organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o429-o430

5-(4-Fluoro­phen­yl)-2H-pyrazol-1-ium 2,2,2-tri­fluoro­acetate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 2 March 2014; accepted 6 March 2014; online 15 March 2014)

The title salt, C9H8FN2+·C2F3O2, crystallizes with two independent cations (A and B) and two independent anions (C and D) in the asymmetric unit. In the cations, the dihedral angles between the benzene and pyrazolium rings are 23.7 (3)° in cation A and 1.8 (8)° in cation B. In the crystal, each anion links to the two cations via N—H⋯O hydrogen bonds, forming a U-shaped unit with an R44(14) ring motif. These U-shaped units stack along the a axis and are linked via C—H⋯O and C—H⋯F hydrogen bonds, forming slabs lying parallel to (100). Within the slabs there are ππ inter­actions between the pyrazolium rings [inter-centroid distance = 3.6326 (15) Å] and between the benzene rings [inter-centroid distance = 3.7244 (16) Å]. In the anions, the F atoms of the tri­fluoro­methyl groups are disordered over two sets of sites, with refined occupancy ratios of 0.58 (3):0.42, 0.540 (14):0.46 (14), and 0.55 (2):0.45 (2) for anion C, and 0.73 (5):0.27 (5), 0.63 (5):0.37 (5), and 0.57 (8):0.43 (8) for anion D.

Related literature

For general background to pyrazole derivatives and their pharmacological activities, see: Ohno et al. (2004[Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15-26.]); Patel et al. (2010[Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.]); Siu et al. (2008[Siu, K. K. W., Lee, J. E., Smith, G. D., Horvatin-Mrakovcic, C. & Howell, P. L. (2008). Acta Cryst. F64, 343-350.]); Sullivan et al. (2006[Sullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). Chem. Biol. 1, 43-53.]); Ragavan et al. (2009[Ragavan, R. V., Vijayakumar, V. & SuchetaKumari, N. (2009). Eur. J. Med. Chem. 44, 3852-3857.], 2010[Ragavan, R. V., Vijayakumar, V. & SuchetaKumari, N. (2010). Eur. J. Med. Chem. 45, 1173-1180.]). For related structures, see: Abdul-Ghani et al. (1995[Abdul-Ghani, M., Pritchard, R. G. & Tipping, A. E. (1995). Acta Cryst. C51, 770-772.]); Ge et al. (2011[Ge, Y. Q., Zhang, J. M., Wang, G. L., Xu, H. & Shi, B. (2011). Acta Cryst. E67, o1387.]); Han et al. (2011[Han, Z., Zheng, H.-L. & Tian, X.-L. (2011). Acta Cryst. E67, o511.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]); Yamuna et al. (2013[Yamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425-o1426.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8FN2+·C2F3O2

  • Mr = 276.19

  • Monoclinic, P 21

  • a = 6.7828 (2) Å

  • b = 16.8263 (6) Å

  • c = 10.4004 (4) Å

  • β = 93.354 (3)°

  • V = 1184.96 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 173 K

  • 0.32 × 0.14 × 0.12 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.867, Tmax = 1.000

  • 13825 measured reflections

  • 7270 independent reflections

  • 5352 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.110

  • S = 1.02

  • 7270 reflections

  • 419 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯O2D 0.94 (4) 1.75 (4) 2.656 (3) 162 (4)
N2B—H2B⋯O2C 0.87 (5) 1.77 (5) 2.634 (3) 175 (4)
N1A—H1A⋯O1Di 0.98 (4) 1.69 (4) 2.665 (3) 170 (3)
N2A—H2A⋯O1Ci 0.88 (4) 1.77 (4) 2.649 (3) 180 (4)
C1B—H1BA⋯O1Cii 0.93 2.59 3.256 (3) 129
C2B—H2BA⋯O1Dii 0.93 2.48 3.384 (3) 165
C5B—H5B⋯O2C 0.93 2.50 3.385 (4) 159
C9A—H9A⋯F2DAiii 0.93 2.39 3.26 (3) 156
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyrazoles and their derivatives exhibit a variety of pharmacological properties, for example, antibacterial and anti-inflammatory activities (Sullivan et al., 2006; Patel et al., 2010), nucleosidase inhibitory activity against staphylococcusaureus (Siu et al., 2008), and antimicrobial activity (Ragavan et al. 2009, 2010). Fluorinated pyrazoles have also been shown to possess interesting biological activities, for example, as herbicides (Ohno et al., 2004). Recently, crystal structures of 3,5-bis(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (Jasinski et al., 2010), 3-aminopyrazolium trifluoroacetate (Yamuna et al., 2013) have been reported by our research group. The crystal structures of some related compounds, viz., 1-trifluoroacetyl-3-trifluoromethyl-3a,8b-dihydro-1H,4H-indeno[1,2-c]pyrazole (Abdul-Ghani et al., 1995), ethyl 1-(4-chlorobenzyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxylate (Ge et al., 2011) and ethyl 1-benzyl-3-(4-fluorophenyl)-1H-pyrazole-5-carboxylate (Han et al., 2011) have been reported. In view of the importance of pyrazole derivatives, herein we report on the crystal structure of the title salt.

The title salt crystallizes with two independent cations (A and B) and two independent anions (C and D) in the asymmetric unit (Fig 1). In the cations, the dihedral angles between the benzene and pyrazolium rings is 23.7 (3)° in cation A and 1.8 (8)° in cation B. The bond lengths are in normal ranges (Allen et al., 1987).

In the crystal, each anion links to the two cations via N-H···O hydrogen bonds forming a U-shaped unit with an R44(14) ring motif (Table 1 and Fig. 2). These U-shaped units stack along the a axis and are linked via C-H···O and C-H···F hydrogen bonds forming slabs lying parallel to (100) [Fig. 2 and Table 1]. Within the slabs there are ππ interactions involving the pyrazolium rings (Cg1—Cg3i = 3.6326 (15) Å) and between the benzene rings (Cg2—Cg4i = 3.7244 (16) Å) [where Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N1A/N2A/C1A-C3A, C4A–C9A, N1B/N2B/C1B-C3B and C4B–C9B, respectively; symmetry code: (i) x-1, y, z].

Related literature top

For general background to pyrazole derivatives and their pharmacological activities, see: Ohno et al. (2004); Patel et al. (2010); Siu et al. (2008); Sullivan et al. (2006); Ragavan et al. (2009, 2010). For related structures, see: Abdul-Ghani et al. (1995); Ge et al. (2011); Han et al. (2011); Jasinski et al. (2010); Yamuna et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

3-(4-Fluoro-phenyl)-1H-pyrazole (0.2 g, 3.0833 mmol; Sigma-Aldrich) was dissolved in a mixture of trifluoroacetic and methanol (1:3 v/v) and stirred for 10 minutes at 313 K. The resulting solution was allowed to cool slowly at room temperature, yielding colourless block-like crystals of the title compound after a few days (M.p: 353-358 K).

Refinement top

The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined using a riding model: C-H = 0.93 and 0.97Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(C). In the anions, disorder was modeled for the fluorine atoms of the trifluoromethyl groups over two sets of sites with occupancy ratios of 0.58 (3):0.42 (F1C), 0.540 (14):0.46 (14) (F2C), 0.55 (2):0.45 (2) (F3C) and 0.73 (5):0.27 (5) (F1D), 0.63 (5):0.37 (5) (F2D), and 0.57 (8):0.43 (8) (F3D).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The N—H···O, C-H···F and C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
5-(4-Fluorophenyl)-2H-pyrazol-1-ium 2,2,2-trifluoroacetate top
Crystal data top
C9H8FN2+·C2F3O2F(000) = 560
Mr = 276.19Dx = 1.548 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.7828 (2) ÅCell parameters from 3244 reflections
b = 16.8263 (6) Åθ = 3.0–32.8°
c = 10.4004 (4) ŵ = 0.15 mm1
β = 93.354 (3)°T = 173 K
V = 1184.96 (8) Å3Block, colourless
Z = 40.32 × 0.14 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7270 independent reflections
Radiation source: Enhance (Mo) X-ray Source5352 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.029
ω scansθmax = 32.9°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 99
Tmin = 0.867, Tmax = 1.000k = 2423
13825 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1594P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7270 reflectionsΔρmax = 0.18 e Å3
419 parametersΔρmin = 0.21 e Å3
1 restraint
Crystal data top
C9H8FN2+·C2F3O2V = 1184.96 (8) Å3
Mr = 276.19Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.7828 (2) ŵ = 0.15 mm1
b = 16.8263 (6) ÅT = 173 K
c = 10.4004 (4) Å0.32 × 0.14 × 0.12 mm
β = 93.354 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7270 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
5352 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 1.000Rint = 0.029
13825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.18 e Å3
7270 reflectionsΔρmin = 0.21 e Å3
419 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1D0.7862 (10)0.7079 (9)0.8704 (15)0.089 (4)0.73 (5)
F1DA0.793 (4)0.668 (4)0.912 (3)0.123 (11)0.27 (5)
F2D0.6499 (18)0.7180 (7)0.6830 (13)0.112 (4)0.63 (5)
F2DA0.686 (5)0.7292 (9)0.731 (5)0.152 (11)0.37 (5)
F3D0.558 (2)0.6299 (6)0.823 (2)0.081 (4)0.57 (8)
F3DA0.543 (3)0.6355 (16)0.788 (5)0.114 (7)0.43 (8)
O1D1.0279 (3)0.63369 (12)0.7099 (2)0.0408 (5)
O2D0.7848 (3)0.54440 (13)0.6797 (2)0.0499 (6)
C1D0.8581 (4)0.60784 (15)0.7155 (3)0.0335 (5)
C2D0.7130 (5)0.6654 (2)0.7773 (4)0.0560 (9)
F1C0.7172 (16)0.7924 (4)0.330 (2)0.144 (9)0.58 (3)
F1CA0.743 (2)0.7792 (12)0.237 (2)0.121 (8)0.42 (3)
F2C0.4749 (11)0.7172 (5)0.3343 (11)0.095 (5)0.540 (14)
F2CA0.624 (3)0.7661 (11)0.4070 (14)0.179 (9)0.460 (14)
F3C0.628 (2)0.7258 (9)0.1734 (6)0.116 (5)0.55 (2)
F3CA0.503 (3)0.7082 (5)0.248 (3)0.214 (16)0.45 (2)
O1C0.9686 (3)0.67332 (13)0.3635 (2)0.0491 (5)
O2C0.7104 (3)0.59074 (12)0.3406 (2)0.0547 (6)
C1C0.7934 (5)0.65565 (15)0.3406 (3)0.0365 (6)
C2C0.6556 (6)0.72546 (19)0.3014 (4)0.0599 (10)
F1B0.6835 (3)0.37120 (13)0.20823 (17)0.0577 (5)
N1B0.8500 (3)0.42473 (13)0.5212 (2)0.0329 (5)
H1B0.844 (5)0.461 (2)0.589 (4)0.058 (10)*
N2B0.8131 (3)0.44327 (13)0.3969 (2)0.0284 (4)
H2B0.783 (7)0.492 (3)0.375 (4)0.077 (14)*
C1B0.8796 (4)0.34634 (17)0.5313 (3)0.0372 (6)
H1BA0.90830.31850.60730.045*
C2B0.8602 (4)0.31413 (16)0.4097 (3)0.0349 (6)
H2BA0.87380.26090.38810.042*
C3B0.8161 (3)0.37683 (15)0.3249 (2)0.0266 (5)
C4B0.7787 (3)0.37670 (16)0.1853 (2)0.0270 (5)
C5B0.7429 (3)0.44680 (16)0.1155 (3)0.0309 (5)
H5B0.73990.49510.15870.037*
C6B0.7119 (4)0.44506 (18)0.0168 (3)0.0360 (6)
H6B0.68900.49160.06350.043*
C7B0.7158 (4)0.3729 (2)0.0777 (3)0.0391 (6)
C8B0.7496 (5)0.30331 (18)0.0135 (3)0.0443 (7)
H8B0.75170.25540.05810.053*
C9B0.7808 (4)0.30496 (16)0.1193 (3)0.0364 (6)
H9B0.80320.25780.16450.044*
F1A0.1746 (3)0.46388 (14)0.16103 (17)0.0633 (6)
N1A0.2469 (3)0.54317 (14)0.5635 (2)0.0342 (5)
H1A0.179 (5)0.578 (2)0.622 (3)0.054 (10)*
N2A0.2056 (3)0.55446 (14)0.4364 (2)0.0304 (4)
H2A0.127 (5)0.594 (2)0.412 (3)0.045 (9)*
C1A0.3425 (4)0.47499 (18)0.5801 (3)0.0374 (6)
H1AA0.38780.45370.65890.045*
C2A0.3641 (4)0.44055 (17)0.4604 (3)0.0334 (5)
H2AA0.42430.39230.44330.040*
C3A0.2767 (3)0.49337 (14)0.3714 (2)0.0272 (5)
C4A0.2539 (3)0.48770 (15)0.2306 (2)0.0287 (5)
C5A0.2251 (4)0.55489 (17)0.1529 (3)0.0375 (6)
H5A0.22290.60510.19020.045*
C6A0.1999 (5)0.5467 (2)0.0206 (3)0.0444 (7)
H6A0.18120.59110.03200.053*
C7A0.2032 (4)0.47215 (19)0.0312 (3)0.0410 (7)
C8A0.2336 (4)0.40478 (18)0.0413 (3)0.0379 (6)
H8A0.23730.35500.00280.045*
C9A0.2588 (4)0.41308 (16)0.1737 (3)0.0305 (5)
H9A0.27920.36820.22500.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1D0.075 (4)0.083 (6)0.109 (6)0.001 (3)0.018 (3)0.066 (5)
F1DA0.160 (17)0.13 (3)0.076 (13)0.036 (13)0.030 (9)0.068 (16)
F2D0.148 (6)0.081 (6)0.106 (6)0.084 (6)0.007 (6)0.008 (4)
F2DA0.215 (19)0.022 (5)0.23 (2)0.023 (8)0.147 (18)0.008 (9)
F3D0.083 (7)0.041 (5)0.126 (7)0.002 (4)0.070 (6)0.009 (6)
F3DA0.043 (6)0.118 (14)0.184 (17)0.015 (6)0.031 (8)0.081 (11)
O1D0.0453 (11)0.0305 (10)0.0475 (12)0.0042 (9)0.0114 (9)0.0045 (8)
O2D0.0491 (12)0.0356 (11)0.0655 (15)0.0043 (9)0.0070 (10)0.0206 (10)
C1D0.0442 (15)0.0257 (12)0.0309 (13)0.0004 (10)0.0038 (11)0.0035 (10)
C2D0.052 (2)0.0357 (17)0.082 (3)0.0051 (14)0.0195 (18)0.0178 (17)
F1C0.095 (7)0.019 (3)0.30 (2)0.009 (3)0.123 (10)0.021 (6)
F1CA0.131 (9)0.084 (10)0.146 (15)0.002 (7)0.019 (9)0.085 (10)
F2C0.053 (4)0.064 (5)0.171 (10)0.032 (4)0.036 (6)0.030 (5)
F2CA0.23 (2)0.111 (11)0.197 (12)0.118 (12)0.002 (11)0.057 (9)
F3C0.133 (9)0.148 (10)0.064 (4)0.069 (8)0.023 (4)0.032 (4)
F3CA0.142 (14)0.033 (4)0.44 (4)0.005 (7)0.221 (19)0.004 (11)
O1C0.0460 (12)0.0312 (11)0.0684 (15)0.0051 (9)0.0115 (10)0.0022 (9)
O2C0.0573 (14)0.0239 (11)0.0811 (17)0.0021 (9)0.0101 (12)0.0003 (10)
C1C0.0483 (16)0.0226 (12)0.0370 (14)0.0065 (11)0.0096 (12)0.0027 (10)
C2C0.058 (2)0.0259 (15)0.092 (3)0.0019 (14)0.028 (2)0.0049 (16)
F1B0.0747 (14)0.0629 (12)0.0345 (9)0.0106 (11)0.0057 (9)0.0004 (9)
N1B0.0306 (11)0.0331 (12)0.0351 (13)0.0018 (8)0.0032 (9)0.0047 (9)
N2B0.0262 (10)0.0213 (10)0.0378 (12)0.0013 (8)0.0036 (8)0.0006 (8)
C1B0.0400 (15)0.0345 (14)0.0371 (15)0.0060 (11)0.0019 (12)0.0019 (11)
C2B0.0432 (15)0.0234 (12)0.0382 (15)0.0047 (11)0.0043 (11)0.0005 (10)
C3B0.0228 (10)0.0219 (10)0.0357 (13)0.0012 (9)0.0056 (9)0.0003 (10)
C4B0.0209 (10)0.0265 (11)0.0339 (12)0.0020 (9)0.0033 (9)0.0002 (10)
C5B0.0256 (11)0.0259 (12)0.0414 (15)0.0006 (9)0.0040 (10)0.0013 (10)
C6B0.0297 (12)0.0397 (15)0.0385 (15)0.0012 (11)0.0013 (11)0.0099 (12)
C7B0.0376 (14)0.0469 (16)0.0323 (14)0.0073 (13)0.0018 (11)0.0001 (12)
C8B0.057 (2)0.0367 (16)0.0384 (16)0.0037 (13)0.0010 (13)0.0072 (12)
C9B0.0437 (15)0.0268 (13)0.0383 (15)0.0012 (11)0.0005 (11)0.0014 (11)
F1A0.0772 (14)0.0833 (16)0.0299 (10)0.0056 (12)0.0085 (9)0.0018 (9)
N1A0.0292 (11)0.0404 (13)0.0329 (12)0.0009 (9)0.0015 (9)0.0032 (9)
N2A0.0259 (10)0.0298 (11)0.0351 (12)0.0004 (8)0.0022 (8)0.0005 (9)
C1A0.0323 (13)0.0458 (17)0.0345 (14)0.0048 (11)0.0035 (11)0.0057 (12)
C2A0.0287 (12)0.0380 (14)0.0341 (14)0.0049 (10)0.0056 (10)0.0066 (11)
C3A0.0213 (10)0.0277 (12)0.0326 (13)0.0024 (9)0.0018 (9)0.0012 (9)
C4A0.0227 (11)0.0315 (13)0.0319 (13)0.0015 (9)0.0029 (9)0.0016 (10)
C5A0.0430 (15)0.0320 (14)0.0375 (15)0.0048 (11)0.0015 (12)0.0031 (11)
C6A0.0466 (16)0.0470 (17)0.0398 (17)0.0019 (14)0.0046 (13)0.0131 (13)
C7A0.0358 (14)0.059 (2)0.0292 (14)0.0001 (13)0.0064 (11)0.0013 (13)
C8A0.0323 (13)0.0418 (15)0.0405 (16)0.0011 (11)0.0100 (12)0.0076 (12)
C9A0.0249 (11)0.0323 (13)0.0348 (14)0.0000 (9)0.0056 (10)0.0020 (10)
Geometric parameters (Å, º) top
F1D—C2D1.281 (8)C4B—C9B1.389 (4)
F1DA—C2D1.47 (3)C5B—H5B0.9300
F2D—C2D1.371 (9)C5B—C6B1.380 (4)
F2DA—C2D1.19 (2)C6B—H6B0.9300
F3D—C2D1.324 (11)C6B—C7B1.370 (4)
F3DA—C2D1.270 (18)C7B—C8B1.361 (4)
O1D—C1D1.236 (3)C8B—H8B0.9300
O2D—C1D1.226 (3)C8B—C9B1.385 (4)
C1D—C2D1.546 (4)C9B—H9B0.9300
F1C—C2C1.232 (6)F1A—C7A1.360 (3)
F1CA—C2C1.291 (11)N1A—H1A0.98 (4)
F2C—C2C1.299 (7)N1A—N2A1.349 (3)
F2CA—C2C1.322 (11)N1A—C1A1.324 (4)
F3C—C2C1.333 (8)N2A—H2A0.88 (4)
F3CA—C2C1.183 (8)N2A—C3A1.336 (3)
O1C—C1C1.234 (4)C1A—H1AA0.9300
O2C—C1C1.229 (3)C1A—C2A1.389 (4)
C1C—C2C1.541 (4)C2A—H2AA0.9300
F1B—C7B1.363 (3)C2A—C3A1.390 (4)
N1B—H1B0.94 (4)C3A—C4A1.467 (3)
N1B—N2B1.340 (3)C4A—C5A1.397 (4)
N1B—C1B1.337 (3)C4A—C9A1.389 (4)
N2B—H2B0.87 (5)C5A—H5A0.9300
N2B—C3B1.346 (3)C5A—C6A1.384 (4)
C1B—H1BA0.9300C6A—H6A0.9300
C1B—C2B1.375 (4)C6A—C7A1.366 (4)
C2B—H2BA0.9300C7A—C8A1.371 (4)
C2B—C3B1.396 (4)C8A—H8A0.9300
C3B—C4B1.459 (3)C8A—C9A1.384 (4)
C4B—C5B1.399 (4)C9A—H9A0.9300
O1D—C1D—C2D114.6 (2)C4B—C5B—H5B119.6
O2D—C1D—O1D130.8 (3)C6B—C5B—C4B120.8 (3)
O2D—C1D—C2D114.5 (3)C6B—C5B—H5B119.6
F1D—C2D—F2D105.7 (11)C5B—C6B—H6B120.9
F1D—C2D—F3D105.0 (11)C7B—C6B—C5B118.3 (3)
F1D—C2D—C1D115.9 (5)C7B—C6B—H6B120.9
F1DA—C2D—C1D101.8 (14)F1B—C7B—C6B118.2 (3)
F2D—C2D—C1D106.7 (6)C8B—C7B—F1B118.9 (3)
F2DA—C2D—F1DA114 (4)C8B—C7B—C6B122.9 (3)
F2DA—C2D—F3DA106 (3)C7B—C8B—H8B120.6
F2DA—C2D—C1D119.1 (13)C7B—C8B—C9B118.9 (3)
F3D—C2D—F2D109.2 (10)C9B—C8B—H8B120.6
F3D—C2D—C1D114.0 (6)C4B—C9B—H9B119.8
F3DA—C2D—F1DA103 (3)C8B—C9B—C4B120.3 (3)
F3DA—C2D—C1D113.0 (9)C8B—C9B—H9B119.8
O1C—C1C—C2C115.4 (2)N2A—N1A—H1A117 (2)
O2C—C1C—O1C130.5 (3)C1A—N1A—H1A133 (2)
O2C—C1C—C2C114.0 (3)C1A—N1A—N2A108.7 (2)
F1C—C2C—F2C110.2 (10)N1A—N2A—H2A118 (2)
F1C—C2C—F3C105.3 (12)C3A—N2A—N1A109.1 (2)
F1C—C2C—C1C116.2 (4)C3A—N2A—H2A132 (2)
F1CA—C2C—F2CA99.9 (15)N1A—C1A—H1AA125.6
F1CA—C2C—C1C112.3 (6)N1A—C1A—C2A108.7 (2)
F2C—C2C—F3C100.6 (7)C2A—C1A—H1AA125.6
F2C—C2C—C1C114.6 (5)C1A—C2A—H2AA127.3
F2CA—C2C—C1C107.5 (6)C1A—C2A—C3A105.5 (2)
F3C—C2C—C1C108.3 (4)C3A—C2A—H2AA127.3
F3CA—C2C—F1CA110.5 (16)N2A—C3A—C2A107.9 (2)
F3CA—C2C—F2CA109.4 (17)N2A—C3A—C4A122.3 (2)
F3CA—C2C—C1C116.0 (5)C2A—C3A—C4A129.7 (2)
N2B—N1B—H1B124 (2)C5A—C4A—C3A121.9 (2)
C1B—N1B—H1B127 (2)C9A—C4A—C3A118.7 (2)
C1B—N1B—N2B108.9 (2)C9A—C4A—C5A119.4 (2)
N1B—N2B—H2B120 (3)C4A—C5A—H5A120.0
N1B—N2B—C3B109.6 (2)C6A—C5A—C4A120.0 (3)
C3B—N2B—H2B130 (3)C6A—C5A—H5A120.0
N1B—C1B—H1BA125.9C5A—C6A—H6A120.7
N1B—C1B—C2B108.1 (3)C7A—C6A—C5A118.7 (3)
C2B—C1B—H1BA125.9C7A—C6A—H6A120.7
C1B—C2B—H2BA126.6F1A—C7A—C6A118.8 (3)
C1B—C2B—C3B106.8 (2)F1A—C7A—C8A118.0 (3)
C3B—C2B—H2BA126.6C6A—C7A—C8A123.2 (3)
N2B—C3B—C2B106.6 (2)C7A—C8A—H8A121.0
N2B—C3B—C4B123.2 (2)C7A—C8A—C9A118.0 (3)
C2B—C3B—C4B130.2 (2)C9A—C8A—H8A121.0
C5B—C4B—C3B122.0 (2)C4A—C9A—H9A119.7
C9B—C4B—C3B119.1 (2)C8A—C9A—C4A120.7 (2)
C9B—C4B—C5B118.9 (2)C8A—C9A—H9A119.7
O1D—C1D—C2D—F1D35.8 (11)C1B—C2B—C3B—C4B179.3 (2)
O1D—C1D—C2D—F1DA67 (3)C2B—C3B—C4B—C5B177.8 (2)
O1D—C1D—C2D—F2D81.5 (8)C2B—C3B—C4B—C9B1.4 (4)
O1D—C1D—C2D—F2DA58 (3)C3B—C4B—C5B—C6B178.7 (2)
O1D—C1D—C2D—F3D157.9 (12)C3B—C4B—C9B—C8B178.7 (2)
O1D—C1D—C2D—F3DA177 (3)C4B—C5B—C6B—C7B0.5 (4)
O2D—C1D—C2D—F1D144.7 (11)C5B—C4B—C9B—C8B0.6 (4)
O2D—C1D—C2D—F1DA113 (3)C5B—C6B—C7B—F1B179.5 (2)
O2D—C1D—C2D—F2D98.0 (8)C5B—C6B—C7B—C8B0.3 (4)
O2D—C1D—C2D—F2DA121 (3)C6B—C7B—C8B—C9B0.3 (5)
O2D—C1D—C2D—F3D22.6 (12)C7B—C8B—C9B—C4B0.4 (4)
O2D—C1D—C2D—F3DA4 (3)C9B—C4B—C5B—C6B0.6 (3)
O1C—C1C—C2C—F1C19.2 (15)F1A—C7A—C8A—C9A178.7 (2)
O1C—C1C—C2C—F1CA33.1 (15)N1A—N2A—C3A—C2A0.9 (3)
O1C—C1C—C2C—F2C149.6 (7)N1A—N2A—C3A—C4A179.4 (2)
O1C—C1C—C2C—F2CA75.8 (14)N1A—C1A—C2A—C3A0.7 (3)
O1C—C1C—C2C—F3C99.0 (9)N2A—N1A—C1A—C2A0.1 (3)
O1C—C1C—C2C—F3CA161 (2)N2A—C3A—C4A—C5A24.1 (4)
O2C—C1C—C2C—F1C162.5 (15)N2A—C3A—C4A—C9A155.1 (2)
O2C—C1C—C2C—F1CA145.2 (14)C1A—N1A—N2A—C3A0.5 (3)
O2C—C1C—C2C—F2C32.1 (8)C1A—C2A—C3A—N2A0.9 (3)
O2C—C1C—C2C—F2CA105.9 (13)C1A—C2A—C3A—C4A179.3 (2)
O2C—C1C—C2C—F3C79.3 (9)C2A—C3A—C4A—C5A157.8 (3)
O2C—C1C—C2C—F3CA17 (2)C2A—C3A—C4A—C9A23.0 (4)
F1B—C7B—C8B—C9B179.5 (3)C3A—C4A—C5A—C6A178.6 (2)
N1B—N2B—C3B—C2B0.9 (3)C3A—C4A—C9A—C8A178.6 (2)
N1B—N2B—C3B—C4B179.2 (2)C4A—C5A—C6A—C7A0.2 (4)
N1B—C1B—C2B—C3B0.3 (3)C5A—C4A—C9A—C8A0.6 (4)
N2B—N1B—C1B—C2B0.2 (3)C5A—C6A—C7A—F1A178.7 (3)
N2B—C3B—C4B—C5B2.1 (3)C5A—C6A—C7A—C8A1.1 (5)
N2B—C3B—C4B—C9B178.6 (2)C6A—C7A—C8A—C9A1.1 (4)
C1B—N1B—N2B—C3B0.7 (3)C7A—C8A—C9A—C4A0.2 (4)
C1B—C2B—C3B—N2B0.7 (3)C9A—C4A—C5A—C6A0.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O2D0.94 (4)1.75 (4)2.656 (3)162 (4)
N2B—H2B···O2C0.87 (5)1.77 (5)2.634 (3)175 (4)
N1A—H1A···O1Di0.98 (4)1.69 (4)2.665 (3)170 (3)
N2A—H2A···O1Ci0.88 (4)1.77 (4)2.649 (3)180 (4)
C1B—H1BA···O1Cii0.932.593.256 (3)129
C2B—H2BA···O1Dii0.932.483.384 (3)165
C5B—H5B···O2C0.932.503.385 (4)159
C9A—H9A···F2DAiii0.932.393.26 (3)156
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1; (iii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O2D0.94 (4)1.75 (4)2.656 (3)162 (4)
N2B—H2B···O2C0.87 (5)1.77 (5)2.634 (3)175 (4)
N1A—H1A···O1Di0.98 (4)1.69 (4)2.665 (3)170 (3)
N2A—H2A···O1Ci0.88 (4)1.77 (4)2.649 (3)180 (4)
C1B—H1BA···O1Cii0.932.593.256 (3)129
C2B—H2BA···O1Dii0.932.483.384 (3)165
C5B—H5B···O2C0.932.503.385 (4)159
C9A—H9A···F2DAiii0.932.393.26 (3)156
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1; (iii) x+1, y1/2, z+1.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAbdul-Ghani, M., Pritchard, R. G. & Tipping, A. E. (1995). Acta Cryst. C51, 770–772.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGe, Y. Q., Zhang, J. M., Wang, G. L., Xu, H. & Shi, B. (2011). Acta Cryst. E67, o1387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, Z., Zheng, H.-L. & Tian, X.-L. (2011). Acta Cryst. E67, o511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15–26.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.  CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & SuchetaKumari, N. (2009). Eur. J. Med. Chem. 44, 3852–3857.  PubMed CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & SuchetaKumari, N. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiu, K. K. W., Lee, J. E., Smith, G. D., Horvatin-Mrakovcic, C. & Howell, P. L. (2008). Acta Cryst. F64, 343–350.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). Chem. Biol. 1, 43–53.  CAS Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425–o1426.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o429-o430
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds