organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­methyl-2,6-di­phenyl­piperidine

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bPG and Research Department of Chemistry, Government Arts College, Coimbatore 641 018, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 27 February 2014; accepted 1 March 2014; online 8 March 2014)

In the title compound, C19H23N, the piperidine ring has a chair conformation. The phenyl rings are inclined to one another by 52.76 (16)°. One of the methyl substituents on the piperidine ring is axial while the other is equatorial, like the phenyl rings. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming zigzag chains along [001].

Related literature

For the biological activity of piperidine derivatives, see: Parthiban et al. (2005[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523-538.], 2009a[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981-2985.],b[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009b). Bioorg. Med. Chem. Lett. 19, 2981-2985.], 2011[Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678-6686.]); Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188-204.]). For related structures, see: Aravindhan et al. (2009[Aravindhan, S., Ponnuswamy, S., Jamesh, M., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1974.]); Sugumar et al. (2013[Sugumar, P., Kayalvizhi, R., Mini, R., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o609.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23N

  • Mr = 265.38

  • Orthorhombic, I b a 2

  • a = 10.1689 (8) Å

  • b = 43.141 (3) Å

  • c = 7.2658 (5) Å

  • V = 3187.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.984

  • 8658 measured reflections

  • 3900 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.216

  • S = 0.78

  • 3900 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1–C6 and C12–C17, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.90 3.187 (2) 170
C18—H18CCg2ii 0.96 2.99 3.762 (5) 139
Symmetry codes: (i) [-x, y, z-{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Piperidone molecules exhibit a broad-spectrum of biological activities ranging from anti-bacterial to anti-cancer (Parthiban et al., 2005, 2009b, 2011). Isolation from natural products as well as synthesis of new molecules and the stereochemical analysis of this class of compounds are important in the field of medicinal chemistry. 2,6-disubstituted piperidones and their N-substituted derivatives are of great importance due to their significant pharmacological properties (Parthiban et al., 2009a; Aridoss et al., 2007).

The molecular structure of the title molecule is illustrated in Fig. 1. The bond distances and angles are normal and close to those observed previously for similar compounds (Aravindhan et al., 2009; Sugumar et al., 2013).

The piperidine ring adopts a chair conformation as defined by the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the piperidine ring are q2 = 0. 0326 (3) Å, q3 = -0.579 (3) Å, QT = 0.5803 (3) Å,Theta2 2 = 176.78 (3)° and D2(C7—N1) = 0.0050 (1) Å. The dihedral angle between the two phenyl rings is 52.80 (2)°.

In the crystal, molecules are linked via C—H···π interactions forming zigzag chains along [001]; see Table 1 and Fig. 2.

Related literature top

For the biological activity of piperidine derivatives, see: Parthiban et al. (2005, 2009a,b, 2011); Aridoss et al. (2007). For related structures, see: Aravindhan et al. (2009); Sugumar et al. (2013). For ring puckering analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of 3,5-dimethyl-2,6-diphenylpiperidin-4-one (10 mmol) and 80% hydrazine hydrate (3.1 ml) in diethylene glycol (40 ml) was heated on a steam bath for 2 h. Potassium hydroxide pellets (2.8 g) were added to the mixture and the contents were refluxed vigorously on a heating mantle for another 2 h and then the reaction mixture was cooled. The product was filtered and recrystallized from ethanol yielding block-like colourless crystals.

Refinement top

H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93–0.98 Å, N—H =0.86 Å with Uiso(H)= 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The centroids of phenyl rings C1—C6 and C12—C17 are marked with red dots and the dashed lines indicate the C—H···π interactions (see Table 1).
c-3,t-5-Dimethyl-r-2,c-6-diphenylpiperidine top
Crystal data top
C19H23NZ = 8
Mr = 265.38F(000) = 1152
Orthorhombic, Iba2Dx = 1.106 Mg m3
Hall symbol: I 2 -2 cMo Kα radiation, λ = 0.71073 Å
a = 10.1689 (8) ŵ = 0.06 mm1
b = 43.141 (3) ÅT = 293 K
c = 7.2658 (5) ÅBlock, colourless
V = 3187.5 (4) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3900 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scanθmax = 28.3°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 913
Tmin = 0.978, Tmax = 0.984k = 5745
8658 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 0.78 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
3900 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C19H23NV = 3187.5 (4) Å3
Mr = 265.38Z = 8
Orthorhombic, Iba2Mo Kα radiation
a = 10.1689 (8) ŵ = 0.06 mm1
b = 43.141 (3) ÅT = 293 K
c = 7.2658 (5) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3900 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2652 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.022
8658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.216H-atom parameters constrained
S = 0.78Δρmax = 0.22 e Å3
3900 reflectionsΔρmin = 0.24 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2691 (3)0.31401 (6)0.3689 (4)0.0682 (6)
H10.32820.33020.38530.082*
C20.2822 (3)0.28735 (6)0.4756 (5)0.0776 (7)
H20.34960.28570.56140.093*
C30.1939 (3)0.26338 (6)0.4524 (5)0.0800 (8)
H30.20250.24530.52110.096*
C40.0933 (3)0.26627 (6)0.3277 (4)0.0763 (7)
H40.03290.25030.31380.092*
C50.0812 (2)0.29289 (5)0.2223 (3)0.0661 (6)
H50.01210.29460.13910.079*
C60.1706 (2)0.31695 (5)0.2394 (3)0.0562 (5)
C70.1597 (2)0.34446 (5)0.1132 (3)0.0573 (5)
H70.06600.34790.08860.069*
C80.2284 (2)0.33925 (6)0.0733 (3)0.0670 (6)
H80.18470.32190.13490.080*
C90.2068 (3)0.36835 (7)0.1906 (4)0.0779 (7)
H9A0.25410.36600.30580.093*
H9B0.11400.37010.21940.093*
C100.2518 (3)0.39803 (6)0.0974 (4)0.0702 (7)
H100.34710.39680.07890.084*
C110.1862 (2)0.40069 (5)0.0914 (4)0.0635 (6)
H110.09100.40270.07340.076*
C120.2343 (2)0.42859 (5)0.1987 (4)0.0662 (6)
C130.1532 (3)0.45364 (6)0.2290 (6)0.0918 (10)
H130.06810.45350.18210.110*
C140.1971 (4)0.47910 (6)0.3290 (8)0.1080 (13)
H140.14130.49580.34980.130*
C150.3227 (4)0.47958 (7)0.3968 (6)0.1008 (12)
H150.35210.49650.46510.121*
C160.4041 (4)0.45530 (6)0.3639 (5)0.0914 (9)
H160.49020.45590.40700.110*
C170.3604 (3)0.42965 (7)0.2667 (4)0.0780 (7)
H170.41680.41300.24740.094*
C180.2231 (5)0.42606 (9)0.2189 (6)0.1090 (12)
H18A0.25220.44460.15790.163*
H18B0.13030.42740.24140.163*
H18C0.26880.42390.33380.163*
C190.3720 (3)0.33137 (7)0.0545 (5)0.0794 (8)
H19A0.40970.32850.17450.119*
H19B0.38130.31260.01540.119*
H19C0.41670.34800.00750.119*
N10.21151 (19)0.37261 (4)0.1973 (3)0.0599 (5)
H1A0.25330.37270.30020.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0619 (13)0.0621 (12)0.0804 (17)0.0039 (9)0.0054 (12)0.0084 (12)
C20.0826 (18)0.0710 (15)0.0793 (18)0.0082 (13)0.0061 (14)0.0033 (14)
C30.097 (2)0.0625 (14)0.0808 (18)0.0029 (13)0.0222 (16)0.0044 (13)
C40.0858 (17)0.0669 (14)0.0760 (16)0.0181 (12)0.0179 (15)0.0179 (13)
C50.0602 (12)0.0750 (13)0.0630 (12)0.0131 (10)0.0065 (11)0.0173 (11)
C60.0497 (10)0.0601 (11)0.0588 (11)0.0007 (8)0.0057 (9)0.0152 (10)
C70.0464 (9)0.0628 (11)0.0628 (13)0.0018 (8)0.0011 (10)0.0086 (10)
C80.0657 (15)0.0756 (14)0.0598 (13)0.0068 (11)0.0001 (11)0.0185 (11)
C90.0816 (16)0.0959 (18)0.0561 (13)0.0100 (14)0.0074 (12)0.0069 (13)
C100.0691 (14)0.0829 (16)0.0587 (14)0.0036 (12)0.0055 (11)0.0032 (12)
C110.0549 (11)0.0617 (13)0.0740 (14)0.0011 (9)0.0030 (12)0.0011 (11)
C120.0715 (14)0.0552 (11)0.0721 (15)0.0054 (10)0.0068 (13)0.0006 (11)
C130.0821 (17)0.0632 (14)0.130 (3)0.0011 (12)0.012 (2)0.0039 (17)
C140.126 (3)0.0569 (15)0.141 (3)0.0040 (16)0.025 (3)0.0173 (19)
C150.132 (3)0.0689 (18)0.102 (2)0.0337 (18)0.016 (2)0.0117 (17)
C160.099 (2)0.0863 (18)0.089 (2)0.0260 (16)0.0070 (18)0.0075 (15)
C170.0792 (16)0.0765 (15)0.0784 (17)0.0010 (13)0.0083 (14)0.0101 (13)
C180.138 (3)0.107 (3)0.081 (2)0.005 (2)0.019 (2)0.026 (2)
C190.0694 (16)0.0872 (17)0.0817 (17)0.0035 (13)0.0160 (14)0.0152 (14)
N10.0650 (11)0.0579 (10)0.0569 (11)0.0023 (7)0.0026 (9)0.0064 (9)
Geometric parameters (Å, º) top
C1—C61.380 (4)C10—H100.9800
C1—C21.394 (4)C11—N11.458 (3)
C1—H10.9300C11—C121.516 (4)
C2—C31.380 (4)C11—H110.9800
C2—H20.9300C12—C171.374 (4)
C3—C41.372 (5)C12—C131.378 (4)
C3—H30.9300C13—C141.391 (5)
C4—C51.386 (4)C13—H130.9300
C4—H40.9300C14—C151.369 (6)
C5—C61.385 (3)C14—H140.9300
C5—H50.9300C15—C161.356 (5)
C6—C71.504 (3)C15—H150.9300
C7—N11.458 (3)C16—C171.386 (4)
C7—C81.541 (3)C16—H160.9300
C7—H70.9800C17—H170.9300
C8—C191.506 (4)C18—H18A0.9600
C8—C91.533 (4)C18—H18B0.9600
C8—H80.9800C18—H18C0.9600
C9—C101.519 (4)C19—H19A0.9600
C9—H9A0.9700C19—H19B0.9600
C9—H9B0.9700C19—H19C0.9600
C10—C181.525 (4)N1—H1A0.8600
C10—C111.530 (4)
C6—C1—C2121.6 (2)C11—C10—H10108.2
C6—C1—H1119.2N1—C11—C12109.3 (2)
C2—C1—H1119.2N1—C11—C10109.5 (2)
C3—C2—C1119.2 (3)C12—C11—C10112.3 (2)
C3—C2—H2120.4N1—C11—H11108.5
C1—C2—H2120.4C12—C11—H11108.5
C4—C3—C2119.8 (3)C10—C11—H11108.5
C4—C3—H3120.1C17—C12—C13118.4 (3)
C2—C3—H3120.1C17—C12—C11120.8 (2)
C3—C4—C5120.5 (2)C13—C12—C11120.8 (3)
C3—C4—H4119.8C12—C13—C14120.7 (3)
C5—C4—H4119.8C12—C13—H13119.7
C6—C5—C4120.8 (2)C14—C13—H13119.7
C6—C5—H5119.6C15—C14—C13120.0 (3)
C4—C5—H5119.6C15—C14—H14120.0
C1—C6—C5118.0 (2)C13—C14—H14120.0
C1—C6—C7122.80 (19)C16—C15—C14119.6 (3)
C5—C6—C7119.2 (2)C16—C15—H15120.2
N1—C7—C6112.05 (18)C14—C15—H15120.2
N1—C7—C8109.02 (19)C15—C16—C17120.7 (3)
C6—C7—C8112.79 (19)C15—C16—H16119.6
N1—C7—H7107.6C17—C16—H16119.6
C6—C7—H7107.6C12—C17—C16120.6 (3)
C8—C7—H7107.6C12—C17—H17119.7
C19—C8—C9112.0 (2)C16—C17—H17119.7
C19—C8—C7113.1 (2)C10—C18—H18A109.5
C9—C8—C7107.7 (2)C10—C18—H18B109.5
C19—C8—H8107.9H18A—C18—H18B109.5
C9—C8—H8107.9C10—C18—H18C109.5
C7—C8—H8107.9H18A—C18—H18C109.5
C10—C9—C8113.5 (2)H18B—C18—H18C109.5
C10—C9—H9A108.9C8—C19—H19A109.5
C8—C9—H9A108.9C8—C19—H19B109.5
C10—C9—H9B108.9H19A—C19—H19B109.5
C8—C9—H9B108.9C8—C19—H19C109.5
H9A—C9—H9B107.7H19A—C19—H19C109.5
C9—C10—C18110.7 (3)H19B—C19—H19C109.5
C9—C10—C11109.4 (2)C11—N1—C7114.0 (2)
C18—C10—C11112.1 (3)C11—N1—H1A123.0
C9—C10—H10108.2C7—N1—H1A123.0
C18—C10—H10108.2
C6—C1—C2—C30.5 (4)C9—C10—C11—N154.0 (3)
C1—C2—C3—C41.2 (5)C18—C10—C11—N1177.1 (2)
C2—C3—C4—C51.2 (4)C9—C10—C11—C12175.7 (2)
C3—C4—C5—C60.6 (4)C18—C10—C11—C1261.2 (3)
C2—C1—C6—C52.2 (4)N1—C11—C12—C1752.2 (3)
C2—C1—C6—C7175.6 (2)C10—C11—C12—C1769.6 (3)
C4—C5—C6—C12.3 (3)N1—C11—C12—C13128.4 (3)
C4—C5—C6—C7175.7 (2)C10—C11—C12—C13109.8 (3)
C1—C6—C7—N130.0 (3)C17—C12—C13—C141.2 (5)
C5—C6—C7—N1152.2 (2)C11—C12—C13—C14179.4 (3)
C1—C6—C7—C893.5 (3)C12—C13—C14—C150.7 (6)
C5—C6—C7—C884.3 (2)C13—C14—C15—C160.8 (7)
N1—C7—C8—C1967.8 (3)C14—C15—C16—C171.8 (6)
C6—C7—C8—C1957.4 (3)C13—C12—C17—C160.2 (5)
N1—C7—C8—C956.5 (2)C11—C12—C17—C16179.6 (3)
C6—C7—C8—C9178.34 (19)C15—C16—C17—C121.3 (5)
C19—C8—C9—C1069.9 (3)C12—C11—N1—C7175.44 (19)
C7—C8—C9—C1055.1 (3)C10—C11—N1—C761.1 (3)
C8—C9—C10—C18178.0 (3)C6—C7—N1—C11171.69 (18)
C8—C9—C10—C1154.1 (3)C8—C7—N1—C1162.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C12–C17, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.903.187 (2)170
C18—H18C···Cg2ii0.962.993.762 (5)139
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C12–C17, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.903.187 (2)170
C18—H18C···Cg2ii0.962.993.762 (5)139
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z1.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities. SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAravindhan, S., Ponnuswamy, S., Jamesh, M., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188–204.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009b). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugumar, P., Kayalvizhi, R., Mini, R., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o609.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds