organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Furan-2-yl)-2-(2H-indazol-2-yl)ethanone

aDepartment of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 19 March 2014; accepted 25 March 2014; online 29 March 2014)

The asymmetric unit of the title compound, C13H10N2O2, contains two crystallographically independent mol­ecules (A and B). The indazole ring systems are approximately planar [maximum deviations = 0.0037 (15) and −0.0198 (15) Å], and their mean planes are oriented at 80.10 (5) and 65.97 (4)° with respect to the furan rings in mol­ecules A and B, respectively. In the crystal, pairs of C—H⋯N hydrogen bonds link the B mol­ecules, forming inversion dimers. These dimers are bridged by the A mol­ecules via C—H⋯O hydrogen bonds, forming sheets parallel to (011). There are also C—H⋯π inter­actions present, and ππ inter­actions between neighbouring furan and the indazole rings [centroid–centroid distance = 3.8708 (9) Å] of inversion-related mol­ecules, forming a three-dimensional structure.

Related literature

For related structures, see: Peeters et al. (1979[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461-2464.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Özel Güven et al. (2008a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1358.],b[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1604.], 2013[Özel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o184.], 2014[Özel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2014). Acta Cryst. E70, o410.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O2

  • Mr = 226.23

  • Triclinic, [P \overline 1]

  • a = 9.2899 (3) Å

  • b = 10.6863 (4) Å

  • c = 11.7826 (5) Å

  • α = 77.046 (3)°

  • β = 70.780 (3)°

  • γ = 88.930 (4)°

  • V = 1074.47 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.17 × 0.15 × 0.10 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.990

  • 10517 measured reflections

  • 5256 independent reflections

  • 4130 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.14

  • 5256 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg5 and Cg6 are the centroids of the O2/C2–C5, N1/N2/C7/C8/C13, N1′/N2′/C7′/C8′/C13′, and C8′–C13′ rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3′—H3′⋯N2′i 0.93 2.57 3.4031 (18) 149
C7—H7⋯O1′ii 0.93 2.48 3.2544 (17) 141
C10′—H10′⋯O1iii 0.93 2.44 3.2719 (17) 148
C7—H7⋯Cg5iv 0.93 2.97 3.6000 (16) 126
C9—H9⋯Cg6iv 0.93 2.81 3.4312 (17) 125
C9′—H9′⋯Cg2v 0.93 2.94 3.6743 (15) 137
C12′—H12′⋯Cg1i 0.93 2.63 3.4480 (16) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z-1; (iv) x+1, y, z; (v) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azole group containing ketones are starting materials of important antifungal compounds like miconazole (Peeters et al., 1979) and econazole (Freer et al., 1986) having an ether structure. The crystal structures of some phenyl ketones having a benzimidazole ring (Özel Güven et al., 2008a), a 1,2,4-triazole ring (Özel Güven et al., 2008b) and an indazole ring (Özel Güven et al., 2013) have been reported. The crystal structure of indazole ring containing an ether structure has also been reported (Özel Güven et al., 2014). Herein we report on the crystal structure of the title indazole derivative.

The asymmetric unit of the title compound contains two crystallographically independent molecules (A and B), shown in Fig. 1. The bond lengths and angles are generally within normal ranges. The indazole ring systems in the two molecules [N1/N2/C7—C13 and N1'/N2'/C7'—C13'] are approximately planar [maximum deviations of 0.0037 (15) Å for atom C12 and -0.0198 (15) Å for atom C13']. Their mean planes are oriented with respect to the furan rings [O2/C2—C5 and O2'/C2'—C5'] at dihedral angles of 80.10 (5) and 65.97 (4) °, in molecules A and B, respectively. Atoms C6 and C6' are displaced by -0.0508 (14) and 0.1004 (15) Å from their respective indazole ring plane, while atoms O1, C1, C6 and O1', C1', C6' are displaced by 0.0239 (11), -0.0104 (14), -0.1155 (14) and -0.0504 (10), -0.0166 (14), 0.0371 (15) Å from their respective furan ring mean plane.

In the crystal, C—H···N hydrogen bonds link the B molecules forming inversion dimers. These dimers are bridged by the A molecules, via C—H···O hydrogen bonds, forming sheets parallel to (011), see Table 1 and Fig. 2. Weak C—H···π interactions (Table 1) are also present together with π···π interactions between furan and the indazole rings of inversion related molecules Cg1—Cg4i, [centroid-centroid distance = 3.8708 (9) Å; symmetry code: (i) - x+1, - y+1, - z+1; Cg1 and Cg4 are the centroids of the rings O2/C2–C5 and N1'/N2'/C7'–C13'] forming a three-dimensional structure.

Related literature top

For related structures, see: Peeters et al. (1979); Freer et al. (1986); Özel Güven et al. (2008a,b, 2013, 2014).

Experimental top

2-Acetylfuran (3.303 g, 30.01 mmol) was dissolved in 18 ml dioxane/ether (1:2) mixture. This solution was cooled in ice-water, and then bromine (1.96 ml, 38.14 mmol) was added over a period of 30 min.The reaction mixture was stirred for 12 h at room temperature. At the end of this period, saturated ammonium chloride solution (25 ml) was added and the solution extracted with ether. After evaporation of the ether, the residue obtained was purified by column chromatography using a hexane-ethylacetate (60:1) mixture. The resulting furacyl bromide (2.500 g, 13.23 mmol) was dissolved in toluene (30 ml). 1H-indazole (3.125 g, 26.45 mmol) was added in small quantities and the reaction mixture was refluxed for 12 h. The solvent was evaporated and the resulting residue was purified by column chromatography using chloroform as eluent. The title ketone was crystallized from 2-propanol to obtain colourless crystals suitable for X-ray analysis [yield 0.9 g; 30%].

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound with the hydrogen bonds shown as dashed lines [see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity].
1-(Furan-2-yl)-2-(2H-indazol-2-yl)ethanone top
Crystal data top
C13H10N2O2Z = 4
Mr = 226.23F(000) = 472
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2899 (3) ÅCell parameters from 9141 reflections
b = 10.6863 (4) Åθ = 3.0–28.7°
c = 11.7826 (5) ŵ = 0.10 mm1
α = 77.046 (3)°T = 294 K
β = 70.780 (3)°Block, colourless
γ = 88.930 (4)°0.17 × 0.15 × 0.10 mm
V = 1074.47 (7) Å3
Data collection top
Rigaku Saturn724+
diffractometer
5256 independent reflections
Radiation source: fine-focus sealed tube4130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.7°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2011)
h = 1211
Tmin = 0.984, Tmax = 0.990k = 1414
10517 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.1259P]
where P = (Fo2 + 2Fc2)/3
5256 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H10N2O2γ = 88.930 (4)°
Mr = 226.23V = 1074.47 (7) Å3
Triclinic, P1Z = 4
a = 9.2899 (3) ÅMo Kα radiation
b = 10.6863 (4) ŵ = 0.10 mm1
c = 11.7826 (5) ÅT = 294 K
α = 77.046 (3)°0.17 × 0.15 × 0.10 mm
β = 70.780 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
5256 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2011)
4130 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.990Rint = 0.030
10517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.14Δρmax = 0.35 e Å3
5256 reflectionsΔρmin = 0.33 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34655 (12)0.40513 (9)0.72286 (9)0.0301 (2)
O20.12038 (12)0.66910 (9)0.67289 (10)0.0306 (2)
N10.13004 (13)0.35998 (10)0.95859 (10)0.0222 (2)
N20.22341 (13)0.35403 (11)1.02685 (10)0.0240 (3)
C10.24816 (16)0.48234 (12)0.74176 (12)0.0227 (3)
C20.23765 (16)0.58932 (12)0.64362 (13)0.0238 (3)
C30.32561 (18)0.63034 (14)0.52231 (13)0.0295 (3)
H30.41220.59360.47950.035*
C40.2570 (2)0.74121 (15)0.47503 (14)0.0356 (4)
H40.29020.79100.39450.043*
C50.13524 (19)0.76044 (14)0.56853 (15)0.0358 (4)
H50.07030.82700.56250.043*
C60.13153 (16)0.47746 (12)0.86879 (12)0.0236 (3)
H6A0.15360.55000.89860.028*
H6B0.03070.48620.86130.028*
C70.03917 (15)0.25281 (12)0.98598 (12)0.0228 (3)
H70.03180.23890.94920.027*
C80.07307 (15)0.16724 (12)1.08045 (12)0.0220 (3)
C90.02026 (16)0.04070 (13)1.15061 (13)0.0267 (3)
H90.05500.00431.13720.032*
C100.08333 (17)0.01324 (13)1.23873 (14)0.0297 (3)
H100.05010.09611.28590.036*
C110.19855 (18)0.05475 (14)1.25960 (14)0.0302 (3)
H110.23880.01511.32030.036*
C120.25205 (17)0.17660 (13)1.19336 (13)0.0263 (3)
H120.32780.21991.20790.032*
C130.18851 (15)0.23470 (12)1.10204 (12)0.0221 (3)
O1'0.12771 (11)0.65903 (9)0.22019 (9)0.0277 (2)
O2'0.12290 (11)0.46552 (9)0.41588 (8)0.0256 (2)
N1'0.36805 (13)0.72809 (11)0.00180 (10)0.0221 (2)
N2'0.36774 (13)0.71328 (10)0.10991 (10)0.0215 (2)
C1'0.23839 (15)0.59371 (12)0.21100 (12)0.0212 (3)
C2'0.24799 (15)0.48921 (12)0.31045 (11)0.0210 (3)
C3'0.35788 (16)0.40672 (12)0.32360 (12)0.0238 (3)
H3'0.45310.40320.26540.029*
C4'0.29694 (18)0.32704 (13)0.44471 (13)0.0281 (3)
H4'0.34440.26030.48140.034*
C5'0.15650 (17)0.36727 (13)0.49609 (13)0.0270 (3)
H5'0.09170.33210.57590.032*
C6'0.37597 (16)0.61447 (13)0.09316 (12)0.0252 (3)
H6C0.46800.62250.11330.030*
H6D0.38270.53970.05820.030*
C7'0.36543 (16)0.85057 (13)0.01246 (12)0.0238 (3)
H7'0.36410.87920.08170.029*
C8'0.36502 (15)0.92660 (12)0.10033 (12)0.0214 (3)
C9'0.36551 (15)1.05980 (13)0.15096 (12)0.0242 (3)
H9'0.36241.11970.10390.029*
C10'0.37064 (16)1.09798 (13)0.27098 (13)0.0264 (3)
H10'0.37181.18520.30600.032*
C11'0.37424 (17)1.00751 (13)0.34351 (12)0.0267 (3)
H11'0.37791.03720.42490.032*
C12'0.37248 (16)0.87798 (12)0.29719 (12)0.0236 (3)
H12'0.37470.81960.34550.028*
C13'0.36711 (15)0.83599 (12)0.17304 (12)0.0201 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0299 (6)0.0234 (5)0.0321 (6)0.0032 (4)0.0042 (4)0.0062 (4)
O20.0290 (6)0.0273 (5)0.0327 (6)0.0029 (4)0.0084 (4)0.0044 (4)
N10.0198 (6)0.0240 (5)0.0223 (6)0.0006 (4)0.0066 (4)0.0047 (4)
N20.0224 (6)0.0257 (6)0.0248 (6)0.0011 (5)0.0091 (5)0.0057 (5)
C10.0226 (7)0.0200 (6)0.0248 (7)0.0029 (5)0.0065 (5)0.0056 (5)
C20.0238 (7)0.0217 (6)0.0266 (7)0.0010 (5)0.0080 (6)0.0076 (5)
C30.0294 (8)0.0318 (7)0.0267 (7)0.0066 (6)0.0045 (6)0.0118 (6)
C40.0491 (10)0.0320 (8)0.0268 (8)0.0105 (7)0.0180 (7)0.0002 (6)
C50.0393 (9)0.0277 (7)0.0426 (9)0.0008 (6)0.0216 (8)0.0003 (6)
C60.0228 (7)0.0220 (6)0.0238 (7)0.0001 (5)0.0059 (5)0.0038 (5)
C70.0186 (6)0.0255 (7)0.0242 (7)0.0013 (5)0.0061 (5)0.0068 (5)
C80.0184 (6)0.0239 (6)0.0225 (6)0.0008 (5)0.0044 (5)0.0065 (5)
C90.0232 (7)0.0247 (7)0.0297 (7)0.0031 (5)0.0055 (6)0.0058 (5)
C100.0306 (8)0.0229 (7)0.0304 (7)0.0006 (6)0.0066 (6)0.0011 (5)
C110.0320 (8)0.0302 (7)0.0293 (8)0.0051 (6)0.0128 (6)0.0049 (6)
C120.0246 (7)0.0281 (7)0.0283 (7)0.0006 (5)0.0113 (6)0.0069 (6)
C130.0207 (6)0.0219 (6)0.0220 (6)0.0002 (5)0.0049 (5)0.0049 (5)
O1'0.0231 (5)0.0331 (5)0.0226 (5)0.0041 (4)0.0050 (4)0.0017 (4)
O2'0.0238 (5)0.0299 (5)0.0177 (5)0.0005 (4)0.0031 (4)0.0005 (4)
N1'0.0214 (6)0.0248 (6)0.0168 (5)0.0008 (4)0.0037 (4)0.0021 (4)
N2'0.0216 (6)0.0241 (5)0.0169 (5)0.0010 (4)0.0044 (4)0.0040 (4)
C1'0.0207 (7)0.0247 (6)0.0190 (6)0.0004 (5)0.0072 (5)0.0053 (5)
C2'0.0213 (6)0.0244 (6)0.0157 (6)0.0019 (5)0.0044 (5)0.0039 (5)
C3'0.0264 (7)0.0249 (6)0.0201 (6)0.0009 (5)0.0075 (5)0.0057 (5)
C4'0.0378 (8)0.0242 (7)0.0237 (7)0.0020 (6)0.0138 (6)0.0025 (5)
C5'0.0319 (8)0.0259 (7)0.0200 (6)0.0035 (6)0.0083 (6)0.0008 (5)
C6'0.0225 (7)0.0276 (7)0.0204 (6)0.0028 (5)0.0041 (5)0.0004 (5)
C7'0.0232 (7)0.0282 (7)0.0201 (6)0.0022 (5)0.0058 (5)0.0075 (5)
C8'0.0187 (6)0.0238 (6)0.0206 (6)0.0016 (5)0.0040 (5)0.0064 (5)
C9'0.0219 (7)0.0242 (6)0.0255 (7)0.0017 (5)0.0038 (5)0.0099 (5)
C10'0.0260 (7)0.0209 (6)0.0271 (7)0.0010 (5)0.0040 (6)0.0025 (5)
C11'0.0303 (7)0.0265 (7)0.0199 (7)0.0007 (6)0.0061 (6)0.0018 (5)
C12'0.0272 (7)0.0236 (6)0.0200 (6)0.0008 (5)0.0069 (5)0.0060 (5)
C13'0.0180 (6)0.0210 (6)0.0198 (6)0.0012 (5)0.0045 (5)0.0045 (5)
Geometric parameters (Å, º) top
O1—C11.2190 (17)O1'—C1'1.2207 (16)
O2—C21.3720 (17)O2'—C2'1.3701 (16)
O2—C51.3562 (18)O2'—C5'1.3528 (16)
N1—N21.3556 (15)N1'—C6'1.4496 (16)
N1—C61.4462 (16)N1'—C7'1.3417 (17)
N1—C71.3488 (16)N2'—N1'1.3614 (15)
N2—C131.3550 (16)N2'—C13'1.3559 (16)
C1—C21.4598 (18)C1'—C6'1.5214 (18)
C1—C61.5219 (19)C2'—C1'1.4514 (18)
C2—C31.366 (2)C2'—C3'1.3610 (19)
C3—C41.425 (2)C3'—C4'1.4223 (19)
C3—H30.9300C3'—H3'0.9300
C4—C51.344 (2)C4'—H4'0.9300
C4—H40.9300C5'—C4'1.353 (2)
C5—H50.9300C5'—H5'0.9300
C6—H6A0.9700C6'—H6C0.9700
C6—H6B0.9700C6'—H6D0.9700
C7—H70.9300C7'—H7'0.9300
C8—C71.3922 (19)C8'—C7'1.3948 (18)
C8—C91.4174 (18)C9'—C8'1.4141 (18)
C9—H90.9300C9'—C10'1.3660 (19)
C10—C91.369 (2)C9'—H9'0.9300
C10—C111.420 (2)C10'—C11'1.4202 (19)
C10—H100.9300C10'—H10'0.9300
C11—H110.9300C11'—H11'0.9300
C12—C111.3655 (19)C12'—C11'1.3675 (18)
C12—H120.9300C12'—C13'1.4150 (18)
C13—C81.4231 (18)C12'—H12'0.9300
C13—C121.4130 (19)C13'—C8'1.4255 (18)
C5—O2—C2106.78 (12)C5'—O2'—C2'106.24 (11)
N2—N1—C6119.17 (10)N2'—N1'—C6'118.38 (11)
C7—N1—N2114.56 (11)C7'—N1'—N2'114.33 (11)
C7—N1—C6126.24 (11)C7'—N1'—C6'127.26 (11)
C13—N2—N1103.11 (10)C13'—N2'—N1'102.97 (10)
O1—C1—C2121.81 (13)O1'—C1'—C2'122.77 (12)
O1—C1—C6122.96 (12)O1'—C1'—C6'122.35 (11)
C2—C1—C6115.20 (12)C2'—C1'—C6'114.88 (12)
O2—C2—C1117.61 (12)O2'—C2'—C1'115.92 (12)
C3—C2—O2109.94 (12)C3'—C2'—O2'110.48 (11)
C3—C2—C1132.44 (14)C3'—C2'—C1'133.60 (12)
C2—C3—C4105.59 (14)C2'—C3'—C4'105.77 (13)
C2—C3—H3127.2C2'—C3'—H3'127.1
C4—C3—H3127.2C4'—C3'—H3'127.1
C3—C4—H4126.4O2'—C5'—H5'124.5
C5—C4—C3107.20 (13)C4'—C5'—O2'110.93 (12)
C5—C4—H4126.4C4'—C5'—H5'124.5
O2—C5—H5124.8C3'—C4'—H4'126.7
C4—C5—O2110.48 (14)C5'—C4'—C3'106.58 (13)
C4—C5—H5124.8C5'—C4'—H4'126.7
N1—C6—C1113.33 (11)N1'—C6'—C1'112.61 (11)
N1—C6—H6A108.9N1'—C6'—H6C109.1
N1—C6—H6B108.9N1'—C6'—H6D109.1
C1—C6—H6A108.9C1'—C6'—H6C109.1
C1—C6—H6B108.9C1'—C6'—H6D109.1
H6A—C6—H6B107.7H6C—C6'—H6D107.8
N1—C7—C8106.09 (11)N1'—C7'—C8'106.76 (11)
N1—C7—H7127.0N1'—C7'—H7'126.6
C8—C7—H7127.0C8'—C7'—H7'126.6
C7—C8—C9135.26 (13)C7'—C8'—C9'135.85 (12)
C7—C8—C13104.46 (11)C7'—C8'—C13'103.89 (11)
C9—C8—C13120.28 (12)C9'—C8'—C13'120.25 (12)
C8—C9—H9121.0C8'—C9'—H9'121.0
C10—C9—C8118.01 (13)C10'—C9'—C8'118.06 (12)
C10—C9—H9121.0C10'—C9'—H9'121.0
C9—C10—C11121.33 (13)C9'—C10'—C11'121.52 (12)
C9—C10—H10119.3C9'—C10'—H10'119.2
C11—C10—H10119.3C11'—C10'—H10'119.2
C10—C11—H11119.0C10'—C11'—H11'119.0
C12—C11—C10122.04 (13)C12'—C11'—C10'121.97 (12)
C12—C11—H11119.0C12'—C11'—H11'119.0
C11—C12—C13117.78 (13)C11'—C12'—C13'117.58 (12)
C11—C12—H12121.1C11'—C12'—H12'121.2
C13—C12—H12121.1C13'—C12'—H12'121.2
N2—C13—C8111.78 (12)N2'—C13'—C8'112.04 (11)
N2—C13—C12127.66 (12)N2'—C13'—C12'127.32 (12)
C12—C13—C8120.56 (12)C12'—C13'—C8'120.61 (11)
C5—O2—C2—C1179.45 (12)C5'—O2'—C2'—C1'179.04 (11)
C5—O2—C2—C30.22 (15)C5'—O2'—C2'—C3'0.50 (14)
C2—O2—C5—C40.01 (16)C2'—O2'—C5'—C4'0.84 (15)
C6—N1—N2—C13177.98 (11)N2'—N1'—C6'—C1'119.87 (13)
C7—N1—N2—C130.09 (15)C7'—N1'—C6'—C1'62.35 (18)
N2—N1—C6—C189.29 (14)N2'—N1'—C7'—C8'0.71 (16)
C7—N1—C6—C193.08 (15)C6'—N1'—C7'—C8'177.15 (12)
N2—N1—C7—C80.11 (16)C13'—N2'—N1'—C6'177.16 (11)
C6—N1—C7—C8177.61 (12)C13'—N2'—N1'—C7'0.91 (15)
N1—N2—C13—C80.25 (15)N1'—N2'—C13'—C8'0.76 (14)
N1—N2—C13—C12179.97 (14)N1'—N2'—C13'—C12'177.36 (13)
O1—C1—C2—O2178.16 (12)O1'—C1'—C6'—N1'7.19 (18)
O1—C1—C2—C32.8 (2)C2'—C1'—C6'—N1'173.78 (11)
C6—C1—C2—O23.81 (17)O2'—C2'—C1'—O1'1.42 (19)
C6—C1—C2—C3175.21 (14)O2'—C2'—C1'—C6'177.60 (11)
O1—C1—C6—N111.17 (18)C3'—C2'—C1'—O1'177.99 (14)
C2—C1—C6—N1170.83 (11)C3'—C2'—C1'—C6'3.0 (2)
O2—C2—C3—C40.35 (15)O2'—C2'—C3'—C4'0.00 (15)
C1—C2—C3—C4179.43 (14)C1'—C2'—C3'—C4'179.43 (14)
C2—C3—C4—C50.35 (16)C2'—C3'—C4'—C5'0.50 (15)
C3—C4—C5—O20.22 (17)O2'—C5'—C4'—C3'0.85 (16)
C9—C8—C7—N1179.74 (15)C9'—C8'—C7'—N1'178.62 (15)
C13—C8—C7—N10.25 (15)C13'—C8'—C7'—N1'0.19 (15)
C7—C8—C9—C10179.87 (16)C10'—C9'—C8'—C7'177.57 (15)
C13—C8—C9—C100.1 (2)C10'—C9'—C8'—C13'1.1 (2)
C11—C10—C9—C80.2 (2)C8'—C9'—C10'—C11'0.5 (2)
C9—C10—C11—C120.0 (2)C9'—C10'—C11'—C12'0.1 (2)
C13—C12—C11—C100.2 (2)C13'—C12'—C11'—C10'0.1 (2)
N2—C13—C8—C70.32 (16)C11'—C12'—C13'—N2'178.52 (13)
N2—C13—C8—C9179.67 (12)C11'—C12'—C13'—C8'0.5 (2)
C12—C13—C8—C7179.94 (13)N2'—C13'—C8'—C7'0.38 (15)
C12—C13—C8—C90.1 (2)N2'—C13'—C8'—C9'179.41 (12)
N2—C13—C12—C11179.48 (14)C12'—C13'—C8'—C7'177.89 (12)
C8—C13—C12—C110.2 (2)C12'—C13'—C8'—C9'1.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg5 and Cg6 are the centroids of the O2/C2–C5, N1/N2/C7/C8/C13, N1'/N2'/C7'/C8'/C13', and C8'–C13' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.932.573.4031 (18)149
C7—H7···O1ii0.932.483.2544 (17)141
C10—H10···O1iii0.932.443.2719 (17)148
C7—H7···Cg5iv0.932.973.6000 (16)126
C9—H9···Cg6iv0.932.813.4312 (17)125
C9—H9···Cg2v0.932.943.6743 (15)137
C12—H12···Cg1i0.932.633.4480 (16)147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z1; (iv) x+1, y, z; (v) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg5 and Cg6 are the centroids of the O2/C2–C5, N1/N2/C7/C8/C13, N1'/N2'/C7'/C8'/C13', and C8'–C13' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3'—H3'···N2'i0.932.573.4031 (18)149
C7—H7···O1'ii0.932.483.2544 (17)141
C10'—H10'···O1iii0.932.443.2719 (17)148
C7—H7···Cg5iv0.932.973.6000 (16)126
C9—H9···Cg6iv0.932.813.4312 (17)125
C9'—H9'···Cg2v0.932.943.6743 (15)137
C12'—H12'···Cg1i0.932.633.4480 (16)147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z1; (iv) x+1, y, z; (v) x+1, y+2, z.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2012-10-03-12).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o184.  CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2014). Acta Cryst. E70, o410.  CSD CrossRef IUCr Journals Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds