organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o453-o454

Benzene-1,3,5-tri­carb­­oxy­lic acid–pyridinium-2-olate (1/3)

aFacultad de Ingenieria Mochis, Universidad Autónoma de Sinaloa, Fuente Poseidón y Prol. A. Flores S/N, CP 8122, C.U. Los Mochis, Sinaloa, México, and bCentro de Investigaciones Quimicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, México
*Correspondence e-mail: cenriqueza@yahoo.com.mx

(Received 10 March 2014; accepted 11 March 2014; online 19 March 2014)

The asymmetric unit of the title compound, C9H6O6·3C5H5NO, contains one benzene-1,3,5-tri­carb­oxy­lic acid mol­ecule (BTA) and three pyridin-2-ol mol­ecules each present in the zwitterion form. In the crystal, these entities are linked through O—H⋯O and N+—H⋯O hydrogen bonds, forming sheets parallel to (10-1). These layers contain macrocyclic rings of composition [BTA]2[pyol]6 and with graph-set notation R68(44), which are stacked along c through ππ inter­actions [inter-centroid distances = 3.536 (2)–3.948 (3) Å]. They are inter­connected by N+—H⋯O hydrogen-bonded chains of pyridin-2-ol mol­ecules running parallel to c, forming a three-dimensional network. There are also C—H⋯O hydrogen bonds present which reinforce the three-dimensional structure.

Related literature

For reports on supra­molecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]); Karki et al. (2009[Karki, S., Friščić, T., László, F., Laity, P. R., Graeme, M. D. & Jones, W. (2009). Adv. Mater. 21, 3905-3909.]); Aakeröy et al. (2010[Aakeröy, C. B., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22-43.]); Yan et al. (2012[Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friščić, T., Day, G. M., Bucar, D. K., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121-5123.]); Li et al. (2014[Li, P., He, Y., Guang, J., Weng, L., Zhao, J. C., Xiang, S. & Chen, B. (2014). J. Am. Chem. Soc. 136, 547-549.]); Ebenezer & Mu­thiah (2012[Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766-3785.]. For background to related crystal structures, see: Bhogala et al. (2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551-562.]); Shattock et al. (2008[Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.]); Yu (2012[Yu, C.-H. (2012). Acta Cryst. E68, o1989.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6O6·3C5H5NO

  • Mr = 495.44

  • Monoclinic, C c

  • a = 14.344 (2) Å

  • b = 25.993 (5) Å

  • c = 6.7047 (10) Å

  • β = 117.472 (2)°

  • V = 2217.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.49 × 0.41 × 0.34 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.95, Tmax = 0.96

  • 12173 measured reflections

  • 2433 independent reflections

  • 2354 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.104

  • S = 1.08

  • 2433 reflections

  • 343 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1′⋯O8i 0.84 1.72 2.555 (3) 173
O3—H3′⋯O7ii 0.84 1.70 2.489 (3) 156
O5—H5′⋯O9iii 0.84 1.70 2.531 (4) 170
N1—H1A⋯O7iv 0.84 1.91 2.712 (4) 158
N2—H2A⋯O8v 0.84 2.00 2.817 (4) 165
N3—H3A⋯O9vi 0.84 2.09 2.825 (4) 146
C14—H14⋯O6 0.95 2.67 3.596 (5) 166
C19—H19⋯O2vii 0.95 2.48 3.034 (5) 117
C24—H24⋯O4viii 0.95 2.45 3.067 (6) 123
C13—H13⋯O9iii 0.95 2.63 3.270 (4) 125
C10—H10⋯O3ix 0.95 2.42 3.073 (5) 126
C16—H16⋯O1x 0.95 2.68 3.307 (4) 124
C19—H19⋯O6xi 0.95 2.57 3.314 (6) 135
C20—H20⋯O6xii 0.95 2.55 3.499 (4) 176
C23—H23⋯O4xiii 0.95 2.48 3.310 (4) 147
Symmetry codes: (i) x-1, y, z; (ii) x-1, y, z-1; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x, y, z-1; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ix) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (x) x+1, y, z; (xi) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (xii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (xiii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker 2001[Bruker (2001). SMART and SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The engineering and design of novel materials via non-covalent synthesis has developed as a very attractive and potential area of research because of its importance in molecular recognition (Aakeröy et al., 2010; Li et al., 2014), pharmaceutical chemistry (Karki et al., 2009) and materials chemistry (Yan et al., 2012). Aromatic carboxylic acids form reliable supramolecular synthons for the construction of novel organic networks by hydrogen bonding and ππ interactions (Desiraju, 1995), and numerous studies have focused on hydrogen bonding between carboxylic acids and pyridine derivatives (Bhogala et al., 2005; Shattock et al. 2008; Yu, 2012). Herein, we report on the solid-state structure of a 1:3 co-crystal formed between benzene-1,3,5-tricarboxylic acid and pyridin-2-ol.

The asymmetric unit of the title compound contains one benzene-1,3,5-tricarboxylic acid and three pyridin-2-ol molecules in the zwitterion form (Fig. 1). In the benzene-1,3,5-tricarboxylic acid (BTA) molecule, the mean planes of the three carboxyl groups are twisted by 3.9 (2), 9.3 (2) and 13.3 (2)° relative to the benzene ring mean plane.

In the crystal lattice, the BTA molecules and two of the three independent zwitterionic pyridine-2ol entities are linked through O—H···-O and N+—H···-O hydrogen bonds into two-dimensional hydrogen bonded layers parallel to (10-1) (see Table 1 and Fig. 2). These two-dimensional sheets are stacked through ππ interactions along c and interpenetrated by one-dimensional hydrogen bonded chains formed by the third group of independent pyridin-2-ol molecules, through N+—H···-O hydrogen bonds, giving an overall three-dimensional hydrogen bonded skeleton (Table 1 and Fig. 3). The supramolecular network is further accomplished by C—H···O hydrogen bonds (Table 1). Strong ππ interactions are formed between the BTA molecules [Cg1···Cg1i = 3.536 (2) Å; Cg1 centroid of ring C1—C6; symmetry code: (i) x, -y+1, z - 1/2]. There and also weaker ππ interactions present involving two of the three independent pyridin-2-ol entities [Cg2···Cg3ii = 3.921 (2) and Cg2···Cg3iii = 3.948 (3) Å; Cg2 centroid of ring N1/C10—C14, Cg3 centroid of ring N2/C15—C19; symmetry codes:(ii) x, -y+1, z + 3/2; (iii) x, -y+1, z+1/2].

Related literature top

For reports on supramolecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995); Karki et al. (2009); Aakeröy et al. (2010); Yan et al. (2012); Li et al. (2014); Ebenezer & Muthiah (2012. For background to related crystal structures, see: Bhogala et al. (2005); Shattock et al. (2008); Yu (2012).

Experimental top

A solution of 4-hydroxypyridine (0.050 g, 0.525 mmol) and benzene-1,3,5-tricarboxylic acid (0.055 g, 0.262 mmol) in a solvent mixture of THF and DMF (7.5 ml, 2:1, v/v) was stirred for 30 min at room temperature, giving a clear transparent solution. Upon slow evaporation of the solvents during approximately 30 days, yellow crystals were obtained. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The H atoms bonded to O and N were initially located in a difference Fourier map. They were refined with an X—H distance restraint of 0.840 (1) Å with Uiso(H) = 1.5Ueq(O,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus-NT (Bruker 2001); data reduction: SAINT-Plus-NT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the two-dimensional hydrogen bonded sheets parallel to (10-1) (see Table 1 for details).
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound, showing the three-dimensional hydrogen bonded network formed through O—H···-O and N+—H···-O hydrogen bonds (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
Benzene-1,3,5-tricarboxylic acid–pyridin-1-ium-4-olate (1/3) top
Crystal data top
C9H6O6·3C5H5NOF(000) = 1032
Mr = 495.44Dx = 1.484 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4866 reflections
a = 14.344 (2) Åθ = 2.8–28.5°
b = 25.993 (5) ŵ = 0.12 mm1
c = 6.7047 (10) ÅT = 100 K
β = 117.472 (2)°Rectangular prism, colorless
V = 2217.8 (6) Å30.49 × 0.41 × 0.34 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2433 independent reflections
Radiation source: fine-focus sealed tube2354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
phi and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.95, Tmax = 0.96k = 3332
12173 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0394P)2 + 2.5063P]
where P = (Fo2 + 2Fc2)/3
2433 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.33 e Å3
8 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H6O6·3C5H5NOV = 2217.8 (6) Å3
Mr = 495.44Z = 4
Monoclinic, CcMo Kα radiation
a = 14.344 (2) ŵ = 0.12 mm1
b = 25.993 (5) ÅT = 100 K
c = 6.7047 (10) Å0.49 × 0.41 × 0.34 mm
β = 117.472 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2433 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2354 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.076
12173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0478 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
2433 reflectionsΔρmin = 0.25 e Å3
343 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR (KBr, cm-1): 3442, 3103, 3050, 1704, 1690, 1624, 1613, 1468, 1282, 1193, 1094, 1024.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5716 (2)0.74048 (12)0.7948 (5)0.0185 (7)
H1A0.5074 (9)0.7479 (18)0.734 (7)0.028*
N20.7381 (2)0.23549 (13)0.0482 (5)0.0212 (7)
H2A0.6809 (18)0.2201 (16)0.086 (8)0.032*
N30.1812 (2)0.06645 (12)0.3136 (5)0.0183 (6)
H3A0.191 (3)0.0665 (17)0.199 (4)0.027*
O10.0316 (2)0.39495 (9)0.3690 (5)0.0200 (5)
H1'0.031 (4)0.3628 (2)0.355 (8)0.030*
O20.2044 (2)0.38226 (10)0.5822 (5)0.0214 (6)
O30.00333 (19)0.63687 (10)0.3527 (4)0.0196 (6)
H3'0.053 (2)0.6581 (13)0.294 (7)0.029*
O40.11698 (19)0.57121 (9)0.2541 (4)0.0164 (5)
O50.43466 (18)0.53127 (10)0.7273 (4)0.0183 (5)
H5'0.4927 (17)0.5446 (16)0.755 (8)0.027*
O60.3814 (2)0.61071 (10)0.7524 (5)0.0218 (6)
O70.8839 (2)0.71094 (10)1.1439 (4)0.0180 (5)
O81.02950 (19)0.29837 (9)0.2960 (4)0.0183 (5)
O90.11946 (18)0.06361 (10)0.8481 (4)0.0152 (5)
C10.1406 (3)0.46845 (14)0.5090 (6)0.0129 (7)
C20.0532 (3)0.50081 (13)0.4269 (5)0.0113 (6)
H20.01560.48660.36200.014*
C30.0669 (3)0.55406 (14)0.4403 (6)0.0127 (7)
C40.1686 (3)0.57493 (13)0.5353 (6)0.0127 (7)
H40.17830.61120.54520.015*
C50.2549 (3)0.54226 (13)0.6147 (5)0.0125 (7)
C60.2412 (3)0.48950 (13)0.6015 (6)0.0136 (7)
H60.30080.46750.65580.016*
C70.1295 (3)0.41098 (14)0.4918 (6)0.0150 (7)
C80.0277 (3)0.58794 (13)0.3392 (6)0.0124 (7)
C90.3641 (3)0.56526 (13)0.7065 (6)0.0134 (7)
C100.6414 (3)0.77853 (13)0.8312 (6)0.0146 (7)
H100.61640.81190.77330.017*
C110.7469 (3)0.77035 (14)0.9492 (6)0.0160 (7)
H110.79470.79790.97560.019*
C120.7854 (3)0.72007 (14)1.0328 (6)0.0156 (7)
C130.7089 (3)0.68087 (13)0.9850 (6)0.0161 (7)
H130.73080.64671.03520.019*
C140.6033 (3)0.69193 (15)0.8667 (6)0.0182 (7)
H140.55270.66550.83550.022*
C150.7479 (3)0.28586 (15)0.0073 (6)0.0203 (8)
H150.68670.30600.03210.024*
C160.8446 (3)0.30826 (14)0.1192 (6)0.0188 (7)
H160.84950.34390.15420.023*
C170.9382 (3)0.27898 (14)0.1843 (6)0.0163 (7)
C180.9227 (3)0.22593 (14)0.1212 (7)0.0195 (8)
H180.98200.20440.15940.023*
C190.8238 (3)0.20564 (15)0.0069 (6)0.0216 (8)
H190.81530.17030.03410.026*
C200.0841 (3)0.07837 (14)0.2819 (6)0.0189 (8)
H200.03070.08610.13490.023*
C210.0613 (3)0.07946 (14)0.4590 (6)0.0183 (7)
H210.00700.08900.43470.022*
C220.1399 (3)0.06629 (13)0.6804 (6)0.0142 (7)
C230.2420 (3)0.05643 (13)0.7041 (6)0.0162 (7)
H230.29850.04980.84880.019*
C240.2592 (3)0.05641 (13)0.5203 (6)0.0178 (7)
H240.32760.04920.53860.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0100 (15)0.0280 (17)0.0156 (15)0.0043 (13)0.0042 (13)0.0001 (13)
N20.0156 (16)0.0321 (19)0.0161 (15)0.0092 (13)0.0075 (13)0.0042 (13)
N30.0239 (17)0.0187 (15)0.0168 (16)0.0008 (12)0.0133 (14)0.0001 (12)
O10.0166 (13)0.0125 (11)0.0273 (14)0.0030 (10)0.0070 (11)0.0028 (11)
O20.0153 (13)0.0174 (13)0.0278 (14)0.0012 (10)0.0068 (11)0.0000 (11)
O30.0109 (12)0.0159 (12)0.0276 (14)0.0039 (10)0.0050 (11)0.0045 (11)
O40.0122 (12)0.0176 (12)0.0200 (13)0.0002 (10)0.0080 (10)0.0008 (10)
O50.0093 (12)0.0201 (13)0.0260 (14)0.0011 (10)0.0086 (11)0.0021 (11)
O60.0125 (12)0.0207 (14)0.0291 (15)0.0026 (10)0.0069 (11)0.0036 (11)
O70.0101 (12)0.0183 (13)0.0212 (13)0.0004 (9)0.0035 (10)0.0010 (10)
O80.0121 (12)0.0149 (12)0.0237 (13)0.0007 (9)0.0047 (11)0.0006 (10)
O90.0113 (12)0.0231 (13)0.0121 (12)0.0027 (10)0.0062 (10)0.0014 (10)
C10.0130 (17)0.0189 (17)0.0074 (15)0.0004 (13)0.0051 (13)0.0004 (12)
C20.0080 (15)0.0178 (16)0.0078 (15)0.0014 (12)0.0033 (12)0.0016 (12)
C30.0148 (16)0.0178 (17)0.0074 (15)0.0003 (13)0.0066 (13)0.0011 (13)
C40.0149 (17)0.0137 (16)0.0098 (15)0.0011 (12)0.0059 (13)0.0002 (13)
C50.0131 (16)0.0191 (17)0.0054 (14)0.0003 (13)0.0043 (13)0.0003 (13)
C60.0113 (16)0.0179 (17)0.0113 (15)0.0057 (13)0.0048 (13)0.0021 (13)
C70.0144 (17)0.0181 (17)0.0133 (15)0.0016 (13)0.0072 (14)0.0002 (13)
C80.0100 (16)0.0173 (16)0.0110 (16)0.0005 (13)0.0058 (13)0.0001 (13)
C90.0123 (17)0.0157 (17)0.0099 (16)0.0004 (12)0.0032 (13)0.0012 (12)
C100.0179 (17)0.0166 (17)0.0116 (15)0.0062 (13)0.0088 (13)0.0015 (13)
C110.0176 (18)0.0166 (16)0.0159 (16)0.0035 (14)0.0095 (14)0.0022 (13)
C120.0137 (17)0.0227 (18)0.0094 (16)0.0010 (14)0.0045 (14)0.0018 (13)
C130.0185 (18)0.0120 (16)0.0171 (17)0.0014 (13)0.0076 (14)0.0016 (13)
C140.0181 (18)0.0208 (18)0.0161 (17)0.0020 (14)0.0082 (15)0.0021 (14)
C150.0180 (18)0.029 (2)0.0142 (18)0.0038 (15)0.0078 (15)0.0010 (15)
C160.0192 (19)0.0183 (17)0.0205 (18)0.0005 (14)0.0106 (16)0.0013 (15)
C170.0183 (18)0.0180 (17)0.0141 (17)0.0040 (14)0.0089 (14)0.0003 (14)
C180.0186 (19)0.0179 (18)0.025 (2)0.0008 (14)0.0128 (16)0.0012 (15)
C190.028 (2)0.0199 (19)0.0206 (18)0.0080 (15)0.0146 (17)0.0044 (15)
C200.0232 (19)0.0206 (18)0.0116 (16)0.0058 (14)0.0070 (14)0.0006 (14)
C210.0116 (17)0.0217 (18)0.0212 (18)0.0010 (13)0.0074 (14)0.0010 (15)
C220.0175 (17)0.0133 (16)0.0157 (17)0.0064 (13)0.0109 (14)0.0040 (13)
C230.0160 (17)0.0167 (17)0.0152 (17)0.0009 (14)0.0067 (14)0.0004 (14)
C240.0157 (17)0.0146 (17)0.0248 (19)0.0022 (14)0.0108 (15)0.0004 (14)
Geometric parameters (Å, º) top
N1—C101.347 (5)C4—H40.9500
N1—C141.352 (5)C5—C61.382 (5)
N1—H1A0.8400 (12)C5—C91.517 (5)
N2—C151.351 (5)C6—H60.9500
N2—C191.353 (5)C10—C111.363 (5)
N2—H2A0.8400 (11)C10—H100.9500
N3—C241.345 (5)C11—C121.429 (5)
N3—C201.345 (5)C11—H110.9500
N3—H3A0.8400 (11)C12—C131.421 (5)
O1—C71.325 (4)C13—C141.377 (5)
O1—H1'0.8400 (11)C13—H130.9500
O2—C71.216 (4)C14—H140.9500
O3—C81.311 (4)C15—C161.365 (5)
O3—H3'0.8400 (11)C15—H150.9500
O4—C81.217 (4)C16—C171.425 (5)
O5—C91.301 (4)C16—H160.9500
O5—H5'0.8400 (12)C17—C181.429 (5)
O6—C91.217 (4)C18—C191.369 (5)
O7—C121.280 (4)C18—H180.9500
O8—C171.275 (4)C19—H190.9500
O9—C221.288 (4)C20—C211.370 (5)
C1—C21.394 (5)C20—H200.9500
C1—C61.394 (5)C21—C221.431 (5)
C1—C71.501 (5)C21—H210.9500
C2—C31.395 (5)C22—C231.421 (5)
C2—H20.9500C23—C241.364 (5)
C3—C41.404 (5)C23—H230.9500
C3—C81.492 (5)C24—H240.9500
C4—C51.389 (5)
C10—N1—C14121.4 (3)C10—C11—C12119.6 (3)
C10—N1—H1A118 (3)C10—C11—H11120.2
C14—N1—H1A120 (3)C12—C11—H11120.2
C15—N2—C19121.0 (3)O7—C12—C13121.9 (3)
C15—N2—H2A120 (3)O7—C12—C11121.4 (3)
C19—N2—H2A117 (3)C13—C12—C11116.7 (3)
C24—N3—C20121.1 (3)C14—C13—C12120.6 (3)
C24—N3—H3A122 (3)C14—C13—H13119.7
C20—N3—H3A117 (3)C12—C13—H13119.7
C7—O1—H1'110 (3)N1—C14—C13120.0 (3)
C8—O3—H3'118 (3)N1—C14—H14120.0
C9—O5—H5'113 (3)C13—C14—H14120.0
C2—C1—C6119.8 (3)N2—C15—C16121.0 (3)
C2—C1—C7121.7 (3)N2—C15—H15119.5
C6—C1—C7118.4 (3)C16—C15—H15119.5
C1—C2—C3119.9 (3)C15—C16—C17121.0 (3)
C1—C2—H2120.0C15—C16—H16119.5
C3—C2—H2120.0C17—C16—H16119.5
C2—C3—C4119.9 (3)O8—C17—C16122.4 (3)
C2—C3—C8119.0 (3)O8—C17—C18122.2 (3)
C4—C3—C8121.0 (3)C16—C17—C18115.4 (3)
C5—C4—C3119.6 (3)C19—C18—C17121.1 (3)
C5—C4—H4120.2C19—C18—H18119.4
C3—C4—H4120.2C17—C18—H18119.4
C6—C5—C4120.5 (3)N2—C19—C18120.5 (3)
C6—C5—C9120.4 (3)N2—C19—H19119.7
C4—C5—C9119.1 (3)C18—C19—H19119.7
C5—C6—C1120.3 (3)N3—C20—C21120.8 (3)
C5—C6—H6119.8N3—C20—H20119.6
C1—C6—H6119.8C21—C20—H20119.6
O2—C7—O1123.8 (3)C20—C21—C22120.4 (3)
O2—C7—C1122.3 (3)C20—C21—H21119.8
O1—C7—C1113.9 (3)C22—C21—H21119.8
O4—C8—O3124.6 (3)O9—C22—C23122.0 (3)
O4—C8—C3122.8 (3)O9—C22—C21122.1 (3)
O3—C8—C3112.6 (3)C23—C22—C21115.9 (3)
O6—C9—O5125.1 (3)C24—C23—C22120.4 (3)
O6—C9—C5122.4 (3)C24—C23—H23119.8
O5—C9—C5112.5 (3)C22—C23—H23119.8
N1—C10—C11121.6 (3)N3—C24—C23121.3 (3)
N1—C10—H10119.2N3—C24—H24119.4
C11—C10—H10119.2C23—C24—H24119.4
C6—C1—C2—C30.8 (5)C14—N1—C10—C112.5 (5)
C7—C1—C2—C3178.1 (3)N1—C10—C11—C121.4 (5)
C1—C2—C3—C40.3 (5)C10—C11—C12—O7179.9 (3)
C1—C2—C3—C8176.4 (3)C10—C11—C12—C130.3 (5)
C2—C3—C4—C50.2 (5)O7—C12—C13—C14179.5 (3)
C8—C3—C4—C5175.8 (3)C11—C12—C13—C141.0 (5)
C3—C4—C5—C60.2 (5)C10—N1—C14—C131.8 (5)
C3—C4—C5—C9177.0 (3)C12—C13—C14—N10.0 (5)
C4—C5—C6—C10.2 (5)C19—N2—C15—C160.5 (5)
C9—C5—C6—C1177.5 (3)N2—C15—C16—C171.1 (5)
C2—C1—C6—C50.8 (5)C15—C16—C17—O8177.4 (3)
C7—C1—C6—C5178.1 (3)C15—C16—C17—C180.9 (5)
C2—C1—C7—O2172.4 (3)O8—C17—C18—C19178.1 (3)
C6—C1—C7—O210.2 (5)C16—C17—C18—C190.2 (5)
C2—C1—C7—O17.9 (5)C15—N2—C19—C180.2 (6)
C6—C1—C7—O1169.4 (3)C17—C18—C19—N20.4 (6)
C2—C3—C8—O43.5 (5)C24—N3—C20—C211.5 (5)
C4—C3—C8—O4179.5 (3)N3—C20—C21—C222.0 (6)
C2—C3—C8—O3176.4 (3)C20—C21—C22—O9175.4 (3)
C4—C3—C8—O30.4 (4)C20—C21—C22—C234.8 (5)
C6—C5—C9—O6168.8 (3)O9—C22—C23—C24175.8 (3)
C4—C5—C9—O613.9 (5)C21—C22—C23—C244.3 (5)
C6—C5—C9—O511.8 (4)C20—N3—C24—C232.0 (5)
C4—C5—C9—O5165.5 (3)C22—C23—C24—N31.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O8i0.841.722.555 (3)173
O3—H3···O7ii0.841.702.489 (3)156
O5—H5···O9iii0.841.702.531 (4)170
N1—H1A···O7iv0.841.912.712 (4)158
N2—H2A···O8v0.842.002.817 (4)165
N3—H3A···O9vi0.842.092.825 (4)146
C14—H14···O60.952.673.596 (5)166
C19—H19···O2vii0.952.483.034 (5)117
C24—H24···O4viii0.952.453.067 (6)123
C13—H13···O9iii0.952.633.270 (4)125
C10—H10···O3ix0.952.423.073 (5)126
C16—H16···O1x0.952.683.307 (4)124
C19—H19···O6xi0.952.573.314 (6)135
C20—H20···O6xii0.952.553.499 (4)176
C23—H23···O4xiii0.952.483.310 (4)147
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+3/2, z1/2; (v) x1/2, y+1/2, z1/2; (vi) x, y, z1; (vii) x+1/2, y+1/2, z1/2; (viii) x+1/2, y1/2, z; (ix) x+1/2, y+3/2, z+1/2; (x) x+1, y, z; (xi) x+1/2, y1/2, z1; (xii) x1/2, y1/2, z1; (xiii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1'···O8i0.841.722.555 (3)173
O3—H3'···O7ii0.841.702.489 (3)156
O5—H5'···O9iii0.841.702.531 (4)170
N1—H1A···O7iv0.841.912.712 (4)158
N2—H2A···O8v0.842.002.817 (4)165
N3—H3A···O9vi0.842.092.825 (4)146
C14—H14···O60.952.673.596 (5)166
C19—H19···O2vii0.952.483.034 (5)117
C24—H24···O4viii0.952.453.067 (6)123
C13—H13···O9iii0.952.633.270 (4)125
C10—H10···O3ix0.952.423.073 (5)126
C16—H16···O1x0.952.683.307 (4)124
C19—H19···O6xi0.952.573.314 (6)135
C20—H20···O6xii0.952.553.499 (4)176
C23—H23···O4xiii0.952.483.310 (4)147
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+3/2, z1/2; (v) x1/2, y+1/2, z1/2; (vi) x, y, z1; (vii) x+1/2, y+1/2, z1/2; (viii) x+1/2, y1/2, z; (ix) x+1/2, y+3/2, z+1/2; (x) x+1, y, z; (xi) x+1/2, y1/2, z1; (xii) x1/2, y1/2, z1; (xiii) x+1/2, y1/2, z+1.
 

Acknowledgements

This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2012/048). The authors are also grateful to the Autonomous State University of Morelos (CIQ-UAEM) for access to the X-ray diffraction facilities of the Chemical Research Center.

References

First citationAakeröy, C. B., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22–43.  Google Scholar
First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarki, S., Friščić, T., László, F., Laity, P. R., Graeme, M. D. & Jones, W. (2009). Adv. Mater. 21, 3905–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, P., He, Y., Guang, J., Weng, L., Zhao, J. C., Xiang, S. & Chen, B. (2014). J. Am. Chem. Soc. 136, 547–549.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, D., Delori, A., Lloyd, G. O., Patel, B., Friščić, T., Day, G. M., Bucar, D. K., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121–5123.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, C.-H. (2012). Acta Cryst. E68, o1989.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o453-o454
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds