organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o456-o457

5,8-Bis[bis­­(pyridin-2-yl)amino]-1,3,4,6,7,9,9b-hepta­aza­phenalen-2(1H)-one di­methyl sulfoxide monosolvate dihydrate

aInstitut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: anke.schwarzer@chemie.tu-freiberg.de

(Received 9 March 2014; accepted 13 March 2014; online 19 March 2014)

In the asymmetric unit of the title compound, C26H17N13O·C2H6OS·2H2O, there is one independent hepta­zine-based main mol­ecule, one dimethyl sulfoxide mol­ecule and two water mol­ecules as solvents. The tri-s-triazine unit is substituted with two dipyridyl amine moieties and a carbonylic O atom. As indicated by the bond lengths in this acid unit of the hepta­zine derivative [C=O = 1.213 (2) Å, while the adjacent C—N(H) bond = 1.405 (2) Å] it is best described by the keto form. The cyameluric nucleus is close to planar (r.m.s. deviation = 0.061 Å) and the pyridine rings are inclined to its mean plane by dihedral angles varying from 47.47 (5) to 70.22 (5)°. The host and guest mol­ecules are connected via N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, forming a four-membered inversion dimer-like arrangement enclosing an R44(24) ring motif. These arrangements stack along [1-10] with a weak ππ inter­action [inter-centroid distance = 3.8721 (12) Å] involving adjacent pyridine rings. There are also C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions present within the host mol­ecule and linking inversion-related mol­ecules, forming a three-dimensional structure.

Related literature

For a review of tri-s-triazines, see: Schwarzer et al. (2013[Schwarzer, A., Saplinova, T. & Kroke, E. (2013). Coord. Chem. Rev. 257, 2032-2062.]). For crystal structures and a comprehensive analysis of cyameluric acid, see: Sattler & Schnick (2006[Sattler, A. & Schnick, W. (2006). Z. Anorg. Allg. Chem. 632, 1518-1523.]); Wagler et al. (2006[Wagler, J., El-Gamel, N. E. A. & Kroke, E. (2006). Z. Naturforsch. Teil B, 61, 975-978.]); Seyfarth et al. (2008[Seyfarth, L., Sehnert, J., El-Gamel, N. E. A., Milius, W., Kroke, E., Breu, J. & Senker, J. (2008). J. Mol. Struct. 889, 217-228.]). For the synthesis of unsymmetrically substituted tri-s-triazines, see: Schwarzer & Kroke (2010[Schwarzer, A. & Kroke, E. (2010). Chem. Commun. 46, 2829-2831.], 2011[Schwarzer, A. & Kroke, E. (2011). New J. Chem. 35, 953-958.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H17N13O·C2H6OS·2H2O

  • Mr = 641.69

  • Triclinic, [P \overline 1]

  • a = 10.6534 (2) Å

  • b = 11.6791 (2) Å

  • c = 12.5591 (2) Å

  • α = 68.488 (1)°

  • β = 86.537 (1)°

  • γ = 86.693 (1)°

  • V = 1450.06 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.26 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 22692 measured reflections

  • 5662 independent reflections

  • 4333 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 0.97

  • 5662 reflections

  • 436 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N12/C17–C21 and N13/C22–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.87 (2) 1.84 (2) 2.706 (2) 169 (2)
O3—H1O⋯O2 0.89 (4) 1.92 (3) 2.755 (2) 157 (3)
O3—H2O⋯N12ii 0.89 (3) 1.99 (3) 2.859 (2) 165 (3)
O4—H3O⋯N6iii 0.94 (4) 2.04 (4) 2.904 (3) 151 (3)
O4—H4O⋯N5iii 1.02 (3) 2.55 (4) 3.206 (3) 122 (2)
C9—H9⋯N10iv 0.95 2.55 3.313 (3) 137
C21—H21⋯O2v 0.95 2.41 3.291 (3) 154
C23—H23⋯O1vi 0.95 2.55 3.426 (2) 153
C27—H27BCg2 0.98 2.76 3.647 (3) 150
C28—H28ACg1vii 0.98 2.73 3.463 (2) 132
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y, -z+1; (iv) -x-1, -y+1, -z+1; (v) x, y-1, z; (vi) -x, -y, -z+1; (vii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyameluric acid is described to crystallize with water (Sattler & Schnick, 2006), dimethylsulfoxide (Wagler et al., 2006) and free of solvent (Seyfarth et al., 2008). All structures reveal the keto form of the cyameluric nucleus independent of the co-crystallizing solvent. Molecular derivatives are rarely described especially unsymmetrically substituted ones. Herein, we describe the crystal structure of an unsymmetrically substituted cyameluric acid derivative.

The molecular structure of the host and guest molecules of the title compound are illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and angles are in the range of expected values. As indicated by the C—N bond lengths of the heptazine core the keto form is preferred rather than the hydroxyl form. The C1-O1 bond length [1.213 (2) Å] is a typical CO bond while the adjacent C1-N1 bond length [1.405 (2) Å] represents a typical C—N single bond. Besides, the bond length of C1—N6 [1.371 (2) Å] is close to a single C—N bond but still indicates the conjugation as expected for the C6N7 core. Additionally, the C—N bond lengths of the inner heptazine core (N7—C2/C4/C6) are significantly shorter on the protonated site of the molecule [1.375 (2) Å in contrast to 1.401 (2) and 1.410 (2) Å]. Furthermore, the N1 hydrogen atom was clearly visible in a difference electron-density map.

Neither the unsymmetrical substitution of the C6N7 core nor the keto form and the adjacent C—N single bond character influence the planarity of the host molecule. The fit of the 13-membered ring system to a plane leads to a r.m.s. deviation of 0.061 Å indicating nearly perfect planarity. The pyridyl moieties reveal a twisting relating to the heptazine ring [47.47 (5) - 70.22 (5)°; average: 60.72°] and are nearly perpendicular to one other (average pyridine-pyridine dihedral angle: 82.02°) except for rings N10/C12-C16 and N13/C22-C26 which are inclined to one another by 12.57 (8)°.

In the crystal, the host and guest molecules are linked via hydrogen bonds. The hydrogen atom H1N located at N1 interacts with one water molecule (d = 1.84 Å, θ = 170°). This water molecule is coordinated to the dimethyl sulfoxide [O···O: 2.755 (2) Å] and the pyridine ring of an adjacent host molecule [O···N: 2.859 (2) Å]. Additionally to the O–H···O interaction, the DMSO molecule shows C–H···O contacts with donor-acceptor distances of about 2.5 Å and C—H···π interactions with adjacent pyridyl units. The hydrogen-centroid distance is in the range of 2.7 Å. Also, the O–H···S reveals a weak hydrogen bond [O···S: 3.9505 (17) Å]. The second water molecule is located close to the C6N7 core with O···N distance of 2.904 (2) Å and 3.206 (2) Å. This water molecule also reveals a possible intermolecular O—H···π contact with a hydrogen-centroid distance of 2.91 Å.

The crystal packing does not represent a layered structure as it is known for other heptazine derivatives (Schwarzer et al., 2013). This is indicated by the distances between adjacent C6N7-cores and the great offset to one another. A weak π···π interaction occurs between adjacent pyridyl units. The centroid Cg5 of the ring N10/C12—C16 reveals a distance of 3.8721 (12) Å to the centroid Cg7 of the ring N13/C22–26 (symmetry code: -x, -y, -z+2).

To sum up, the title cyameluric compound occurs in its keto form as it is known from other derivatives. In the crystal the interactions of the host–guest compound include O–H···O/N, N–H···O, C–H···O/N/π/ and π···π stacking.

Related literature top

For a review of tri-s-triazines, see: Schwarzer et al. (2013). For crystal structures and a comprehensive analysis of cyameluric acid, see: Sattler & Schnick (2006); Wagler et al. (2006); Seyfarth et al. (2008). For the synthesis of unsymmetrically substituted tri-s-triazines, see: Schwarzer & Kroke (2010, 2011). For standard bond-length data, see: Allen et al. (1987).

Experimental top

α,α'-Dipyridylamine (0.12 g, 0.7 mmol) in 20 ml THF was added to cyameluric chloride (0.1 g, 0.36 mmol) dessolved in 15 ml THF. The mixture was refluxed for 8 h and stirred overnight at room temperature to give a yellow solution and a pale white precipitate. The solid (α,α'-dipyridylamine hydrochloride) was separated via suction filtration. Adding aqueous THF leads to a crystalline solid which was seperated via filtration and dried under air. Colourless prismatic crystals suitable for X-ray diffraction analysis were taken from that batch. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

The NH and OH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.95 and 0.98 Å for aryl and aliphatic H atom, respectively, with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
5,8-Bis[bis(pyridin-2-yl)amino]-1,3,4,6,7,9,9b-heptaazaphenalen-2(1H)-one dimethyl sulfoxide monosolvate dihydrate top
Crystal data top
C26H17N13O·C2H6OS·2H2OZ = 2
Mr = 641.69F(000) = 668
Triclinic, P1Dx = 1.470 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6534 (2) ÅCell parameters from 852 reflections
b = 11.6791 (2) Åθ = 2.5–25.2°
c = 12.5591 (2) ŵ = 0.17 mm1
α = 68.488 (1)°T = 100 K
β = 86.537 (1)°Prism, colourless
γ = 86.693 (1)°0.26 × 0.25 × 0.21 mm
V = 1450.06 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
phi and ω scansh = 1313
22692 measured reflectionsk = 1414
5662 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.3491P]
where P = (Fo2 + 2Fc2)/3
5662 reflections(Δ/σ)max = 0.003
436 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C26H17N13O·C2H6OS·2H2Oγ = 86.693 (1)°
Mr = 641.69V = 1450.06 (4) Å3
Triclinic, P1Z = 2
a = 10.6534 (2) ÅMo Kα radiation
b = 11.6791 (2) ŵ = 0.17 mm1
c = 12.5591 (2) ÅT = 100 K
α = 68.488 (1)°0.26 × 0.25 × 0.21 mm
β = 86.537 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4333 reflections with I > 2σ(I)
22692 measured reflectionsRint = 0.043
5662 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.52 e Å3
5662 reflectionsΔρmin = 0.44 e Å3
436 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR (KBr): νmax (cm-1) 3379 (w, NH), 3053 (w, CArH), 1654, 1649, 1643, 1634 (s, C=O, C=C, C=N), 1590 (s, py), 1408, 817 (s, heptazine ring), 744, 724 (δCHoop, pyridyl rings).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05786 (13)0.15490 (13)0.22548 (11)0.0218 (4)
N10.00053 (15)0.25898 (15)0.34166 (14)0.0158 (5)
N20.07731 (14)0.35788 (14)0.46186 (13)0.0138 (5)
N30.03158 (14)0.26735 (14)0.66201 (13)0.0143 (5)
N40.10816 (14)0.10167 (14)0.72397 (13)0.0143 (5)
N50.19000 (14)0.00471 (14)0.59246 (13)0.0146 (5)
N60.12594 (15)0.07445 (15)0.40763 (13)0.0156 (5)
N70.04826 (14)0.17601 (14)0.53204 (13)0.0128 (5)
N80.16964 (14)0.43367 (14)0.59394 (13)0.0135 (5)
N90.25278 (15)0.63147 (14)0.50174 (14)0.0173 (5)
N100.31413 (15)0.41777 (15)0.74385 (14)0.0169 (5)
N110.26055 (14)0.05485 (14)0.77349 (13)0.0145 (5)
N120.34523 (15)0.24585 (14)0.77874 (14)0.0171 (5)
N130.35974 (15)0.06482 (15)0.93686 (14)0.0182 (5)
C10.06245 (17)0.16025 (17)0.31984 (16)0.0156 (6)
C20.01201 (17)0.26748 (17)0.44541 (15)0.0131 (5)
C30.09001 (16)0.34885 (16)0.57275 (15)0.0124 (5)
C40.04141 (17)0.18114 (17)0.64196 (15)0.0125 (5)
C50.18183 (17)0.01959 (17)0.69395 (16)0.0136 (5)
C60.12277 (17)0.08334 (16)0.50897 (16)0.0133 (5)
C70.25117 (17)0.51484 (17)0.50902 (15)0.0130 (5)
C80.32791 (18)0.47066 (19)0.44910 (17)0.0195 (6)
C90.41163 (19)0.5526 (2)0.37663 (18)0.0236 (7)
C100.41555 (19)0.6745 (2)0.36704 (17)0.0233 (6)
C110.33584 (19)0.70857 (18)0.43081 (17)0.0215 (6)
C120.19442 (17)0.43318 (16)0.70828 (16)0.0136 (5)
C130.10072 (18)0.45271 (17)0.77047 (16)0.0156 (5)
C140.13402 (19)0.45589 (19)0.87735 (17)0.0209 (6)
C150.25851 (19)0.44010 (19)0.91663 (17)0.0205 (6)
C160.34422 (19)0.42104 (18)0.84769 (17)0.0190 (6)
C170.35980 (17)0.12526 (17)0.73935 (15)0.0137 (5)
C180.46274 (18)0.06784 (18)0.67347 (17)0.0177 (6)
C190.55494 (19)0.14012 (19)0.64387 (18)0.0220 (6)
C200.54238 (19)0.26591 (19)0.68373 (18)0.0221 (6)
C210.43729 (19)0.31484 (18)0.75083 (18)0.0212 (6)
C220.25133 (18)0.07091 (16)0.89261 (16)0.0141 (5)
C230.13735 (18)0.09643 (17)0.95411 (16)0.0158 (5)
C240.13640 (18)0.11568 (18)1.06925 (17)0.0180 (6)
C250.24749 (19)0.11014 (17)1.11841 (17)0.0184 (6)
C260.35607 (19)0.08504 (18)1.04889 (17)0.0200 (6)
S10.32151 (5)0.27219 (5)0.92748 (4)0.0209 (2)
O20.32255 (14)0.41053 (13)0.88182 (13)0.0255 (4)
C270.1615 (2)0.2350 (2)0.9319 (2)0.0311 (7)
C280.3406 (2)0.2251 (2)1.07765 (18)0.0294 (7)
O30.13761 (14)0.59490 (15)0.83566 (12)0.0225 (5)
O40.71369 (19)0.14203 (16)0.57023 (18)0.0421 (6)
H1N0.041 (2)0.314 (2)0.286 (2)0.023 (6)*
H80.323100.386300.457600.0230*
H90.465800.525700.333900.0280*
H100.472000.733000.317500.0280*
H110.339600.792300.424400.0260*
H130.016300.463600.740700.0190*
H140.072600.468700.923200.0250*
H150.284200.442400.989600.0250*
H160.429300.409600.875300.0230*
H180.469900.018800.649200.0210*
H190.626000.103700.596700.0260*
H200.604900.317800.665300.0260*
H210.429400.401600.778800.0250*
H230.062600.100500.918300.0190*
H240.060100.132601.114400.0220*
H250.249200.123201.197600.0220*
H260.432500.082001.082800.0240*
H27A0.110600.275100.976900.0470*
H27B0.154000.145500.967500.0470*
H27C0.131600.263900.853800.0470*
H28A0.425600.243001.091300.0440*
H28B0.328200.136401.114200.0440*
H28C0.278500.269901.110000.0440*
H1O0.180 (3)0.524 (3)0.847 (3)0.061 (10)*
H2O0.195 (3)0.650 (3)0.827 (2)0.048 (8)*
H3O0.767 (3)0.072 (3)0.603 (3)0.059 (9)*
H4O0.693 (3)0.141 (3)0.492 (3)0.0700*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (8)0.0294 (8)0.0141 (7)0.0009 (6)0.0024 (6)0.0130 (6)
N10.0175 (9)0.0177 (8)0.0118 (8)0.0017 (7)0.0016 (7)0.0051 (7)
N20.0132 (8)0.0155 (8)0.0122 (8)0.0006 (6)0.0010 (6)0.0045 (7)
N30.0135 (8)0.0145 (8)0.0135 (8)0.0018 (6)0.0001 (6)0.0039 (7)
N40.0144 (8)0.0143 (8)0.0129 (8)0.0025 (6)0.0001 (6)0.0041 (7)
N50.0143 (8)0.0163 (8)0.0136 (8)0.0010 (6)0.0004 (6)0.0061 (7)
N60.0150 (8)0.0192 (8)0.0144 (8)0.0005 (7)0.0002 (6)0.0082 (7)
N70.0121 (8)0.0132 (8)0.0131 (8)0.0003 (6)0.0000 (6)0.0049 (6)
N80.0140 (8)0.0143 (8)0.0125 (8)0.0030 (6)0.0034 (6)0.0052 (7)
N90.0156 (8)0.0158 (8)0.0186 (9)0.0004 (6)0.0015 (7)0.0047 (7)
N100.0152 (8)0.0188 (8)0.0158 (8)0.0021 (7)0.0017 (7)0.0056 (7)
N110.0135 (8)0.0155 (8)0.0130 (8)0.0038 (6)0.0002 (6)0.0042 (7)
N120.0167 (8)0.0166 (8)0.0188 (9)0.0002 (7)0.0007 (7)0.0076 (7)
N130.0144 (8)0.0222 (9)0.0176 (9)0.0015 (7)0.0013 (7)0.0070 (7)
C10.0120 (9)0.0193 (10)0.0173 (10)0.0019 (7)0.0014 (8)0.0089 (8)
C20.0096 (9)0.0153 (9)0.0125 (9)0.0021 (7)0.0009 (7)0.0027 (8)
C30.0099 (9)0.0142 (9)0.0129 (9)0.0019 (7)0.0000 (7)0.0045 (8)
C40.0105 (9)0.0160 (9)0.0113 (9)0.0030 (7)0.0019 (7)0.0054 (8)
C50.0110 (9)0.0139 (9)0.0148 (9)0.0016 (7)0.0016 (7)0.0041 (8)
C60.0105 (9)0.0132 (9)0.0162 (10)0.0028 (7)0.0020 (7)0.0054 (8)
C70.0120 (9)0.0154 (9)0.0100 (9)0.0029 (7)0.0004 (7)0.0032 (8)
C80.0186 (10)0.0212 (10)0.0222 (11)0.0034 (8)0.0032 (8)0.0123 (9)
C90.0192 (11)0.0367 (13)0.0188 (11)0.0076 (9)0.0075 (8)0.0151 (10)
C100.0184 (11)0.0302 (12)0.0157 (10)0.0094 (9)0.0029 (8)0.0028 (9)
C110.0213 (11)0.0158 (10)0.0216 (11)0.0044 (8)0.0016 (8)0.0012 (8)
C120.0167 (10)0.0109 (9)0.0118 (9)0.0023 (7)0.0017 (7)0.0028 (7)
C130.0147 (9)0.0153 (9)0.0167 (10)0.0000 (7)0.0006 (8)0.0060 (8)
C140.0212 (11)0.0245 (11)0.0203 (11)0.0003 (8)0.0053 (8)0.0116 (9)
C150.0238 (11)0.0249 (11)0.0138 (10)0.0031 (8)0.0016 (8)0.0091 (9)
C160.0155 (10)0.0210 (10)0.0189 (10)0.0020 (8)0.0002 (8)0.0060 (8)
C170.0130 (9)0.0180 (9)0.0110 (9)0.0037 (7)0.0024 (7)0.0067 (8)
C180.0178 (10)0.0145 (9)0.0184 (10)0.0013 (8)0.0003 (8)0.0036 (8)
C190.0155 (10)0.0264 (11)0.0217 (11)0.0003 (8)0.0053 (8)0.0068 (9)
C200.0204 (11)0.0247 (11)0.0232 (11)0.0060 (9)0.0008 (9)0.0124 (9)
C210.0226 (11)0.0156 (10)0.0262 (11)0.0022 (8)0.0004 (9)0.0092 (9)
C220.0158 (10)0.0114 (9)0.0139 (9)0.0029 (7)0.0016 (7)0.0036 (8)
C230.0135 (9)0.0152 (9)0.0161 (10)0.0006 (7)0.0025 (8)0.0027 (8)
C240.0163 (10)0.0180 (10)0.0164 (10)0.0010 (8)0.0029 (8)0.0028 (8)
C250.0247 (11)0.0168 (10)0.0126 (9)0.0009 (8)0.0023 (8)0.0040 (8)
C260.0177 (10)0.0246 (11)0.0184 (10)0.0018 (8)0.0043 (8)0.0085 (9)
S10.0203 (3)0.0196 (3)0.0227 (3)0.0011 (2)0.0009 (2)0.0080 (2)
O20.0246 (8)0.0193 (7)0.0296 (8)0.0029 (6)0.0004 (6)0.0054 (7)
C270.0256 (12)0.0258 (12)0.0402 (14)0.0063 (9)0.0084 (10)0.0083 (10)
C280.0347 (13)0.0281 (12)0.0238 (12)0.0006 (10)0.0074 (10)0.0068 (10)
O30.0202 (8)0.0246 (8)0.0217 (8)0.0014 (7)0.0065 (6)0.0065 (7)
O40.0475 (11)0.0263 (9)0.0543 (12)0.0029 (8)0.0038 (9)0.0183 (9)
Geometric parameters (Å, º) top
S1—O21.5037 (17)C7—C81.382 (3)
S1—C271.776 (2)C8—C91.379 (3)
S1—C281.781 (2)C9—C101.382 (3)
O1—C11.213 (2)C10—C111.370 (3)
O3—H2O0.89 (3)C12—C131.382 (3)
O3—H1O0.89 (4)C13—C141.381 (3)
O4—H4O1.02 (3)C14—C151.385 (3)
O4—H3O0.94 (4)C15—C161.376 (3)
N1—C11.405 (3)C17—C181.380 (3)
N1—C21.341 (2)C18—C191.381 (3)
N2—C21.304 (3)C19—C201.379 (3)
N2—C31.357 (2)C20—C211.377 (3)
N3—C31.336 (2)C22—C231.386 (3)
N3—C41.324 (3)C23—C241.379 (3)
N4—C41.319 (2)C24—C251.383 (3)
N4—C51.349 (3)C25—C261.384 (3)
N5—C61.328 (2)C8—H80.9500
N5—C51.345 (2)C9—H90.9500
N6—C11.371 (2)C10—H100.9500
N6—C61.313 (2)C11—H110.9500
N7—C61.410 (3)C13—H130.9500
N7—C21.375 (2)C14—H140.9500
N7—C41.401 (2)C15—H150.9500
N8—C31.357 (3)C16—H160.9500
N8—C121.442 (2)C18—H180.9500
N8—C71.437 (2)C19—H190.9500
N9—C111.343 (3)C20—H200.9500
N9—C71.331 (3)C21—H210.9500
N10—C161.338 (3)C23—H230.9500
N10—C121.326 (2)C24—H240.9500
N11—C51.355 (2)C25—H250.9500
N11—C171.443 (3)C26—H260.9500
N11—C221.436 (2)C27—H27A0.9800
N12—C211.345 (3)C27—H27B0.9800
N12—C171.326 (3)C27—H27C0.9800
N13—C261.337 (3)C28—H28B0.9800
N13—C221.328 (3)C28—H28C0.9800
N1—H1N0.87 (2)C28—H28A0.9800
C27—S1—C2898.35 (11)N11—C17—N12115.10 (16)
O2—S1—C27105.83 (10)N11—C17—C18120.63 (18)
O2—S1—C28105.64 (10)N12—C17—C18124.24 (19)
H1O—O3—H2O106 (3)C17—C18—C19118.0 (2)
H3O—O4—H4O105 (3)C18—C19—C20119.03 (19)
C1—N1—C2123.79 (17)C19—C20—C21118.7 (2)
C2—N2—C3114.65 (16)N12—C21—C20123.2 (2)
C3—N3—C4116.84 (16)N11—C22—N13114.59 (16)
C4—N4—C5115.90 (16)N13—C22—C23124.67 (18)
C5—N5—C6117.09 (17)N11—C22—C23120.67 (17)
C1—N6—C6120.25 (18)C22—C23—C24117.56 (18)
C2—N7—C6120.51 (16)C23—C24—C25119.44 (18)
C4—N7—C6120.49 (16)C24—C25—C26118.03 (18)
C2—N7—C4118.86 (17)N13—C26—C25123.90 (19)
C7—N8—C12115.08 (15)C7—C8—H8121.00
C3—N8—C12121.72 (15)C9—C8—H8121.00
C3—N8—C7122.29 (15)C10—C9—H9120.00
C7—N9—C11116.01 (17)C8—C9—H9120.00
C12—N10—C16116.68 (17)C11—C10—H10121.00
C5—N11—C17119.34 (15)C9—C10—H10121.00
C17—N11—C22116.41 (15)C10—C11—H11118.00
C5—N11—C22124.25 (16)N9—C11—H11118.00
C17—N12—C21116.81 (17)C12—C13—H13121.00
C22—N13—C26116.40 (17)C14—C13—H13121.00
C1—N1—H1N118.0 (16)C13—C14—H14121.00
C2—N1—H1N118.0 (16)C15—C14—H14121.00
O1—C1—N1118.93 (18)C16—C15—H15121.00
N1—C1—N6117.56 (17)C14—C15—H15121.00
O1—C1—N6123.51 (19)N10—C16—H16118.00
N1—C2—N2121.13 (17)C15—C16—H16118.00
N2—C2—N7122.59 (17)C19—C18—H18121.00
N1—C2—N7116.28 (18)C17—C18—H18121.00
N2—C3—N8115.78 (16)C20—C19—H19121.00
N2—C3—N3127.18 (17)C18—C19—H19120.00
N3—C3—N8117.03 (16)C19—C20—H20121.00
N3—C4—N7119.27 (16)C21—C20—H20121.00
N3—C4—N4120.57 (17)C20—C21—H21118.00
N4—C4—N7120.16 (18)N12—C21—H21118.00
N5—C5—N11115.28 (17)C24—C23—H23121.00
N4—C5—N5127.81 (17)C22—C23—H23121.00
N4—C5—N11116.88 (17)C23—C24—H24120.00
N5—C6—N6120.51 (18)C25—C24—H24120.00
N6—C6—N7121.08 (17)C24—C25—H25121.00
N5—C6—N7118.40 (17)C26—C25—H25121.00
N8—C7—N9113.94 (16)N13—C26—H26118.00
N8—C7—C8121.48 (19)C25—C26—H26118.00
N9—C7—C8124.35 (18)S1—C27—H27B109.00
C7—C8—C9118.0 (2)S1—C27—H27A109.00
C8—C9—C10119.0 (2)H27A—C27—H27C109.00
C9—C10—C11118.2 (2)S1—C27—H27C109.00
N9—C11—C10124.3 (2)H27A—C27—H27B109.00
N8—C12—N10113.72 (16)H27B—C27—H27C110.00
N10—C12—C13124.58 (18)S1—C28—H28B109.00
N8—C12—C13121.64 (16)S1—C28—H28C109.00
C12—C13—C14117.71 (18)H28A—C28—H28C110.00
C13—C14—C15118.91 (19)H28B—C28—H28C109.00
C14—C15—C16118.59 (19)H28A—C28—H28B109.00
N10—C16—C15123.52 (19)S1—C28—H28A109.00
C2—N1—C1—O1173.18 (18)C7—N8—C12—N1050.3 (2)
C2—N1—C1—N66.7 (3)C7—N8—C12—C13127.0 (2)
C1—N1—C2—N2176.25 (18)C11—N9—C7—N8174.33 (16)
C1—N1—C2—N73.6 (3)C11—N9—C7—C80.1 (3)
C3—N2—C2—N1174.44 (17)C7—N9—C11—C100.5 (3)
C3—N2—C2—N75.4 (3)C16—N10—C12—N8177.59 (18)
C2—N2—C3—N38.6 (3)C16—N10—C12—C130.4 (3)
C2—N2—C3—N8172.50 (16)C12—N10—C16—C150.5 (3)
C4—N3—C3—N24.2 (3)C17—N11—C5—N4166.75 (17)
C4—N3—C3—N8176.88 (17)C17—N11—C5—N511.2 (3)
C3—N3—C4—N4175.98 (17)C22—N11—C5—N414.3 (3)
C3—N3—C4—N73.3 (3)C22—N11—C5—N5167.75 (17)
C5—N4—C4—N3178.38 (17)C5—N11—C17—N12110.5 (2)
C5—N4—C4—N70.9 (3)C5—N11—C17—C1871.5 (2)
C4—N4—C5—N54.1 (3)C22—N11—C17—N1268.6 (2)
C4—N4—C5—N11173.60 (17)C22—N11—C17—C18109.5 (2)
C6—N5—C5—N43.6 (3)C5—N11—C22—N13133.6 (2)
C6—N5—C5—N11174.08 (17)C5—N11—C22—C2349.4 (3)
C5—N5—C6—N6179.95 (17)C17—N11—C22—N1347.4 (2)
C5—N5—C6—N70.0 (3)C17—N11—C22—C23129.6 (2)
C6—N6—C1—O1177.26 (19)C21—N12—C17—N11178.55 (16)
C6—N6—C1—N12.6 (3)C21—N12—C17—C180.6 (3)
C1—N6—C6—N5176.04 (17)C17—N12—C21—C200.7 (3)
C1—N6—C6—N74.0 (3)C26—N13—C22—N11176.98 (18)
C4—N7—C2—N1178.92 (16)C26—N13—C22—C230.0 (3)
C4—N7—C2—N21.3 (3)C22—N13—C26—C250.6 (3)
C6—N7—C2—N13.2 (3)N8—C7—C8—C9174.24 (17)
C6—N7—C2—N2176.95 (17)N9—C7—C8—C90.2 (3)
C2—N7—C4—N35.9 (3)C7—C8—C9—C100.1 (3)
C2—N7—C4—N4173.37 (17)C8—C9—C10—C110.3 (3)
C6—N7—C4—N3178.42 (17)C9—C10—C11—N90.6 (3)
C6—N7—C4—N42.3 (3)N8—C12—C13—C14177.29 (19)
C2—N7—C6—N5172.85 (17)N10—C12—C13—C140.3 (3)
C2—N7—C6—N67.2 (3)C12—C13—C14—C150.3 (3)
C4—N7—C6—N52.8 (3)C13—C14—C15—C160.4 (3)
C4—N7—C6—N6177.17 (17)C14—C15—C16—N100.5 (3)
C7—N8—C3—N210.0 (3)N11—C17—C18—C19179.74 (17)
C7—N8—C3—N3171.03 (17)N12—C17—C18—C191.9 (3)
C12—N8—C3—N2178.50 (16)C17—C18—C19—C201.9 (3)
C12—N8—C3—N32.5 (3)C18—C19—C20—C210.7 (3)
C3—N8—C7—N9134.91 (18)C19—C20—C21—N120.7 (3)
C3—N8—C7—C850.4 (3)N11—C22—C23—C24177.43 (19)
C12—N8—C7—N955.8 (2)N13—C22—C23—C240.7 (3)
C12—N8—C7—C8118.8 (2)C22—C23—C24—C250.7 (3)
C3—N8—C12—N10119.0 (2)C23—C24—C25—C260.1 (3)
C3—N8—C12—C1363.7 (3)C24—C25—C26—N130.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N12/C17–C21 and N13/C22–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)1.84 (2)2.706 (2)169 (2)
O3—H1O···O20.89 (4)1.92 (3)2.755 (2)157 (3)
O3—H2O···N12ii0.89 (3)1.99 (3)2.859 (2)165 (3)
O4—H3O···N6iii0.94 (4)2.04 (4)2.904 (3)151 (3)
O4—H4O···N5iii1.02 (3)2.55 (4)3.206 (3)122 (2)
C9—H9···N10iv0.952.553.313 (3)137
C21—H21···O2v0.952.413.291 (3)154
C23—H23···O1vi0.952.553.426 (2)153
C27—H27B···Cg20.982.763.647 (3)150
C28—H28A···Cg1vii0.982.733.463 (2)132
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x1, y+1, z+1; (v) x, y1, z; (vi) x, y, z+1; (vii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N12/C17–C21 and N13/C22–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)1.84 (2)2.706 (2)169 (2)
O3—H1O···O20.89 (4)1.92 (3)2.755 (2)157 (3)
O3—H2O···N12ii0.89 (3)1.99 (3)2.859 (2)165 (3)
O4—H3O···N6iii0.94 (4)2.04 (4)2.904 (3)151 (3)
O4—H4O···N5iii1.02 (3)2.55 (4)3.206 (3)122 (2)
C9—H9···N10iv0.952.553.313 (3)137
C21—H21···O2v0.952.413.291 (3)154
C23—H23···O1vi0.952.553.426 (2)153
C27—H27B···Cg20.982.763.647 (3)150
C28—H28A···Cg1vii0.982.733.463 (2)132
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x1, y+1, z+1; (v) x, y1, z; (vi) x, y, z+1; (vii) x+1, y, z+2.
 

Acknowledgements

AS thanks the TU Bergakademie Freiberg for the `Mary Hegeler' Postdoctoral Research Fellowship. EK thanks the German Research Foundation (DFG) for funding project KR1739/20–1 on hepta­zines.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSattler, A. & Schnick, W. (2006). Z. Anorg. Allg. Chem. 632, 1518–1523.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwarzer, A. & Kroke, E. (2010). Chem. Commun. 46, 2829–2831.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwarzer, A. & Kroke, E. (2011). New J. Chem. 35, 953–958.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwarzer, A., Saplinova, T. & Kroke, E. (2013). Coord. Chem. Rev. 257, 2032–2062.  Web of Science CrossRef CAS Google Scholar
First citationSeyfarth, L., Sehnert, J., El-Gamel, N. E. A., Milius, W., Kroke, E., Breu, J. & Senker, J. (2008). J. Mol. Struct. 889, 217–228.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagler, J., El-Gamel, N. E. A. & Kroke, E. (2006). Z. Naturforsch. Teil B, 61, 975–978.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o456-o457
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds