organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Di­phenyl­amino)­isobenzo­furan-1(3H)-one

aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 8 March 2014; accepted 20 March 2014; online 29 March 2014)

In the title isobenzo­furan­one derivative, C20H15NO2, the planar fused-ring system (r.m.s. deviation for the 10 fitted atoms = 0.031 Å) forms dihedral angles of 63.58 (6) and 63.17 (8)° with the N-bound phenyl rings; the dihedral angle between the planes of these phenyl rings is 85.92 (7)°. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, involving both O atoms, forming helical supra­molecular chains along [001].

Related literature

For biological and pharmacological properties of isobenzo­furan­ones, see: Anderson et al. (2005[Anderson, J. T., Ting, A. E., Boozer, S., Brunden, K. R., Crumrine, C., Danzig, J., Dent, T., Faga, L., Harrington, J. J., Hodnick, W. F., Murphy, S. M., Pawlowski, G., Perry, R., Raber, A., Rundlett, S. E., Stricker-Krongrad, A., Wang, J. & Bennani, Y. L. (2005). J. Med. Chem. 48, 7096-7098.]); Malpani et al. (2013[Malpani, Y., Achary, R., Kim, S. Y., Jeong, H. C., Kim, P., Han, S. B., Kim, M., Lee, C.-K., Kim, J. N. & Jung, Y.-S. (2013). Eur. J. Med. Chem. 62, 534-544.]); Shode et al. (2002[Shode, F. O., Mahomed, A. S. & Rogers, C. B. (2002). Phytochemistry, 61, 955-957.]); Yoganathan et al. (2003[Yoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116-1117.]). For the synthesis of diverse amino derivatives, see: Abonia et al. (2010[Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. pp. 6454-6463.], 2013[Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2013). Comb. Sci. 15, 2-9.]); Moreno-Fuquen et al. (2013[Moreno-Fuquen, R., Castillo, J. C., Abonia, R., Ellena, J. & Tenorio, J. C. (2013). Acta Cryst. E69, o1181-o1182.]). For similar structures, see: Mendenhall et al. (2003[Mendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249-258.]); Reynolds & Scaringe (1982[Reynolds, S. L. & Scaringe, R. P. (1982). Cryst. Struct. Commun. 11, 1129-1134.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15NO2

  • Mr = 301.33

  • Orthorhombic, P c a 21

  • a = 19.1440 (13) Å

  • b = 8.9363 (6) Å

  • c = 9.1111 (3) Å

  • V = 1558.70 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.56 × 0.37 × 0.19 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 3011 measured reflections

  • 1684 independent reflections

  • 1366 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.09

  • 1684 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.70 3.413 (3) 135
C1—H1⋯O1i 1.03 (3) 2.36 (3) 3.307 (3) 153 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Experimental top

Synthesis and crystallization top

Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. A 5 mL pyrex test tube was charged with a mixture of di­phenyl­amine (102 mg, 0.60 mmol) and 2-formyl­benzoic acid (90 mg, 0.60 mmol) without solvent. The mixture was heated in an oil bath at 120 °C for 1 h until the starting materials were not longer detected by thin-layer chromatography. The solid formed was removed and washed with cold ethanol (1 mL). White crystals of (I) were grown by slow evaporation, under ambient conditions, from its solution in ethanol [92% yield, M.p.: 396 (1) K].

Refinement top

All H-atoms, except H1, were positioned at geometrically idealized positions, C—H = 0.93 Å, and they were refined using a riding model approximation with Uiso(H) = 1.2Ueq(parent atom). Atom H1 was found from the Fourier difference map and its coordinates were freely refined. In the absence of significant anomalous scattering, Friedel pairs were merged.

Results and discussion top

Isobenzo­furan­ones are an important class of synthetic and naturally occurring products exhibiting diverse biological and pharmacological properties. Some of them appear forming part of the structure of natural products such as fuscinarin (anti-HIV properties) (Yoganathan et al., 2003), typhaphthalide (phenolic compound isolated from Typha capensis) (Shode et al., 2002), noscapine (anti­tussive and anti-tumor properties) (Anderson et al., 2005), and synthetic compounds like some spiro­lactones (inhibitors of the influenza virus type B) (Malpani et al., 2013). Continuing with our current studies on the use of imines and imminium ions for the synthesis of diverse amino-derivatives of synthetic and biological inter­est (Abonia et al., 2010; Abonia et al., 2013; Moreno-Fuquen et al., 2013), 3-di­phenyl­amino­isobenzo­furan-1(3H)-one, (I), was obtained from the reaction of 2-formyl­benzoic acid and di­phenyl­amine through an imminium ion inter­mediate. The molecular structure of (I) is shown in Fig. 1. Taking the plane of the phthalide lactone C1—C8(=O1)—O2 (Mendenhall et al., 2003) as a point of reference, the title compound represents the first structure reported with ligands from C1. The bond lengths reported in the phthalide lactone (Reynolds & Scaringe, 1982) are very similar to those presented in (I). In the present molecule, rings A (C9—C14), B (C1—C8—O2) and C (C15—C20) are planar and show dihedral angles between them: A/B = 63.58 (6)°, C/B= 63.17 (8)° and A/C= 85.92 (7)°. In the crystal, the molecules are linked by weak C—H···O inter­actions, forming eight-membered {···HC3H···OCO} synthons, leading to a chain along [001], Table 1 and Fig. 2.

Related literature top

For biological and pharmacological properties of isobenzofuranones, see: Anderson et al. (2005); Malpani et al. (2013); Shode et al. (2002); Yoganathan et al. (2003). For the synthesis of diverse amino derivatives, see: Abonia et al. (2010, 2013); Moreno-Fuquen et al. (2013). For similar structures, see: Mendenhall et al. (2003); Reynolds & Scaringe (1982).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of helical chains running along [001]. Symmetry code: (i) -x+1/2, +y, +z-1/2.
3-(Diphenylamino)isobenzofuran-1(3H)-one top
Crystal data top
C20H15NO2Dx = 1.284 Mg m3
Mr = 301.33Melting point: 396(1) K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2966 reflections
a = 19.1440 (13) Åθ = 3.1–26.4°
b = 8.9363 (6) ŵ = 0.08 mm1
c = 9.1111 (3) ÅT = 295 K
V = 1558.70 (16) Å3Block, white
Z = 40.56 × 0.37 × 0.19 mm
F(000) = 632
Data collection top
Nonius KappaCCD
diffractometer
1366 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
CCD rotation images, thick slices scansh = 2323
3011 measured reflectionsk = 1111
1684 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.0242P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1684 reflectionsΔρmax = 0.15 e Å3
213 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (9)
Crystal data top
C20H15NO2V = 1558.70 (16) Å3
Mr = 301.33Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 19.1440 (13) ŵ = 0.08 mm1
b = 8.9363 (6) ÅT = 295 K
c = 9.1111 (3) Å0.56 × 0.37 × 0.19 mm
Data collection top
Nonius KappaCCD
diffractometer
1366 reflections with I > 2σ(I)
3011 measured reflectionsRint = 0.018
1684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.15 e Å3
1684 reflectionsΔρmin = 0.15 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34995 (11)1.2679 (2)0.7466 (2)0.0689 (6)
O20.29111 (9)1.13804 (19)0.5762 (2)0.0578 (5)
N10.30495 (10)0.9786 (2)0.3646 (3)0.0509 (5)
C10.28865 (13)1.1262 (3)0.4127 (3)0.0517 (6)
C20.33858 (12)1.2458 (3)0.3647 (3)0.0513 (6)
C30.35485 (15)1.2966 (3)0.2247 (3)0.0580 (6)
H30.33531.25290.14170.070*
C40.40139 (16)1.4151 (3)0.2135 (4)0.0672 (7)
H40.41291.45160.12100.081*
C50.43103 (17)1.4803 (3)0.3362 (4)0.0761 (9)
H50.46261.55860.32480.091*
C60.41460 (15)1.4311 (3)0.4744 (4)0.0705 (8)
H60.43431.47510.55720.085*
C70.36754 (13)1.3130 (3)0.4872 (3)0.0549 (6)
C80.33827 (13)1.2427 (3)0.6184 (3)0.0544 (6)
C90.37543 (12)0.9290 (2)0.3913 (3)0.0487 (6)
C100.42604 (13)0.9458 (3)0.2845 (3)0.0572 (6)
H100.41430.98770.19440.069*
C110.49369 (14)0.9008 (3)0.3103 (3)0.0649 (7)
H110.52750.91280.23800.078*
C120.51118 (14)0.8386 (3)0.4422 (3)0.0627 (7)
H120.55690.80830.45960.075*
C130.46114 (13)0.8206 (3)0.5498 (3)0.0611 (6)
H130.47320.77820.63950.073*
C140.39338 (13)0.8653 (3)0.5245 (3)0.0556 (7)
H140.35970.85260.59690.067*
C150.25151 (13)0.8676 (2)0.3667 (3)0.0515 (6)
C160.26525 (14)0.7304 (3)0.3021 (4)0.0699 (8)
H160.30890.71300.26070.084*
C170.21563 (16)0.6196 (3)0.2981 (5)0.0791 (9)
H170.22610.52820.25470.095*
C180.15013 (16)0.6429 (3)0.3583 (4)0.0710 (8)
H180.11670.56750.35690.085*
C190.13553 (17)0.7796 (4)0.4199 (4)0.0743 (8)
H190.09120.79780.45760.089*
C200.18593 (15)0.8909 (3)0.4269 (3)0.0663 (7)
H200.17570.98160.47210.080*
H10.2377 (16)1.155 (3)0.390 (3)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0755 (12)0.0675 (12)0.0638 (13)0.0031 (9)0.0014 (9)0.0069 (9)
O20.0599 (11)0.0522 (10)0.0612 (11)0.0026 (8)0.0074 (8)0.0047 (8)
N10.0455 (10)0.0432 (10)0.0639 (11)0.0007 (8)0.0019 (9)0.0033 (9)
C10.0475 (15)0.0471 (14)0.0606 (15)0.0006 (10)0.0022 (10)0.0001 (11)
C20.0478 (13)0.0414 (12)0.0647 (15)0.0025 (9)0.0014 (11)0.0001 (11)
C30.0596 (15)0.0501 (15)0.0644 (16)0.0045 (12)0.0002 (11)0.0004 (12)
C40.0746 (17)0.0537 (15)0.0734 (18)0.0006 (13)0.0104 (14)0.0085 (14)
C50.083 (2)0.0531 (15)0.093 (2)0.0173 (14)0.0150 (16)0.0035 (15)
C60.0754 (18)0.0539 (15)0.082 (2)0.0149 (14)0.0009 (16)0.0087 (14)
C70.0539 (13)0.0439 (13)0.0669 (14)0.0031 (11)0.0010 (12)0.0045 (12)
C80.0522 (13)0.0489 (14)0.0623 (16)0.0059 (11)0.0001 (11)0.0064 (12)
C90.0484 (13)0.0420 (12)0.0556 (14)0.0046 (10)0.0000 (10)0.0038 (10)
C100.0593 (14)0.0572 (14)0.0550 (13)0.0032 (12)0.0052 (12)0.0058 (12)
C110.0542 (15)0.0651 (16)0.0755 (17)0.0043 (12)0.0137 (13)0.0084 (14)
C120.0505 (14)0.0598 (15)0.0777 (18)0.0022 (12)0.0056 (12)0.0021 (13)
C130.0650 (16)0.0601 (15)0.0581 (14)0.0026 (13)0.0091 (13)0.0005 (13)
C140.0578 (15)0.0550 (15)0.0539 (16)0.0006 (12)0.0014 (11)0.0014 (10)
C150.0529 (13)0.0477 (12)0.0540 (12)0.0047 (11)0.0036 (11)0.0012 (10)
C160.0576 (16)0.0536 (14)0.098 (2)0.0017 (12)0.0010 (15)0.0138 (16)
C170.074 (2)0.0509 (15)0.112 (3)0.0070 (13)0.0064 (18)0.0137 (18)
C180.076 (2)0.0639 (17)0.0731 (17)0.0251 (14)0.0109 (15)0.0048 (15)
C190.0645 (16)0.087 (2)0.0717 (17)0.0225 (15)0.0127 (14)0.0074 (16)
C200.0624 (17)0.0656 (16)0.0709 (16)0.0131 (13)0.0122 (13)0.0122 (14)
Geometric parameters (Å, º) top
O1—C81.210 (4)C10—C111.376 (4)
O2—C81.355 (3)C10—H100.9300
O2—C11.494 (3)C11—C121.366 (4)
N1—C151.425 (3)C11—H110.9300
N1—C11.425 (3)C12—C131.380 (4)
N1—C91.441 (3)C12—H120.9300
C1—C21.499 (3)C13—C141.377 (4)
C1—H11.03 (3)C13—H130.9300
C2—C71.383 (4)C14—H140.9300
C2—C31.389 (4)C15—C161.385 (4)
C3—C41.388 (4)C15—C201.386 (4)
C3—H30.9300C16—C171.372 (4)
C4—C51.383 (5)C16—H160.9300
C4—H40.9300C17—C181.384 (5)
C5—C61.371 (5)C17—H170.9300
C5—H50.9300C18—C191.373 (5)
C6—C71.392 (4)C18—H180.9300
C6—H60.9300C19—C201.387 (4)
C7—C81.462 (4)C19—H190.9300
C9—C101.382 (3)C20—H200.9300
C9—C141.384 (3)
C8—O2—C1110.6 (2)C11—C10—C9120.5 (3)
C15—N1—C1118.89 (19)C11—C10—H10119.8
C15—N1—C9117.15 (18)C9—C10—H10119.8
C1—N1—C9115.92 (19)C12—C11—C10120.0 (2)
N1—C1—O2111.4 (2)C12—C11—H11120.0
N1—C1—C2115.5 (2)C10—C11—H11120.0
O2—C1—C2102.75 (19)C11—C12—C13120.2 (2)
N1—C1—H1112.2 (15)C11—C12—H12119.9
O2—C1—H1102.2 (17)C13—C12—H12119.9
C2—C1—H1111.6 (15)C14—C13—C12120.1 (3)
C7—C2—C3120.6 (2)C14—C13—H13120.0
C7—C2—C1109.2 (2)C12—C13—H13120.0
C3—C2—C1130.1 (2)C13—C14—C9120.0 (2)
C4—C3—C2117.5 (3)C13—C14—H14120.0
C4—C3—H3121.3C9—C14—H14120.0
C2—C3—H3121.3C16—C15—C20118.3 (2)
C5—C4—C3121.7 (3)C16—C15—N1118.3 (2)
C5—C4—H4119.2C20—C15—N1123.4 (2)
C3—C4—H4119.2C17—C16—C15121.2 (3)
C6—C5—C4120.9 (3)C17—C16—H16119.4
C6—C5—H5119.5C15—C16—H16119.4
C4—C5—H5119.5C16—C17—C18120.6 (3)
C5—C6—C7117.9 (3)C16—C17—H17119.7
C5—C6—H6121.0C18—C17—H17119.7
C7—C6—H6121.0C19—C18—C17118.7 (3)
C2—C7—C6121.4 (3)C19—C18—H18120.7
C2—C7—C8108.6 (2)C17—C18—H18120.7
C6—C7—C8129.9 (3)C18—C19—C20121.0 (3)
O1—C8—O2121.7 (2)C18—C19—H19119.5
O1—C8—C7129.6 (2)C20—C19—H19119.5
O2—C8—C7108.6 (2)C19—C20—C15120.3 (3)
C10—C9—C14119.2 (2)C19—C20—H20119.9
C10—C9—N1120.3 (2)C15—C20—H20119.9
C14—C9—N1120.5 (2)
C15—N1—C1—O281.6 (3)C6—C7—C8—O2176.1 (3)
C9—N1—C1—O266.3 (3)C15—N1—C9—C10117.8 (2)
C15—N1—C1—C2161.6 (2)C1—N1—C9—C1093.7 (3)
C9—N1—C1—C250.4 (3)C15—N1—C9—C1462.7 (3)
C8—O2—C1—N1121.2 (2)C1—N1—C9—C1485.9 (3)
C8—O2—C1—C23.1 (3)C14—C9—C10—C110.6 (4)
N1—C1—C2—C7119.6 (2)N1—C9—C10—C11179.0 (2)
O2—C1—C2—C72.0 (3)C9—C10—C11—C120.2 (4)
N1—C1—C2—C363.7 (4)C10—C11—C12—C130.0 (4)
O2—C1—C2—C3174.8 (3)C11—C12—C13—C140.0 (4)
C7—C2—C3—C40.7 (4)C12—C13—C14—C90.3 (4)
C1—C2—C3—C4177.1 (3)C10—C9—C14—C130.6 (4)
C2—C3—C4—C50.4 (4)N1—C9—C14—C13178.9 (2)
C3—C4—C5—C60.9 (5)C1—N1—C15—C16171.7 (3)
C4—C5—C6—C70.4 (5)C9—N1—C15—C1640.7 (3)
C3—C2—C7—C61.2 (4)C1—N1—C15—C206.7 (4)
C1—C2—C7—C6178.3 (2)C9—N1—C15—C20140.9 (3)
C3—C2—C7—C8176.8 (2)C20—C15—C16—C170.4 (5)
C1—C2—C7—C80.3 (3)N1—C15—C16—C17178.8 (3)
C5—C6—C7—C20.7 (4)C15—C16—C17—C180.4 (5)
C5—C6—C7—C8176.9 (3)C16—C17—C18—C191.0 (5)
C1—O2—C8—O1178.2 (2)C17—C18—C19—C202.3 (5)
C1—O2—C8—C73.0 (3)C18—C19—C20—C152.3 (5)
C2—C7—C8—O1179.6 (3)C16—C15—C20—C190.9 (4)
C6—C7—C8—O12.6 (5)N1—C15—C20—C19177.5 (3)
C2—C7—C8—O21.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.703.413 (3)135
C1—H1···O1i1.03 (3)2.36 (3)3.307 (3)153 (2)
Symmetry code: (i) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.703.413 (3)135
C1—H1···O1i1.03 (3)2.36 (3)3.307 (3)153 (2)
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

RMF and RA are grateful to the Universidad del Valle, Colombia, for partial financial support. JCC acknowledges his doctoral fellowship granted by COLCIENCIAS.

References

First citationAbonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. pp. 6454–6463.  Web of Science CrossRef Google Scholar
First citationAbonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2013). Comb. Sci. 15, 2–9.  Web of Science CrossRef CAS Google Scholar
First citationAnderson, J. T., Ting, A. E., Boozer, S., Brunden, K. R., Crumrine, C., Danzig, J., Dent, T., Faga, L., Harrington, J. J., Hodnick, W. F., Murphy, S. M., Pawlowski, G., Perry, R., Raber, A., Rundlett, S. E., Stricker-Krongrad, A., Wang, J. & Bennani, Y. L. (2005). J. Med. Chem. 48, 7096–7098.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalpani, Y., Achary, R., Kim, S. Y., Jeong, H. C., Kim, P., Han, S. B., Kim, M., Lee, C.-K., Kim, J. N. & Jung, Y.-S. (2013). Eur. J. Med. Chem. 62, 534–544.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249–258.  CSD CrossRef Google Scholar
First citationMoreno-Fuquen, R., Castillo, J. C., Abonia, R., Ellena, J. & Tenorio, J. C. (2013). Acta Cryst. E69, o1181–o1182.  CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReynolds, S. L. & Scaringe, R. P. (1982). Cryst. Struct. Commun. 11, 1129–1134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShode, F. O., Mahomed, A. S. & Rogers, C. B. (2002). Phytochemistry, 61, 955–957.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116–1117.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds