metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(pyridin-2-yl)methyl­­idene­amino]­benzoato-κ3N,N′,O}chromium(III) nitrate monohydrate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

(Received 11 March 2014; accepted 12 March 2014; online 15 March 2014)

The title complex salt hydrate, [Cr(C13H9N2O2)2]NO3·H2O, comprises discrete cations, nitrate anions and solvent water mol­ecules. The CrIII atom is octa­hedrally coordinated by two anionic Schiff base ligands with the O atoms being cis. The two ligands differ significantly with dihedral angles between the pyridine and benzene rings of 4.8 (2) and 24.9 (2)°. The nitrate anion and solvent water mol­ecule were modelled as being disordered, with the major components having site-occupancy values of 0.856 (14) and 0.727 (16), respectively. The crystal is built of alternating layers of cations and of anions plus water mol­ecules, stacked along the c axis.

Related literature

For the synthesis of the Schiff base ligand and the structures of its complexes, see: Dey et al. (2003[Dey, S. K., Bag, B., Malik, K. M. A., El Fallah, M. S., Ribas, J. & Mitra, S. (2003). Inorg. Chem. 42, 4029-4035.]), Mukhopadhyay & Pal (2005[Mukhopadhyay, A. & Pal, S. (2005). J. Chem. Crystallogr. 35, 737-744.]); Sen et al. (2006[Sen, S., Mitra, S., Luneau, D., El Fallah, M. S. & Ribas, J. (2006). Polyhedron, 25, 2737-2744.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C13H9N2O2)2]NO3·H2O

  • Mr = 582.47

  • Triclinic, [P \overline 1]

  • a = 7.9131 (11) Å

  • b = 11.4929 (15) Å

  • c = 13.5627 (18) Å

  • α = 86.105 (11)°

  • β = 79.290 (11)°

  • γ = 85.566 (11)°

  • V = 1206.5 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.47 mm−1

  • T = 100 K

  • 0.11 × 0.05 × 0.03 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.681, Tmax = 0.892

  • 9601 measured reflections

  • 4251 independent reflections

  • 2790 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.136

  • S = 0.99

  • 4251 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—O41 1.907 (3)
Cr1—O21 1.915 (3)
Cr1—N30 2.041 (3)
Cr1—N10 2.047 (3)
Cr1—N11 2.053 (3)
Cr1—N31 2.065 (3)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

The title compound was prepared during studies of the coordination behaviour of the tridentate carboxyl­ate Schiff base ligand 2-N-(2'-pyridyl­imine)­benzoic acid (HL) which results from the condensation between 2-pyridine­carbaldehide and anthranilic acid. Known metal complexes containing deprotonated HL (Dey et al., 2003; Mukhopadhyay et al., 2005; Sen et al., 2006) were prepared by in situ Schiff base synthesis - a synthetic approach utilized in the present work as well.

The title compound, Cr(C13H10N2O2)2NO3.H2O, is formed of discrete [CrL2]+ cations, nitrate anions and solvent water molecules. The cation has no crystallographically imposed symmetry. The ligand molecules are deprotonated at the carboxyl­ato oxygen atom and coordinate to the CrIII atom through the azomethine, pyridine-N and carboxyl­ato-O atoms in such a way that the metal atom is o­cta­hedrally surrounded by two anionic ligands with cis O atoms (Fig. 1 & Table 1). The Cr–N/O distances fall in the range 1.907 (3)–2.065 (3) Å, the trans angles at the metal atom lie in the range 170.57 (13)–173.61 (13), the cis angles vary from 80.47 (14) to 94.47 (14)°. The coordination geometry around the chromium centre is similar to that reported for NiL2.H2O (Mukhopadhyay et al., 2005).

The two ligands differ significantly. The atoms of ligand 1 are virtually coplanar with the dihedral angle between the pyridyl and benzene rings being 4.8 (2)°. By contrast, in ligand 2 this dihedral angle is 24.9 (2)°.

The crystal lattice is built of alternating layers of cations and of anions plus water molecules (Fig. 2).

Synthesis and crystallization top

The ligand HL was prepared by refluxing 2-pyridine­carbaldehyde (0.38 ml, 4 mmol) with anthranilic acid (0.55 g, 4 mmol) in methanol (20 ml) for 0.5 h. The resultant yellow solution was left in open air overnight and used without further purification.

To a stirred methanol solution (10 ml) of Cr(NO3)3.9H2O (0.80 g, 2 mmol) in a 50 ml conic flask, HL in methanol from the previous preparation was added. The solution was magnetically stirred at 323 K for 20 minutes. The brown precipitate was filtered off. The red-brown solution was left to evaporate at room temperature. Red-brown rod-like microcrystals of the title compound were formed in a few days. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 45%).

Refinement top

The nitrate anion and solvent water molecule were modelled as being disordered. The site occupancy factors of the major component of the nitrate refined to 0.856 (14), and that of the disordered water molecule to 0.727 (16). Minor components of the disordered atoms were refined with isotropic displacement parameters. Water molecule hydrogen atoms were not located. All remaining hydrogen atoms were added at calculated positions (C—H = 0.95 Å) and refined by use of a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Related literature top

For the synthesis of the Schiff base ligand and the structures of its complexes, see: Dey et al. (2003), Mukhopadhyay & Pal (2005); Sen et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation with the numbering scheme (the non-hydrogen atoms shown as 50% atomic displacement ellipsoids).
[Figure 2] Fig. 2. Packing diagram showing alternating layers of [CrL2]+ cations and nitrate anions plus solvent water molecules (C-bound H atoms and minor components of the disordered nitrate and water molecules are omitted for clarity).
Bis{2-[(pyridin-2-yl)methylideneamino]benzoato-κ3N,N',O}chromium(III) nitrate monohydrate top
Crystal data top
[Cr(C13H9N2O2)2]NO3·H2OZ = 2
Mr = 582.47F(000) = 598
Triclinic, P1Dx = 1.603 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.9131 (11) ÅCell parameters from 1206 reflections
b = 11.4929 (15) Åθ = 3.3–67.2°
c = 13.5627 (18) ŵ = 4.47 mm1
α = 86.105 (11)°T = 100 K
β = 79.290 (11)°Rod, red-brown
γ = 85.566 (11)°0.11 × 0.05 × 0.03 mm
V = 1206.5 (3) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
4251 independent reflections
Graphite monochromator2790 reflections with I > 2σ(I)
Detector resolution: 10.4738 pixels mm-1Rint = 0.083
ω scansθmax = 67.0°, θmin = 3.3°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 99
Tmin = 0.681, Tmax = 0.892k = 1113
9601 measured reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
4251 reflections(Δ/σ)max = 0.002
379 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cr(C13H9N2O2)2]NO3·H2Oγ = 85.566 (11)°
Mr = 582.47V = 1206.5 (3) Å3
Triclinic, P1Z = 2
a = 7.9131 (11) ÅCu Kα radiation
b = 11.4929 (15) ŵ = 4.47 mm1
c = 13.5627 (18) ÅT = 100 K
α = 86.105 (11)°0.11 × 0.05 × 0.03 mm
β = 79.290 (11)°
Data collection top
Oxford Diffraction Gemini
diffractometer
4251 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
2790 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.892Rint = 0.083
9601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.99Δρmax = 0.43 e Å3
4251 reflectionsΔρmin = 0.27 e Å3
379 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The nitrate anion and solvent water molecule were modelled as being disordered. The site occupancy factors of the two components of the nitrate refined to 0.856 (14) and its complement. Those for the two components of the disordered water molecule appeared to be significantly different and were refined to 0.727 (16) and its complement. Minor components of the disordered atoms were refined with isotropic displacement parameters. Water molecule hydrogen atoms were not located.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.54166 (9)0.74547 (6)0.61375 (5)0.0373 (2)
N110.7561 (4)0.6436 (3)0.6386 (2)0.0358 (8)
C120.7217 (6)0.5754 (4)0.7256 (3)0.0413 (10)
C130.8463 (6)0.4967 (4)0.7569 (3)0.0477 (11)
H130.8210.45090.81820.057*
C141.0056 (6)0.4866 (4)0.6976 (3)0.0491 (11)
H141.09160.43190.71670.059*
C151.0425 (6)0.5553 (4)0.6101 (3)0.0452 (10)
H151.15390.54990.56920.054*
C160.9120 (5)0.6332 (4)0.5828 (3)0.0382 (9)
H160.93620.68030.52220.046*
C100.5485 (6)0.5899 (4)0.7818 (3)0.0437 (10)
H100.51670.54730.84420.052*
N100.4359 (4)0.6618 (3)0.7463 (2)0.0385 (8)
C210.1464 (6)0.7587 (4)0.7554 (3)0.0445 (10)
C220.2644 (6)0.6824 (4)0.7983 (3)0.0442 (10)
C230.2101 (6)0.6264 (5)0.8926 (3)0.0585 (13)
H230.28780.57340.92150.07*
C240.0447 (7)0.6481 (6)0.9433 (3)0.0738 (17)
H240.01010.61011.00750.089*
C250.0730 (7)0.7238 (6)0.9031 (4)0.0772 (19)
H250.18720.73810.93870.093*
C260.0193 (6)0.7777 (5)0.8101 (4)0.0597 (13)
H260.09870.83010.7820.072*
C200.1775 (6)0.8256 (4)0.6544 (3)0.0457 (10)
O210.3303 (4)0.8357 (3)0.6057 (2)0.0465 (7)
O220.0532 (4)0.8712 (3)0.6203 (3)0.0635 (9)
N310.6119 (5)0.8854 (3)0.6813 (2)0.0418 (8)
C320.6966 (6)0.9635 (4)0.6123 (3)0.0467 (11)
C330.7415 (6)1.0696 (4)0.6378 (4)0.0548 (12)
H330.79881.12240.5880.066*
C340.7011 (7)1.0973 (4)0.7376 (4)0.0619 (14)
H340.7321.16920.75760.074*
C350.6163 (7)1.0201 (5)0.8070 (4)0.0620 (14)
H350.58751.03840.87560.074*
C360.5720 (6)0.9140 (4)0.7769 (3)0.0538 (12)
H360.51230.86120.82570.065*
C300.7297 (6)0.9282 (4)0.5101 (3)0.0449 (10)
H300.79330.97520.45810.054*
N300.6723 (4)0.8323 (3)0.4901 (2)0.0397 (8)
C410.5867 (5)0.7161 (4)0.3666 (3)0.0399 (10)
C420.6963 (5)0.7961 (4)0.3896 (3)0.0419 (10)
C430.8237 (6)0.8424 (4)0.3149 (3)0.0547 (12)
H430.90.89480.33160.066*
C440.8384 (7)0.8117 (5)0.2164 (3)0.0623 (14)
H440.92610.8420.16580.075*
C450.7261 (7)0.7375 (5)0.1919 (3)0.0571 (13)
H450.73420.71870.1240.069*
C460.6018 (6)0.6903 (4)0.2656 (3)0.0485 (11)
H460.5250.63930.24760.058*
C400.4502 (6)0.6555 (4)0.4412 (3)0.0415 (10)
O410.4786 (4)0.6332 (2)0.53221 (18)0.0402 (7)
O420.3241 (4)0.6254 (3)0.4119 (2)0.0503 (8)
N10.4349 (7)0.7154 (5)1.0410 (3)0.0656 (12)
O110.5173 (8)0.6206 (5)1.0362 (4)0.078 (2)0.856 (14)
O120.2875 (9)0.7275 (7)1.0988 (3)0.078 (2)0.856 (14)
O130.4921 (9)0.8027 (4)0.9909 (3)0.0713 (17)0.856 (14)
O140.354 (3)0.668 (2)1.1045 (15)0.031 (7)*0.144 (14)
O150.561 (5)0.656 (4)0.982 (3)0.089 (12)*0.144 (14)
O160.389 (7)0.816 (4)0.995 (3)0.092 (12)*0.144 (14)
O10.1743 (16)0.9903 (10)0.9800 (8)0.185 (6)0.727 (16)
O20.129 (2)0.9116 (18)1.0468 (15)0.100 (8)*0.273 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0381 (4)0.0373 (4)0.0385 (3)0.0040 (3)0.0158 (3)0.0012 (3)
N110.037 (2)0.0369 (19)0.0365 (16)0.0042 (15)0.0163 (15)0.0046 (14)
C120.046 (3)0.040 (2)0.040 (2)0.003 (2)0.0167 (19)0.0007 (18)
C130.055 (3)0.047 (3)0.043 (2)0.010 (2)0.021 (2)0.0056 (19)
C140.048 (3)0.049 (3)0.052 (2)0.016 (2)0.025 (2)0.000 (2)
C150.040 (2)0.048 (3)0.050 (2)0.005 (2)0.0144 (19)0.011 (2)
C160.044 (3)0.036 (2)0.0366 (19)0.0026 (18)0.0126 (18)0.0002 (17)
C100.054 (3)0.043 (2)0.0354 (19)0.002 (2)0.0125 (19)0.0000 (18)
N100.040 (2)0.040 (2)0.0370 (16)0.0031 (16)0.0134 (15)0.0011 (15)
C210.041 (2)0.049 (3)0.047 (2)0.005 (2)0.0178 (19)0.013 (2)
C220.045 (3)0.056 (3)0.034 (2)0.005 (2)0.0132 (18)0.0095 (19)
C230.047 (3)0.091 (4)0.039 (2)0.004 (3)0.015 (2)0.004 (2)
C240.052 (3)0.133 (6)0.036 (2)0.003 (3)0.008 (2)0.003 (3)
C250.045 (3)0.136 (6)0.050 (3)0.012 (3)0.011 (2)0.024 (3)
C260.045 (3)0.078 (4)0.061 (3)0.003 (3)0.020 (2)0.019 (3)
C200.041 (3)0.034 (2)0.067 (3)0.0011 (19)0.022 (2)0.006 (2)
O210.0393 (18)0.0467 (18)0.0559 (16)0.0077 (14)0.0209 (14)0.0026 (14)
O220.0394 (18)0.057 (2)0.094 (2)0.0046 (16)0.0276 (17)0.0244 (18)
N310.043 (2)0.0366 (19)0.0499 (19)0.0056 (16)0.0218 (16)0.0053 (16)
C320.040 (2)0.036 (2)0.069 (3)0.006 (2)0.028 (2)0.003 (2)
C330.045 (3)0.036 (3)0.090 (3)0.007 (2)0.033 (2)0.006 (2)
C340.059 (3)0.041 (3)0.096 (4)0.013 (2)0.042 (3)0.018 (3)
C350.066 (3)0.055 (3)0.075 (3)0.016 (3)0.037 (3)0.022 (3)
C360.053 (3)0.055 (3)0.058 (3)0.008 (2)0.023 (2)0.007 (2)
C300.040 (2)0.036 (2)0.060 (3)0.0017 (19)0.017 (2)0.006 (2)
N300.0346 (19)0.041 (2)0.0443 (18)0.0032 (16)0.0158 (15)0.0069 (15)
C410.036 (2)0.045 (2)0.038 (2)0.0094 (19)0.0125 (17)0.0020 (18)
C420.035 (2)0.044 (2)0.045 (2)0.0065 (19)0.0117 (18)0.0069 (18)
C430.043 (3)0.058 (3)0.060 (3)0.002 (2)0.008 (2)0.007 (2)
C440.053 (3)0.074 (4)0.051 (3)0.010 (3)0.003 (2)0.012 (2)
C450.054 (3)0.070 (3)0.043 (2)0.016 (3)0.008 (2)0.005 (2)
C460.049 (3)0.049 (3)0.046 (2)0.019 (2)0.016 (2)0.001 (2)
C400.043 (3)0.038 (2)0.045 (2)0.0071 (19)0.0155 (19)0.0049 (18)
O410.0452 (17)0.0414 (16)0.0371 (13)0.0019 (13)0.0171 (12)0.0030 (11)
O420.0506 (19)0.060 (2)0.0462 (15)0.0083 (15)0.0226 (14)0.0020 (14)
N10.085 (4)0.070 (3)0.047 (2)0.014 (3)0.024 (2)0.006 (2)
O110.115 (4)0.058 (3)0.068 (4)0.007 (3)0.040 (3)0.002 (3)
O120.081 (4)0.099 (5)0.051 (2)0.014 (4)0.001 (2)0.014 (3)
O130.067 (4)0.077 (3)0.063 (3)0.005 (3)0.008 (2)0.024 (2)
O10.227 (12)0.165 (10)0.144 (8)0.048 (9)0.028 (8)0.044 (7)
Geometric parameters (Å, º) top
Cr1—O411.907 (3)N31—C361.334 (6)
Cr1—O211.915 (3)N31—C321.369 (6)
Cr1—N302.041 (3)C32—C331.380 (6)
Cr1—N102.047 (3)C32—C301.442 (6)
Cr1—N112.053 (3)C33—C341.385 (7)
Cr1—N312.065 (3)C33—H330.95
N11—C161.323 (5)C34—C351.367 (8)
N11—C121.367 (5)C34—H340.95
C12—C131.391 (6)C35—C361.401 (7)
C12—C101.443 (6)C35—H350.95
C13—C141.365 (7)C36—H360.95
C13—H130.95C30—N301.287 (5)
C14—C151.377 (6)C30—H300.95
C14—H140.95N30—C421.427 (5)
C15—C161.400 (6)C41—C421.400 (6)
C15—H150.95C41—C461.403 (6)
C16—H160.95C41—C401.513 (6)
C10—N101.304 (5)C42—C431.398 (6)
C10—H100.95C43—C441.387 (7)
N10—C221.418 (6)C43—H430.95
C21—C261.390 (7)C44—C451.375 (8)
C21—C221.409 (6)C44—H440.95
C21—C201.513 (7)C45—C461.380 (7)
C22—C231.401 (6)C45—H450.95
C23—C241.373 (7)C46—H460.95
C23—H230.95C40—O421.222 (5)
C24—C251.386 (8)C40—O411.300 (5)
C24—H240.95N1—O141.11 (2)
C25—C261.375 (8)N1—O111.225 (7)
C25—H250.95N1—O131.239 (7)
C26—H260.95N1—O121.282 (8)
C20—O221.229 (5)N1—O151.33 (4)
C20—O211.275 (5)N1—O161.33 (4)
O41—Cr1—O2189.52 (12)O22—C20—O21120.4 (4)
O41—Cr1—N3091.12 (13)O22—C20—C21119.0 (4)
O21—Cr1—N3092.67 (13)O21—C20—C21120.6 (4)
O41—Cr1—N1094.27 (13)C20—O21—Cr1131.4 (3)
O21—Cr1—N1092.10 (14)C36—N31—C32118.1 (4)
N30—Cr1—N10172.82 (14)C36—N31—Cr1129.7 (3)
O41—Cr1—N1192.27 (12)C32—N31—Cr1111.8 (3)
O21—Cr1—N11173.61 (13)N31—C32—C33122.8 (4)
N30—Cr1—N1193.43 (14)N31—C32—C30114.8 (4)
N10—Cr1—N1181.65 (14)C33—C32—C30122.4 (5)
O41—Cr1—N31170.57 (13)C32—C33—C34118.4 (5)
O21—Cr1—N3186.65 (13)C32—C33—H33120.8
N30—Cr1—N3180.47 (14)C34—C33—H33120.8
N10—Cr1—N3194.47 (14)C35—C34—C33119.3 (5)
N11—Cr1—N3192.48 (13)C35—C34—H34120.3
C16—N11—C12118.7 (3)C33—C34—H34120.3
C16—N11—Cr1130.0 (3)C34—C35—C36120.0 (5)
C12—N11—Cr1111.3 (3)C34—C35—H35120
N11—C12—C13121.7 (4)C36—C35—H35120
N11—C12—C10115.7 (4)N31—C36—C35121.4 (5)
C13—C12—C10122.6 (4)N31—C36—H36119.3
C14—C13—C12118.5 (4)C35—C36—H36119.3
C14—C13—H13120.7N30—C30—C32119.4 (4)
C12—C13—H13120.7N30—C30—H30120.3
C13—C14—C15120.4 (4)C32—C30—H30120.3
C13—C14—H14119.8C30—N30—C42121.3 (4)
C15—C14—H14119.8C30—N30—Cr1113.3 (3)
C14—C15—C16118.4 (4)C42—N30—Cr1125.3 (3)
C14—C15—H15120.8C42—C41—C46117.7 (4)
C16—C15—H15120.8C42—C41—C40125.8 (3)
N11—C16—C15122.3 (4)C46—C41—C40116.5 (4)
N11—C16—H16118.9C43—C42—C41120.7 (4)
C15—C16—H16118.9C43—C42—N30120.6 (4)
N10—C10—C12119.5 (4)C41—C42—N30118.7 (4)
N10—C10—H10120.2C44—C43—C42119.8 (5)
C12—C10—H10120.2C44—C43—H43120.1
C10—N10—C22122.7 (4)C42—C43—H43120.1
C10—N10—Cr1111.8 (3)C45—C44—C43120.1 (5)
C22—N10—Cr1125.4 (3)C45—C44—H44119.9
C26—C21—C22118.3 (4)C43—C44—H44119.9
C26—C21—C20114.1 (4)C44—C45—C46120.3 (4)
C22—C21—C20127.6 (4)C44—C45—H45119.9
C23—C22—C21119.2 (4)C46—C45—H45119.9
C23—C22—N10120.3 (4)C45—C46—C41121.3 (5)
C21—C22—N10120.5 (4)C45—C46—H46119.4
C24—C23—C22120.1 (5)C41—C46—H46119.4
C24—C23—H23120O42—C40—O41123.6 (4)
C22—C23—H23120O42—C40—C41118.6 (4)
C23—C24—C25121.7 (5)O41—C40—C41117.6 (4)
C23—C24—H24119.2C40—O41—Cr1124.6 (3)
C25—C24—H24119.2O11—N1—O13121.1 (6)
C26—C25—C24117.9 (5)O11—N1—O12120.9 (6)
C26—C25—H25121O13—N1—O12118.0 (6)
C24—C25—H25121O14—N1—O15119 (2)
C25—C26—C21122.7 (5)O14—N1—O16126 (2)
C25—C26—H26118.6O15—N1—O16111 (2)
C21—C26—H26118.6
Selected bond lengths (Å) top
Cr1—O411.907 (3)Cr1—N102.047 (3)
Cr1—O211.915 (3)Cr1—N112.053 (3)
Cr1—N302.041 (3)Cr1—N312.065 (3)
 

Acknowledgements

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005). The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, the University of Western Australia, a facility funded by the University, and the State and Commonwealth Governments.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDey, S. K., Bag, B., Malik, K. M. A., El Fallah, M. S., Ribas, J. & Mitra, S. (2003). Inorg. Chem. 42, 4029–4035.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMukhopadhyay, A. & Pal, S. (2005). J. Chem. Crystallogr. 35, 737–744.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Luneau, D., El Fallah, M. S. & Ribas, J. (2006). Polyhedron, 25, 2737–2744.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds