metal-organic compounds
Bis{2-[(pyridin-2-yl)methylideneamino]benzoato-κ3N,N′,O}chromium(III) nitrate monohydrate
aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua
The title complex salt hydrate, [Cr(C13H9N2O2)2]NO3·H2O, comprises discrete cations, nitrate anions and solvent water molecules. The CrIII atom is octahedrally coordinated by two anionic Schiff base ligands with the O atoms being cis. The two ligands differ significantly with dihedral angles between the pyridine and benzene rings of 4.8 (2) and 24.9 (2)°. The nitrate anion and solvent water molecule were modelled as being disordered, with the major components having site-occupancy values of 0.856 (14) and 0.727 (16), respectively. The crystal is built of alternating layers of cations and of anions plus water molecules, stacked along the c axis.
CCDC reference: 991354
Related literature
For the synthesis of the Schiff base ligand and the structures of its complexes, see: Dey et al. (2003), Mukhopadhyay & Pal (2005); Sen et al. (2006).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 991354
10.1107/S1600536814005649/tk5300sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814005649/tk5300Isup2.hkl
The title compound was prepared during studies of the coordination behaviour of the tridentate carboxylate Schiff base ligand 2-N-(2'-pyridylimine)benzoic acid (HL) which results from the condensation between 2-pyridinecarbaldehide and anthranilic acid. Known metal complexes containing deprotonated HL (Dey et al., 2003; Mukhopadhyay et al., 2005; Sen et al., 2006) were prepared by in situ Schiff base synthesis - a synthetic approach utilized in the present work as well.
The title compound, Cr(C13H10N2O2)2NO3.H2O, is formed of discrete [CrL2]+ cations, nitrate anions and solvent water molecules. The cation has no crystallographically imposed symmetry. The ligand molecules are deprotonated at the carboxylato oxygen atom and coordinate to the CrIII atom through the azomethine, pyridine-N and carboxylato-O atoms in such a way that the metal atom is octahedrally surrounded by two anionic ligands with cis O atoms (Fig. 1 & Table 1). The Cr–N/O distances fall in the range 1.907 (3)–2.065 (3) Å, the trans angles at the metal atom lie in the range 170.57 (13)–173.61 (13), the cis angles vary from 80.47 (14) to 94.47 (14)°. The coordination geometry around the chromium centre is similar to that reported for NiL2.H2O (Mukhopadhyay et al., 2005).
The two ligands differ significantly. The atoms of ligand 1 are virtually coplanar with the dihedral angle between the pyridyl and benzene rings being 4.8 (2)°. By contrast, in ligand 2 this dihedral angle is 24.9 (2)°.
The
is built of alternating layers of cations and of anions plus water molecules (Fig. 2).The ligand HL was prepared by refluxing 2-pyridinecarbaldehyde (0.38 ml, 4 mmol) with anthranilic acid (0.55 g, 4 mmol) in methanol (20 ml) for 0.5 h. The resultant yellow solution was left in open air overnight and used without further purification.
To a stirred methanol solution (10 ml) of Cr(NO3)3.9H2O (0.80 g, 2 mmol) in a 50 ml conic flask, HL in methanol from the previous preparation was added. The solution was magnetically stirred at 323 K for 20 minutes. The brown precipitate was filtered off. The red-brown solution was left to evaporate at room temperature. Red-brown rod-like microcrystals of the title compound were formed in a few days. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 45%).
The nitrate anion and solvent water molecule were modelled as being disordered. The site occupancy factors of the major component of the nitrate refined to 0.856 (14), and that of the disordered water molecule to 0.727 (16). Minor components of the disordered atoms were refined with isotropic displacement parameters. Water molecule hydrogen atoms were not located. All remaining hydrogen atoms were added at calculated positions (C—H = 0.95 Å) and refined by use of a riding model, with Uiso(H) = 1.2Ueq(parent atom).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cr(C13H9N2O2)2]NO3·H2O | Z = 2 |
Mr = 582.47 | F(000) = 598 |
Triclinic, P1 | Dx = 1.603 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 7.9131 (11) Å | Cell parameters from 1206 reflections |
b = 11.4929 (15) Å | θ = 3.3–67.2° |
c = 13.5627 (18) Å | µ = 4.47 mm−1 |
α = 86.105 (11)° | T = 100 K |
β = 79.290 (11)° | Rod, red-brown |
γ = 85.566 (11)° | 0.11 × 0.05 × 0.03 mm |
V = 1206.5 (3) Å3 |
Oxford Diffraction Gemini diffractometer | 4251 independent reflections |
Graphite monochromator | 2790 reflections with I > 2σ(I) |
Detector resolution: 10.4738 pixels mm-1 | Rint = 0.083 |
ω scans | θmax = 67.0°, θmin = 3.3° |
Absorption correction: analytical (Clark & Reid, 1995) | h = −9→9 |
Tmin = 0.681, Tmax = 0.892 | k = −11→13 |
9601 measured reflections | l = −10→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0496P)2] where P = (Fo2 + 2Fc2)/3 |
4251 reflections | (Δ/σ)max = 0.002 |
379 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[Cr(C13H9N2O2)2]NO3·H2O | γ = 85.566 (11)° |
Mr = 582.47 | V = 1206.5 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9131 (11) Å | Cu Kα radiation |
b = 11.4929 (15) Å | µ = 4.47 mm−1 |
c = 13.5627 (18) Å | T = 100 K |
α = 86.105 (11)° | 0.11 × 0.05 × 0.03 mm |
β = 79.290 (11)° |
Oxford Diffraction Gemini diffractometer | 4251 independent reflections |
Absorption correction: analytical (Clark & Reid, 1995) | 2790 reflections with I > 2σ(I) |
Tmin = 0.681, Tmax = 0.892 | Rint = 0.083 |
9601 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.43 e Å−3 |
4251 reflections | Δρmin = −0.27 e Å−3 |
379 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The nitrate anion and solvent water molecule were modelled as being disordered. The site occupancy factors of the two components of the nitrate refined to 0.856 (14) and its complement. Those for the two components of the disordered water molecule appeared to be significantly different and were refined to 0.727 (16) and its complement. Minor components of the disordered atoms were refined with isotropic displacement parameters. Water molecule hydrogen atoms were not located. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cr1 | 0.54166 (9) | 0.74547 (6) | 0.61375 (5) | 0.0373 (2) | |
N11 | 0.7561 (4) | 0.6436 (3) | 0.6386 (2) | 0.0358 (8) | |
C12 | 0.7217 (6) | 0.5754 (4) | 0.7256 (3) | 0.0413 (10) | |
C13 | 0.8463 (6) | 0.4967 (4) | 0.7569 (3) | 0.0477 (11) | |
H13 | 0.821 | 0.4509 | 0.8182 | 0.057* | |
C14 | 1.0056 (6) | 0.4866 (4) | 0.6976 (3) | 0.0491 (11) | |
H14 | 1.0916 | 0.4319 | 0.7167 | 0.059* | |
C15 | 1.0425 (6) | 0.5553 (4) | 0.6101 (3) | 0.0452 (10) | |
H15 | 1.1539 | 0.5499 | 0.5692 | 0.054* | |
C16 | 0.9120 (5) | 0.6332 (4) | 0.5828 (3) | 0.0382 (9) | |
H16 | 0.9362 | 0.6803 | 0.5222 | 0.046* | |
C10 | 0.5485 (6) | 0.5899 (4) | 0.7818 (3) | 0.0437 (10) | |
H10 | 0.5167 | 0.5473 | 0.8442 | 0.052* | |
N10 | 0.4359 (4) | 0.6618 (3) | 0.7463 (2) | 0.0385 (8) | |
C21 | 0.1464 (6) | 0.7587 (4) | 0.7554 (3) | 0.0445 (10) | |
C22 | 0.2644 (6) | 0.6824 (4) | 0.7983 (3) | 0.0442 (10) | |
C23 | 0.2101 (6) | 0.6264 (5) | 0.8926 (3) | 0.0585 (13) | |
H23 | 0.2878 | 0.5734 | 0.9215 | 0.07* | |
C24 | 0.0447 (7) | 0.6481 (6) | 0.9433 (3) | 0.0738 (17) | |
H24 | 0.0101 | 0.6101 | 1.0075 | 0.089* | |
C25 | −0.0730 (7) | 0.7238 (6) | 0.9031 (4) | 0.0772 (19) | |
H25 | −0.1872 | 0.7381 | 0.9387 | 0.093* | |
C26 | −0.0193 (6) | 0.7777 (5) | 0.8101 (4) | 0.0597 (13) | |
H26 | −0.0987 | 0.8301 | 0.782 | 0.072* | |
C20 | 0.1775 (6) | 0.8256 (4) | 0.6544 (3) | 0.0457 (10) | |
O21 | 0.3303 (4) | 0.8357 (3) | 0.6057 (2) | 0.0465 (7) | |
O22 | 0.0532 (4) | 0.8712 (3) | 0.6203 (3) | 0.0635 (9) | |
N31 | 0.6119 (5) | 0.8854 (3) | 0.6813 (2) | 0.0418 (8) | |
C32 | 0.6966 (6) | 0.9635 (4) | 0.6123 (3) | 0.0467 (11) | |
C33 | 0.7415 (6) | 1.0696 (4) | 0.6378 (4) | 0.0548 (12) | |
H33 | 0.7988 | 1.1224 | 0.588 | 0.066* | |
C34 | 0.7011 (7) | 1.0973 (4) | 0.7376 (4) | 0.0619 (14) | |
H34 | 0.732 | 1.1692 | 0.7576 | 0.074* | |
C35 | 0.6163 (7) | 1.0201 (5) | 0.8070 (4) | 0.0620 (14) | |
H35 | 0.5875 | 1.0384 | 0.8756 | 0.074* | |
C36 | 0.5720 (6) | 0.9140 (4) | 0.7769 (3) | 0.0538 (12) | |
H36 | 0.5123 | 0.8612 | 0.8257 | 0.065* | |
C30 | 0.7297 (6) | 0.9282 (4) | 0.5101 (3) | 0.0449 (10) | |
H30 | 0.7933 | 0.9752 | 0.4581 | 0.054* | |
