4) | 0.0635 (6) | |
H11 | 0.0910 | 0.4027 | 0.0734 | 0.076* | |
C12 | 0.2343 (2) | 0.42859 (5) | 0.1987 (4) | 0.0662 (6) | |
C13 | 0.1532 (3) | 0.45364 (6) | 0.2290 (6) | 0.0918 (10) | |
H13 | 0.0681 | 0.4535 | 0.1821 | 0.110* | |
C14 | 0.1971 (4) | 0.47910 (6) | 0.3290 (8) | 0.1080 (13) | |
H14 | 0.1413 | 0.4958 | 0.3498 | 0.130* | |
C15 | 0.3227 (4) | 0.47958 (7) | 0.3968 (6) | 0.1008 (12) | |
H15 | 0.3521 | 0.4965 | 0.4651 | 0.121* | |
C16 | 0.4041 (4) | 0.45530 (6) | 0.3639 (5) | 0.0914 (9) | |
H16 | 0.4902 | 0.4559 | 0.4070 | 0.110* | |
C17 | 0.3604 (3) | 0.42965 (7) | 0.2667 (4) | 0.0780 (7) | |
H17 | 0.4168 | 0.4130 | 0.2474 | 0.094* | |
C18 | 0.2231 (5) | 0.42606 (9) | −0.2189 (6) | 0.1090 (12) | |
H18A | 0.2522 | 0.4446 | −0.1579 | 0.163* | |
H18B | 0.1303 | 0.4274 | −0.2414 | 0.163* | |
H18C | 0.2688 | 0.4239 | −0.3338 | 0.163* | |
C19 | 0.3720 (3) | 0.33137 (7) | −0.0545 (5) | 0.0794 (8) | |
H19A | 0.4097 | 0.3285 | −0.1745 | 0.119* | |
H19B | 0.3813 | 0.3126 | 0.0154 | 0.119* | |
H19C | 0.4167 | 0.3480 | 0.0075 | 0.119* | |
N1 | 0.21151 (19) | 0.37261 (4) | 0.1973 (3) | 0.0599 (5) | |
H1A | 0.2533 | 0.3727 | 0.3002 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0619 (13) | 0.0621 (12) | 0.0804 (17) | −0.0039 (9) | −0.0054 (12) | −0.0084 (12) |
C2 | 0.0826 (18) | 0.0710 (15) | 0.0793 (18) | 0.0082 (13) | −0.0061 (14) | −0.0033 (14) |
C3 | 0.097 (2) | 0.0625 (14) | 0.0808 (18) | 0.0029 (13) | 0.0222 (16) | −0.0044 (13) |
C4 | 0.0858 (17) | 0.0669 (14) | 0.0760 (16) | −0.0181 (12) | 0.0179 (15) | −0.0179 (13) |
C5 | 0.0602 (12) | 0.0750 (13) | 0.0630 (12) | −0.0131 (10) | 0.0065 (11) | −0.0173 (11) |
C6 | 0.0497 (10) | 0.0601 (11) | 0.0588 (11) | −0.0007 (8) | 0.0057 (9) | −0.0152 (10) |
C7 | 0.0464 (9) | 0.0628 (11) | 0.0628 (13) | −0.0018 (8) | −0.0011 (10) | −0.0086 (10) |
C8 | 0.0657 (15) | 0.0756 (14) | 0.0598 (13) | −0.0068 (11) | 0.0001 (11) | −0.0185 (11) |
C9 | 0.0816 (16) | 0.0959 (18) | 0.0561 (13) | −0.0100 (14) | −0.0074 (12) | −0.0069 (13) |
C10 | 0.0691 (14) | 0.0829 (16) | 0.0587 (14) | −0.0036 (12) | −0.0055 (11) | 0.0032 (12) |
C11 | 0.0549 (11) | 0.0617 (13) | 0.0740 (14) | 0.0011 (9) | −0.0030 (12) | −0.0011 (11) |
C12 | 0.0715 (14) | 0.0552 (11) | 0.0721 (15) | −0.0054 (10) | 0.0068 (13) | −0.0006 (11) |
C13 | 0.0821 (17) | 0.0632 (14) | 0.130 (3) | −0.0011 (12) | 0.012 (2) | −0.0039 (17) |
C14 | 0.126 (3) | 0.0569 (15) | 0.141 (3) | −0.0040 (16) | 0.025 (3) | −0.0173 (19) |
C15 | 0.132 (3) | 0.0689 (18) | 0.102 (2) | −0.0337 (18) | 0.016 (2) | −0.0117 (17) |
C16 | 0.099 (2) | 0.0863 (18) | 0.089 (2) | −0.0260 (16) | −0.0070 (18) | −0.0075 (15) |
C17 | 0.0792 (16) | 0.0765 (15) | 0.0784 (17) | −0.0010 (13) | −0.0083 (14) | −0.0101 (13) |
C18 | 0.138 (3) | 0.107 (3) | 0.081 (2) | −0.005 (2) | −0.019 (2) | 0.026 (2) |
C19 | 0.0694 (16) | 0.0872 (17) | 0.0817 (17) | 0.0035 (13) | 0.0160 (14) | −0.0152 (14) |
N1 | 0.0650 (11) | 0.0579 (10) | 0.0569 (11) | −0.0023 (7) | −0.0026 (9) | −0.0064 (9) |
C1—C6 | 1.380 (4) | C10—H10 | 0.9800 |
C1—C2 | 1.394 (4) | C11—N1 | 1.458 (3) |
C1—H1 | 0.9300 | C11—C12 | 1.516 (4) |
C2—C3 | 1.380 (4) | C11—H11 | 0.9800 |
C2—H2 | 0.9300 | C12—C17 | 1.374 (4) |
C3—C4 | 1.372 (5) | C12—C13 | 1.378 (4) |
C3—H3 | 0.9300 | C13—C14 | 1.391 (5) |
C4—C5 | 1.386 (4) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C14—C15 | 1.369 (6) |
C5—C6 | 1.385 (3) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—C16 | 1.356 (5) |
C6—C7 | 1.504 (3) | C15—H15 | 0.9300 |
C7—N1 | 1.458 (3) | C16—C17 | 1.386 (4) |
C7—C8 | 1.541 (3) | C16—H16 | 0.9300 |
C7—H7 | 0.9800 | C17—H17 | 0.9300 |
C8—C19 | 1.506 (4) | C18—H18A | 0.9600 |
C8—C9 | 1.533 (4) | C18—H18B | 0.9600 |
C8—H8 | 0.9800 | C18—H18C | 0.9600 |
C9—C10 | 1.519 (4) | C19—H19A | 0.9600 |
C9—H9A | 0.9700 | C19—H19B | 0.9600 |
C9—H9B | 0.9700 | C19—H19C | 0.9600 |
C10—C18 | 1.525 (4) | N1—H1A | 0.8600 |
C10—C11 | 1.530 (4) | ||
C6—C1—C2 | 121.6 (2) | C11—C10—H10 | 108.2 |
C6—C1—H1 | 119.2 | N1—C11—C12 | 109.3 (2) |
C2—C1—H1 | 119.2 | N1—C11—C10 | 109.5 (2) |
C3—C2—C1 | 119.2 (3) | C12—C11—C10 | 112.3 (2) |
C3—C2—H2 | 120.4 | N1—C11—H11 | 108.5 |
C1—C2—H2 | 120.4 | C12—C11—H11 | 108.5 |
C4—C3—C2 | 119.8 (3) | C10—C11—H11 | 108.5 |
C4—C3—H3 | 120.1 | C17—C12—C13 | 118.4 (3) |
C2—C3—H3 | 120.1 | C17—C12—C11 | 120.8 (2) |
C3—C4—C5 | 120.5 (2) | C13—C12—C11 | 120.8 (3) |
C3—C4—H4 | 119.8 | C12—C13—C14 | 120.7 (3) |
C5—C4—H4 | 119.8 | C12—C13—H13 | 119.7 |
C6—C5—C4 | 120.8 (2) | C14—C13—H13 | 119.7 |
C6—C5—H5 | 119.6 | C15—C14—C13 | 120.0 (3) |
C4—C5—H5 | 119.6 | C15—C14—H14 | 120.0 |
C1—C6—C5 | 118.0 (2) | C13—C14—H14 | 120.0 |
C1—C6—C7 | 122.80 (19) | C16—C15—C14 | 119.6 (3) |
C5—C6—C7 | 119.2 (2) | C16—C15—H15 | 120.2 |
N1—C7—C6 | 112.05 (18) | C14—C15—H15 | 120.2 |
N1—C7—C8 | 109.02 (19) | C15—C16—C17 | 120.7 (3) |
C6—C7—C8 | 112.79 (19) | C15—C16—H16 | 119.6 |
N1—C7—H7 | 107.6 | C17—C16—H16 | 119.6 |
C6—C7—H7 | 107.6 | C12—C17—C16 | 120.6 (3) |
C8—C7—H7 | 107.6 | C12—C17—H17 | 119.7 |
C19—C8—C9 | 112.0 (2) | C16—C17—H17 | 119.7 |
C19—C8—C7 | 113.1 (2) | C10—C18—H18A | 109.5 |
C9—C8—C7 | 107.7 (2) | C10—C18—H18B | 109.5 |
C19—C8—H8 | 107.9 | H18A—C18—H18B | 109.5 |
C9—C8—H8 | 107.9 | C10—C18—H18C | 109.5 |
C7—C8—H8 | 107.9 | H18A—C18—H18C | 109.5 |
C10—C9—C8 | 113.5 (2) | H18B—C18—H18C | 109.5 |
C10—C9—H9A | 108.9 | C8—C19—H19A | 109.5 |
C8—C9—H9A | 108.9 | C8—C19—H19B | 109.5 |
C10—C9—H9B | 108.9 | H19A—C19—H19B | 109.5 |
C8—C9—H9B | 108.9 | C8—C19—H19C | 109.5 |
H9A—C9—H9B | 107.7 | H19A—C19—H19C | 109.5 |
C9—C10—C18 | 110.7 (3) | H19B—C19—H19C | 109.5 |
C9—C10—C11 | 109.4 (2) | C11—N1—C7 | 114.0 (2) |
C18—C10—C11 | 112.1 (3) | C11—N1—H1A | 123.0 |
C9—C10—H10 | 108.2 | C7—N1—H1A | 123.0 |
C18—C10—H10 | 108.2 | ||
C6—C1—C2—C3 | −0.5 (4) | C9—C10—C11—N1 | 54.0 (3) |
C1—C2—C3—C4 | −1.2 (5) | C18—C10—C11—N1 | 177.1 (2) |
C2—C3—C4—C5 | 1.2 (4) | C9—C10—C11—C12 | 175.7 (2) |
C3—C4—C5—C6 | 0.6 (4) | C18—C10—C11—C12 | −61.2 (3) |
C2—C1—C6—C5 | 2.2 (4) | N1—C11—C12—C17 | 52.2 (3) |
C2—C1—C6—C7 | −175.6 (2) | C10—C11—C12—C17 | −69.6 (3) |
C4—C5—C6—C1 | −2.3 (3) | N1—C11—C12—C13 | −128.4 (3) |
C4—C5—C6—C7 | 175.7 (2) | C10—C11—C12—C13 | 109.8 (3) |
C1—C6—C7—N1 | −30.0 (3) | C17—C12—C13—C14 | −1.2 (5) |
C5—C6—C7—N1 | 152.2 (2) | C11—C12—C13—C14 | 179.4 (3) |
C1—C6—C7—C8 | 93.5 (3) | C12—C13—C14—C15 | 0.7 (6) |
C5—C6—C7—C8 | −84.3 (2) | C13—C14—C15—C16 | 0.8 (7) |
N1—C7—C8—C19 | 67.8 (3) | C14—C15—C16—C17 | −1.8 (6) |
C6—C7—C8—C19 | −57.4 (3) | C13—C12—C17—C16 | 0.2 (5) |
N1—C7—C8—C9 | −56.5 (2) | C11—C12—C17—C16 | 179.6 (3) |
C6—C7—C8—C9 | 178.34 (19) | C15—C16—C17—C12 | 1.3 (5) |
C19—C8—C9—C10 | −69.9 (3) | C12—C11—N1—C7 | 175.44 (19) |
C7—C8—C9—C10 | 55.1 (3) | C10—C11—N1—C7 | −61.1 (3) |
C8—C9—C10—C18 | −178.0 (3) | C6—C7—N1—C11 | −171.69 (18) |
C8—C9—C10—C11 | −54.1 (3) | C8—C7—N1—C11 | 62.7 (2) |
Cg1 and Cg2 are the centroids of rings C1–C6 and C12–C17, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg1i | 0.93 | 2.90 | 3.187 (2) | 170 |
C18—H18C···Cg2ii | 0.96 | 2.99 | 3.762 (5) | 139 |
Symmetry codes: (i) −x, y, z−1/2; (ii) x, y, z−1. |
Cg1 and Cg2 are the centroids of rings C1–C6 and C12–C17, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg1i | 0.93 | 2.90 | 3.187 (2) | 170 |
C18—H18C···Cg2ii | 0.96 | 2.99 | 3.762 (5) | 139 |
Symmetry codes: (i) −x, y, z−1/2; (ii) x, y, z−1. |
Acknowledgements
The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities. SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Aravindhan, S., Ponnuswamy, S., Jamesh, M., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1974. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188–204. Web of Science CrossRef CAS Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981–2985. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538. Web of Science CrossRef CAS Google Scholar
Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009b). Bioorg. Med. Chem. Lett. 19, 2981–2985. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sugumar, P., Kayalvizhi, R., Mini, R., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o609. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperidone molecules exhibit a broad-spectrum of biological activities ranging from anti-bacterial to anti-cancer (Parthiban et al., 2005, 2009b, 2011). Isolation from natural products as well as synthesis of new molecules and the stereochemical analysis of this class of compounds are important in the field of medicinal chemistry. 2,6-disubstituted piperidones and their N-substituted derivatives are of great importance due to their significant pharmacological properties (Parthiban et al., 2009a; Aridoss et al., 2007).
The molecular structure of the title molecule is illustrated in Fig. 1. The bond distances and angles are normal and close to those observed previously for similar compounds (Aravindhan et al., 2009; Sugumar et al., 2013).
The piperidine ring adopts a chair conformation as defined by the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the piperidine ring are q2 = 0. 0326 (3) Å, q3 = -0.579 (3) Å, QT = 0.5803 (3) Å,Theta2 2 = 176.78 (3)° and D2(C7—N1) = 0.0050 (1) Å. The dihedral angle between the two phenyl rings is 52.80 (2)°.
In the crystal, molecules are linked via C—H···π interactions forming zigzag chains along [001]; see Table 1 and Fig. 2.