N30 | 0.6723 (4) | 0.8323 (3) | 0.4901 (2) | 0.0397 (8) | |
C41 | 0.5867 (5) | 0.7161 (4) | 0.3666 (3) | 0.0399 (10) | |
C42 | 0.6963 (5) | 0.7961 (4) | 0.3896 (3) | 0.0419 (10) | |
C43 | 0.8237 (6) | 0.8424 (4) | 0.3149 (3) | 0.0547 (12) | |
H43 | 0.9 | 0.8948 | 0.3316 | 0.066* | |
C44 | 0.8384 (7) | 0.8117 (5) | 0.2164 (3) | 0.0623 (14) | |
H44 | 0.9261 | 0.842 | 0.1658 | 0.075* | |
C45 | 0.7261 (7) | 0.7375 (5) | 0.1919 (3) | 0.0571 (13) | |
H45 | 0.7342 | 0.7187 | 0.124 | 0.069* | |
C46 | 0.6018 (6) | 0.6903 (4) | 0.2656 (3) | 0.0485 (11) | |
H46 | 0.525 | 0.6393 | 0.2476 | 0.058* | |
C40 | 0.4502 (6) | 0.6555 (4) | 0.4412 (3) | 0.0415 (10) | |
O41 | 0.4786 (4) | 0.6332 (2) | 0.53221 (18) | 0.0402 (7) | |
O42 | 0.3241 (4) | 0.6254 (3) | 0.4119 (2) | 0.0503 (8) | |
N1 | 0.4349 (7) | 0.7154 (5) | 1.0410 (3) | 0.0656 (12) | |
O11 | 0.5173 (8) | 0.6206 (5) | 1.0362 (4) | 0.078 (2) | 0.856 (14) |
O12 | 0.2875 (9) | 0.7275 (7) | 1.0988 (3) | 0.078 (2) | 0.856 (14) |
O13 | 0.4921 (9) | 0.8027 (4) | 0.9909 (3) | 0.0713 (17) | 0.856 (14) |
O14 | 0.354 (3) | 0.668 (2) | 1.1045 (15) | 0.031 (7)* | 0.144 (14) |
O15 | 0.561 (5) | 0.656 (4) | 0.982 (3) | 0.089 (12)* | 0.144 (14) |
O16 | 0.389 (7) | 0.816 (4) | 0.995 (3) | 0.092 (12)* | 0.144 (14) |
O1 | 0.1743 (16) | 0.9903 (10) | 0.9800 (8) | 0.185 (6) | 0.727 (16) |
O2 | 0.129 (2) | 0.9116 (18) | 1.0468 (15) | 0.100 (8)* | 0.273 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.0381 (4) | 0.0373 (4) | 0.0385 (3) | 0.0040 (3) | −0.0158 (3) | 0.0012 (3) |
N11 | 0.037 (2) | 0.0369 (19) | 0.0365 (16) | 0.0042 (15) | −0.0163 (15) | −0.0046 (14) |
C12 | 0.046 (3) | 0.040 (2) | 0.040 (2) | 0.003 (2) | −0.0167 (19) | −0.0007 (18) |
C13 | 0.055 (3) | 0.047 (3) | 0.043 (2) | 0.010 (2) | −0.021 (2) | 0.0056 (19) |
C14 | 0.048 (3) | 0.049 (3) | 0.052 (2) | 0.016 (2) | −0.025 (2) | 0.000 (2) |
C15 | 0.040 (2) | 0.048 (3) | 0.050 (2) | 0.005 (2) | −0.0144 (19) | −0.011 (2) |
C16 | 0.044 (3) | 0.036 (2) | 0.0366 (19) | −0.0026 (18) | −0.0126 (18) | 0.0002 (17) |
C10 | 0.054 (3) | 0.043 (2) | 0.0354 (19) | −0.002 (2) | −0.0125 (19) | 0.0000 (18) |
N10 | 0.040 (2) | 0.040 (2) | 0.0370 (16) | 0.0031 (16) | −0.0134 (15) | −0.0011 (15) |
C21 | 0.041 (2) | 0.049 (3) | 0.047 (2) | 0.005 (2) | −0.0178 (19) | −0.013 (2) |
C22 | 0.045 (3) | 0.056 (3) | 0.034 (2) | −0.005 (2) | −0.0132 (18) | −0.0095 (19) |
C23 | 0.047 (3) | 0.091 (4) | 0.039 (2) | 0.004 (3) | −0.015 (2) | −0.004 (2) |
C24 | 0.052 (3) | 0.133 (6) | 0.036 (2) | −0.003 (3) | −0.008 (2) | 0.003 (3) |
C25 | 0.045 (3) | 0.136 (6) | 0.050 (3) | 0.012 (3) | −0.011 (2) | −0.024 (3) |
C26 | 0.045 (3) | 0.078 (4) | 0.061 (3) | 0.003 (3) | −0.020 (2) | −0.019 (3) |
C20 | 0.041 (3) | 0.034 (2) | 0.067 (3) | −0.0011 (19) | −0.022 (2) | −0.006 (2) |
O21 | 0.0393 (18) | 0.0467 (18) | 0.0559 (16) | 0.0077 (14) | −0.0209 (14) | 0.0026 (14) |
O22 | 0.0394 (18) | 0.057 (2) | 0.094 (2) | 0.0046 (16) | −0.0276 (17) | 0.0244 (18) |
N31 | 0.043 (2) | 0.0366 (19) | 0.0499 (19) | 0.0056 (16) | −0.0218 (16) | −0.0053 (16) |
C32 | 0.040 (2) | 0.036 (2) | 0.069 (3) | 0.006 (2) | −0.028 (2) | 0.003 (2) |
C33 | 0.045 (3) | 0.036 (3) | 0.090 (3) | 0.007 (2) | −0.033 (2) | −0.006 (2) |
C34 | 0.059 (3) | 0.041 (3) | 0.096 (4) | 0.013 (2) | −0.042 (3) | −0.018 (3) |
C35 | 0.066 (3) | 0.055 (3) | 0.075 (3) | 0.016 (3) | −0.037 (3) | −0.022 (3) |
C36 | 0.053 (3) | 0.055 (3) | 0.058 (3) | 0.008 (2) | −0.023 (2) | −0.007 (2) |
C30 | 0.040 (2) | 0.036 (2) | 0.060 (3) | 0.0017 (19) | −0.017 (2) | 0.006 (2) |
N30 | 0.0346 (19) | 0.041 (2) | 0.0443 (18) | 0.0032 (16) | −0.0158 (15) | 0.0069 (15) |
C41 | 0.036 (2) | 0.045 (2) | 0.038 (2) | 0.0094 (19) | −0.0125 (17) | 0.0020 (18) |
C42 | 0.035 (2) | 0.044 (2) | 0.045 (2) | 0.0065 (19) | −0.0117 (18) | 0.0069 (18) |
C43 | 0.043 (3) | 0.058 (3) | 0.060 (3) | 0.002 (2) | −0.008 (2) | 0.007 (2) |
C44 | 0.053 (3) | 0.074 (4) | 0.051 (3) | 0.010 (3) | 0.003 (2) | 0.012 (2) |
C45 | 0.054 (3) | 0.070 (3) | 0.043 (2) | 0.016 (3) | −0.008 (2) | 0.005 (2) |
C46 | 0.049 (3) | 0.049 (3) | 0.046 (2) | 0.019 (2) | −0.016 (2) | −0.001 (2) |
C40 | 0.043 (3) | 0.038 (2) | 0.045 (2) | 0.0071 (19) | −0.0155 (19) | −0.0049 (18) |
O41 | 0.0452 (17) | 0.0414 (16) | 0.0371 (13) | −0.0019 (13) | −0.0171 (12) | 0.0030 (11) |
O42 | 0.0506 (19) | 0.060 (2) | 0.0462 (15) | −0.0083 (15) | −0.0226 (14) | 0.0020 (14) |
N1 | 0.085 (4) | 0.070 (3) | 0.047 (2) | −0.014 (3) | −0.024 (2) | 0.006 (2) |
O11 | 0.115 (4) | 0.058 (3) | 0.068 (4) | 0.007 (3) | −0.040 (3) | 0.002 (3) |
O12 | 0.081 (4) | 0.099 (5) | 0.051 (2) | −0.014 (4) | 0.001 (2) | −0.014 (3) |
O13 | 0.067 (4) | 0.077 (3) | 0.063 (3) | 0.005 (3) | −0.008 (2) | 0.024 (2) |
O1 | 0.227 (12) | 0.165 (10) | 0.144 (8) | 0.048 (9) | −0.028 (8) | 0.044 (7) |
Cr1—O41 | 1.907 (3) | N31—C36 | 1.334 (6) |
Cr1—O21 | 1.915 (3) | N31—C32 | 1.369 (6) |
Cr1—N30 | 2.041 (3) | C32—C33 | 1.380 (6) |
Cr1—N10 | 2.047 (3) | C32—C30 | 1.442 (6) |
Cr1—N11 | 2.053 (3) | C33—C34 | 1.385 (7) |
Cr1—N31 | 2.065 (3) | C33—H33 | 0.95 |
N11—C16 | 1.323 (5) | C34—C35 | 1.367 (8) |
N11—C12 | 1.367 (5) | C34—H34 | 0.95 |
C12—C13 | 1.391 (6) | C35—C36 | 1.401 (7) |
C12—C10 | 1.443 (6) | C35—H35 | 0.95 |
C13—C14 | 1.365 (7) | C36—H36 | 0.95 |
C13—H13 | 0.95 | C30—N30 | 1.287 (5) |
C14—C15 | 1.377 (6) | C30—H30 | 0.95 |
C14—H14 | 0.95 | N30—C42 | 1.427 (5) |
C15—C16 | 1.400 (6) | C41—C42 | 1.400 (6) |
C15—H15 | 0.95 | C41—C46 | 1.403 (6) |
C16—H16 | 0.95 | C41—C40 | 1.513 (6) |
C10—N10 | 1.304 (5) | C42—C43 | 1.398 (6) |
C10—H10 | 0.95 | C43—C44 | 1.387 (7) |
N10—C22 | 1.418 (6) | C43—H43 | 0.95 |
C21—C26 | 1.390 (7) | C44—C45 | 1.375 (8) |
C21—C22 | 1.409 (6) | C44—H44 | 0.95 |
C21—C20 | 1.513 (7) | C45—C46 | 1.380 (7) |
C22—C23 | 1.401 (6) | C45—H45 | 0.95 |
C23—C24 | 1.373 (7) | C46—H46 | 0.95 |
C23—H23 | 0.95 | C40—O42 | 1.222 (5) |
C24—C25 | 1.386 (8) | C40—O41 | 1.300 (5) |
C24—H24 | 0.95 | N1—O14 | 1.11 (2) |
C25—C26 | 1.375 (8) | N1—O11 | 1.225 (7) |
C25—H25 | 0.95 | N1—O13 | 1.239 (7) |
C26—H26 | 0.95 | N1—O12 | 1.282 (8) |
C20—O22 | 1.229 (5) | N1—O15 | 1.33 (4) |
C20—O21 | 1.275 (5) | N1—O16 | 1.33 (4) |
O41—Cr1—O21 | 89.52 (12) | O22—C20—O21 | 120.4 (4) |
O41—Cr1—N30 | 91.12 (13) | O22—C20—C21 | 119.0 (4) |
O21—Cr1—N30 | 92.67 (13) | O21—C20—C21 | 120.6 (4) |
O41—Cr1—N10 | 94.27 (13) | C20—O21—Cr1 | 131.4 (3) |
O21—Cr1—N10 | 92.10 (14) | C36—N31—C32 | 118.1 (4) |
N30—Cr1—N10 | 172.82 (14) | C36—N31—Cr1 | 129.7 (3) |
O41—Cr1—N11 | 92.27 (12) | C32—N31—Cr1 | 111.8 (3) |
O21—Cr1—N11 | 173.61 (13) | N31—C32—C33 | 122.8 (4) |
N30—Cr1—N11 | 93.43 (14) | N31—C32—C30 | 114.8 (4) |
N10—Cr1—N11 | 81.65 (14) | C33—C32—C30 | 122.4 (5) |
O41—Cr1—N31 | 170.57 (13) | C32—C33—C34 | 118.4 (5) |
O21—Cr1—N31 | 86.65 (13) | C32—C33—H33 | 120.8 |
N30—Cr1—N31 | 80.47 (14) | C34—C33—H33 | 120.8 |
N10—Cr1—N31 | 94.47 (14) | C35—C34—C33 | 119.3 (5) |
N11—Cr1—N31 | 92.48 (13) | C35—C34—H34 | 120.3 |
C16—N11—C12 | 118.7 (3) | C33—C34—H34 | 120.3 |
C16—N11—Cr1 | 130.0 (3) | C34—C35—C36 | 120.0 (5) |
C12—N11—Cr1 | 111.3 (3) | C34—C35—H35 | 120 |
N11—C12—C13 | 121.7 (4) | C36—C35—H35 | 120 |
N11—C12—C10 | 115.7 (4) | N31—C36—C35 | 121.4 (5) |
C13—C12—C10 | 122.6 (4) | N31—C36—H36 | 119.3 |
C14—C13—C12 | 118.5 (4) | C35—C36—H36 | 119.3 |
C14—C13—H13 | 120.7 | N30—C30—C32 | 119.4 (4) |
C12—C13—H13 | 120.7 | N30—C30—H30 | 120.3 |
C13—C14—C15 | 120.4 (4) | C32—C30—H30 | 120.3 |
C13—C14—H14 | 119.8 | C30—N30—C42 | 121.3 (4) |
C15—C14—H14 | 119.8 | C30—N30—Cr1 | 113.3 (3) |
C14—C15—C16 | 118.4 (4) | C42—N30—Cr1 | 125.3 (3) |
C14—C15—H15 | 120.8 | C42—C41—C46 | 117.7 (4) |
C16—C15—H15 | 120.8 | C42—C41—C40 | 125.8 (3) |
N11—C16—C15 | 122.3 (4) | C46—C41—C40 | 116.5 (4) |
N11—C16—H16 | 118.9 | C43—C42—C41 | 120.7 (4) |
C15—C16—H16 | 118.9 | C43—C42—N30 | 120.6 (4) |
N10—C10—C12 | 119.5 (4) | C41—C42—N30 | 118.7 (4) |
N10—C10—H10 | 120.2 | C44—C43—C42 | 119.8 (5) |
C12—C10—H10 | 120.2 | C44—C43—H43 | 120.1 |
C10—N10—C22 | 122.7 (4) | C42—C43—H43 | 120.1 |
C10—N10—Cr1 | 111.8 (3) | C45—C44—C43 | 120.1 (5) |
C22—N10—Cr1 | 125.4 (3) | C45—C44—H44 | 119.9 |
C26—C21—C22 | 118.3 (4) | C43—C44—H44 | 119.9 |
C26—C21—C20 | 114.1 (4) | C44—C45—C46 | 120.3 (4) |
C22—C21—C20 | 127.6 (4) | C44—C45—H45 | 119.9 |
C23—C22—C21 | 119.2 (4) | C46—C45—H45 | 119.9 |
C23—C22—N10 | 120.3 (4) | C45—C46—C41 | 121.3 (5) |
C21—C22—N10 | 120.5 (4) | C45—C46—H46 | 119.4 |
C24—C23—C22 | 120.1 (5) | C41—C46—H46 | 119.4 |
C24—C23—H23 | 120 | O42—C40—O41 | 123.6 (4) |
C22—C23—H23 | 120 | O42—C40—C41 | 118.6 (4) |
C23—C24—C25 | 121.7 (5) | O41—C40—C41 | 117.6 (4) |
C23—C24—H24 | 119.2 | C40—O41—Cr1 | 124.6 (3) |
C25—C24—H24 | 119.2 | O11—N1—O13 | 121.1 (6) |
C26—C25—C24 | 117.9 (5) | O11—N1—O12 | 120.9 (6) |
C26—C25—H25 | 121 | O13—N1—O12 | 118.0 (6) |
C24—C25—H25 | 121 | O14—N1—O15 | 119 (2) |
C25—C26—C21 | 122.7 (5) | O14—N1—O16 | 126 (2) |
C25—C26—H26 | 118.6 | O15—N1—O16 | 111 (2) |
C21—C26—H26 | 118.6 |
Cr1—O41 | 1.907 (3) | Cr1—N10 | 2.047 (3) |
Cr1—O21 | 1.915 (3) | Cr1—N11 | 2.053 (3) |
Cr1—N30 | 2.041 (3) | Cr1—N31 | 2.065 (3) |
Acknowledgements
This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005). The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, the University of Western Australia, a facility funded by the University, and the State and Commonwealth Governments.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dey, S. K., Bag, B., Malik, K. M. A., El Fallah, M. S., Ribas, J. & Mitra, S. (2003). Inorg. Chem. 42, 4029–4035. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Mukhopadhyay, A. & Pal, S. (2005). J. Chem. Crystallogr. 35, 737–744. Web of Science CSD CrossRef CAS Google Scholar
Sen, S., Mitra, S., Luneau, D., El Fallah, M. S. & Ribas, J. (2006). Polyhedron, 25, 2737–2744. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.