metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium tetra­aqua­(hydrogen­sulfato)­sulfato­cuprate(II)

aInstitut für Kristallographie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de

(Received 15 February 2014; accepted 26 February 2014; online 5 March 2014)

In the title salt, [(CH3)2NH2][Cu(HSO4)(SO4)(H2O)4], one type of cation and anion is present in the asymmetric unit. The CuII atom in the complex anion, [Cu(HSO4)(SO4)(H2O)4], has a tetra­gonal bipyramidal [4 + 2] coordination caused by a Jahn–Teller distortion, with the aqua ligands in equatorial and two O atoms of tetra­hedral HSO4 and SO4 units in apical positions. Both types of ions form sheets parallel to (010). The inter­connection within and between the sheets is reinforced by O—H⋯O and N—H⋯O hydrogen bonds, respectively, involving the water mol­ecules, the two types of sulfate anions and the ammonium groups.

Related literature

For related structures, see: Montgomery & Lingafelter (1966[Montgomery, H. & Lingafelter, E. C. (1966). Acta Cryst. 20, 659-662.]); Montgomery et al. (1967[Montgomery, H., Morosin, B., Natt, J. J., Witkowska, A. M. & Lingafelter, E. C. (1967). Acta Cryst. 22, 775-780.]); Held (2003[Held, P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 13-14.], 2014[Held, P. (2014). Acta Cryst. E70, o129.]). For bond-valence parameters, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)[Cu(HSO4)(SO4)(H2O)4]

  • Mr = 374.8

  • Orthorhombic, P b c a

  • a = 7.1825 (9) Å

  • b = 17.9973 (15) Å

  • c = 19.410 (3) Å

  • V = 2509.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 295 K

  • 0.29 × 0.27 × 0.25 mm

Data collection
  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.960, Tmax = 0.999

  • 7482 measured reflections

  • 3801 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.055

  • 3 standard reflections every 100 reflections intensity decay: −1.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 0.97

  • 3801 reflections

  • 196 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O13i 0.90 2.22 2.932 (4) 136
N3—H3A⋯O11ii 0.90 2.00 2.871 (3) 164
O1—H1D⋯O12iii 0.84 (2) 1.82 (2) 2.656 (3) 175 (4)
O1—H1E⋯O12iv 0.85 (2) 1.85 (2) 2.687 (3) 171 (4)
O2—H2D⋯O24v 0.85 (2) 1.90 (2) 2.745 (3) 174 (3)
O2—H2E⋯O24vi 0.84 (2) 1.94 (2) 2.777 (3) 174 (4)
O3—H3D⋯O23vii 0.86 (2) 1.87 (2) 2.722 (3) 173 (4)
O3—H3E⋯O14iv 0.85 (2) 1.82 (2) 2.661 (3) 167 (4)
O4—H4D⋯O23vi 0.84 (2) 1.91 (2) 2.753 (3) 175 (4)
O4—H4E⋯O14viii 0.87 (2) 1.76 (2) 2.627 (3) 171 (5)
O21—H21⋯O13ix 0.82 1.71 2.484 (3) 156
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) -x+2, -y, -z; (viii) -x+1, -y, -z; (ix) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4; data reduction: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2002[Dowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the course of a systematic search for new "double salts" of simple secondary amines and monovalent cations of various inorganic acids, the structures of the new compounds (C2N2H10)Li2(SO4)2 and [NH2(CH2CH3)2][H2PO4] have been described (Held, 2003, 2014). In continuation of these studies, ethylenediamine and lithium were replaced with dimethylamine and divalent copper, respectively, yielding crystals of the title compound with composition [(CH3)2NH2][Cu(HSO4)(SO4)(H2O)4].

The structure of the title compound consists of SO42- and HSO4- anions, NH2(CH3)2+ and Cu2+ cations as well as water molecules as basic structure units. All atoms are located on general Wykoff position 8c. The Cu2+ cation is surrounded by six O atoms of four equatorially placed water molecules (averaged distance = 1.952 (17) Å) and of two apical sulfate groups (averaged distance = 2.45 (6) Å), forming a distorted tetragonal bipyramid, [Cu(H2O)4(SO4)(HSO4)], which is markedly elongated to both apices due to the Jahn-Teller-effect of the Cu2+ cation, leading to a pronounced [4 + 2] coordination (Fig. 1) and an overall bond valence sum (Brown & Altermatt, 1985) of 2.17 valence units. Caused by the dissimilar coordination partners, the Cu—O distances vary widely in comparison with more uniform O environments, e.g. in the Tutton's salt (NH4)2Cu(SO4)2(H2O)6 with a hexa-coordination of Cu2+ by water molecules (Montgomery & Lingafelter (1966); Montgomery et al.(1967)). As expected, the S—O distance of the OH-function (1.545 (2) Å) is considerably longer than the other S—O distances (average distance 1.459 (11) Å).

In the title compound, the [Cu(H2O)4Cu(SO4)2]2- anions form sheets parallel to (010), hold apart from each other by dimethylammonium groups (Fig. 2). Hydrogen bonds of medium strength involving water molecules as donor groups and O atoms of the sulfate anions as acceptor groups interconnect neighbouring [Cu(H2O)4(SO4)(HSO4)]2- units. Together with N—H···O hydrogen bonds of the ammonium hydrogen atoms, a three-dimensional framework (Fig. 3) is formed.

Related literature top

For related structures, see: Montgomery & Lingafelter (1966); Montgomery et al. (1967); Held (2003, 2014). For bond-valence parameters, see: Brown & Altermatt (1985).

Experimental top

The title compound was obtained by reaction of aqueous solution of copper(II) sulfate with dimethylamine and sulfuric acid in the stoichiometric ratio 1:1:1. The solution was kept at room temperature by cooling. The title compound crystallized by slow evaporation of the solvent at room temperature in form of optical clear, light-blue crystals with dimensions up to 5 mm within a few weeks.

Refinement top

The H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares refinement, with C—H = 0.96 Å for methyl H atoms (Uiso(H) = 1.5Ueq(C)), with N—H = 0.90 Å (Uiso(H) = 1.2Ueq(N)) and with O—H = 0.82 Å (Uiso(H) = 1.2Ueq(O)) for the H atom of the HSO4- anion . All H atoms of the water molecules were refined with a distance restraint of O—H 0.87 Å.

Computing details top

Data collection: CAD-4 (Enraf–Nonius, 1989); cell refinement: CAD-4 (Enraf–Nonius, 1989); data reduction: WinGX (Farrugia, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular entities in the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (100)-projection of the crystal structure of the title compound. Colour scheme: [Cu(H2O)4(SO4)(HSO4)] bipyramids (red), (SO4) tetrahedra (yellow), N (orange), C (grey) and H (white).
[Figure 3] Fig. 3. (001)-projection of the crystal structure of the title compound. Colour scheme as in Fig. 2. Hydrogen bonding is indicated by small grey lines.
Dimethylammonium tetraaqua(hydrogensulfato)sulfatocuprate(II) top
Crystal data top
(C2H8N)[Cu(HSO4)(SO4)(H2O)4]F(000) = 1544
Mr = 374.8Dx = 1.985 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 7.1825 (9) Åθ = 21.0–26.0°
b = 17.9973 (15) ŵ = 2.13 mm1
c = 19.410 (3) ÅT = 295 K
V = 2509.0 (6) Å3Parallelepiped, light blue
Z = 80.29 × 0.27 × 0.25 mm
Data collection top
Nonius MACH3
diffractometer
2231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 30.4°, θmin = 2.3°
ω/2θ scansh = 100
Absorption correction: ψ scan
(North et al., 1968)
k = 250
Tmin = 0.960, Tmax = 0.999l = 2727
7482 measured reflections3 standard reflections every 100 reflections
3801 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.4413P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
3801 reflectionsΔρmax = 0.74 e Å3
196 parametersΔρmin = 0.44 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0081 (3)
Crystal data top
(C2H8N)[Cu(HSO4)(SO4)(H2O)4]V = 2509.0 (6) Å3
Mr = 374.8Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1825 (9) ŵ = 2.13 mm1
b = 17.9973 (15) ÅT = 295 K
c = 19.410 (3) Å0.29 × 0.27 × 0.25 mm
Data collection top
Nonius MACH3
diffractometer
2231 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.055
Tmin = 0.960, Tmax = 0.9993 standard reflections every 100 reflections
7482 measured reflections intensity decay: 1.4%
3801 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0328 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.74 e Å3
3801 reflectionsΔρmin = 0.44 e Å3
196 parameters
Special details top

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.73284 (4)0.015242 (18)0.126573 (17)0.01956 (10)
O10.8740 (3)0.07478 (12)0.19257 (11)0.0228 (4)
O20.5919 (3)0.02976 (12)0.20235 (11)0.0253 (5)
O30.8752 (3)0.06422 (15)0.05293 (11)0.0293 (5)
O40.5959 (3)0.04258 (14)0.06014 (12)0.0312 (5)
S10.31024 (8)0.11572 (4)0.11869 (4)0.01745 (14)
O110.5141 (3)0.12213 (11)0.11860 (11)0.0278 (5)
O120.2463 (3)0.07405 (15)0.17900 (12)0.0422 (6)
O130.2226 (3)0.18941 (12)0.11961 (17)0.0566 (9)
O140.2441 (3)0.07687 (16)0.05733 (11)0.0425 (7)
S21.14451 (9)0.12021 (4)0.13213 (4)0.01923 (15)
O211.0717 (3)0.20091 (11)0.13532 (13)0.0376 (6)
H211.16020.22970.13590.056*
O220.9771 (3)0.07646 (12)0.13129 (14)0.0397 (6)
O231.2575 (3)0.11363 (13)0.07020 (10)0.0326 (5)
O241.2594 (3)0.10790 (13)0.19321 (10)0.0305 (5)
N30.3234 (4)0.27683 (14)0.12215 (14)0.0310 (6)
H3A0.21380.30100.12410.037*
H3B0.41410.31130.12120.037*
C10.3443 (6)0.2325 (2)0.1854 (2)0.0477 (10)
H1A0.33950.26470.22480.072*
H1B0.46170.20700.18450.072*
H1C0.24520.19680.18810.072*
C20.3304 (6)0.2343 (2)0.0576 (2)0.0465 (10)
H2A0.31670.26760.01920.070*
H2B0.23120.19860.05700.070*
H2C0.44780.20910.05430.070*
H1D0.841 (5)0.0743 (19)0.2340 (11)0.044 (12)*
H1E0.992 (3)0.075 (2)0.193 (2)0.052 (14)*
H2D0.651 (4)0.0538 (16)0.2328 (13)0.026 (9)*
H2E0.489 (4)0.051 (2)0.198 (2)0.053 (13)*
H3D0.827 (5)0.077 (2)0.0141 (13)0.056 (13)*
H3E0.994 (3)0.063 (2)0.050 (2)0.040 (11)*
H4D0.490 (3)0.062 (2)0.062 (2)0.058 (14)*
H4E0.637 (6)0.054 (2)0.0194 (13)0.072 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01968 (17)0.02313 (17)0.01587 (14)0.00449 (13)0.00006 (14)0.00032 (16)
O10.0208 (11)0.0291 (11)0.0184 (10)0.0035 (9)0.0013 (8)0.0016 (9)
O20.0204 (11)0.0325 (13)0.0230 (10)0.0041 (10)0.0013 (8)0.0079 (9)
O30.0179 (11)0.0488 (15)0.0212 (10)0.0047 (11)0.0006 (9)0.0110 (10)
O40.0244 (12)0.0445 (14)0.0247 (11)0.0111 (11)0.0019 (9)0.0131 (10)
S10.0138 (3)0.0171 (3)0.0214 (3)0.0002 (2)0.0004 (2)0.0004 (3)
O110.0145 (8)0.0256 (10)0.0433 (13)0.0021 (7)0.0001 (9)0.0009 (10)
O120.0254 (12)0.0729 (19)0.0283 (11)0.0128 (13)0.0034 (10)0.0189 (12)
O130.0242 (11)0.0190 (10)0.127 (3)0.0033 (9)0.0063 (16)0.0017 (15)
O140.0236 (11)0.0750 (19)0.0288 (11)0.0113 (13)0.0038 (10)0.0206 (12)
S20.0168 (3)0.0172 (3)0.0237 (3)0.0008 (2)0.0003 (3)0.0003 (3)
O210.0240 (10)0.0198 (10)0.0689 (16)0.0024 (8)0.0041 (11)0.0010 (11)
O220.0227 (10)0.0305 (12)0.0658 (16)0.0115 (9)0.0030 (12)0.0021 (13)
O230.0296 (11)0.0438 (13)0.0244 (10)0.0043 (12)0.0014 (9)0.0018 (9)
O240.0281 (11)0.0400 (12)0.0233 (10)0.0026 (11)0.0024 (9)0.0032 (9)
N30.0294 (12)0.0226 (11)0.0411 (15)0.0025 (10)0.0030 (12)0.0047 (12)
C10.037 (2)0.053 (2)0.053 (2)0.0009 (19)0.0071 (18)0.023 (2)
C20.046 (3)0.039 (2)0.055 (2)0.0008 (19)0.0074 (19)0.0110 (19)
Geometric parameters (Å, º) top
Cu—O41.927 (2)S1—O111.4689 (19)
Cu—O11.954 (2)S2—O221.438 (2)
Cu—O21.961 (2)S2—O231.455 (2)
Cu—O31.966 (2)S2—O241.461 (2)
Cu—O222.410 (2)S2—O211.545 (2)
Cu—O112.489 (2)O21—H210.8200
O1—H1D0.838 (18)N3—C21.470 (5)
O1—H1E0.846 (18)N3—C11.471 (4)
O2—H2D0.848 (18)N3—H3A0.9000
O2—H2E0.837 (19)N3—H3B0.9000
O3—H3D0.857 (18)C1—H1A0.9600
O3—H3E0.852 (18)C1—H1B0.9600
O4—H4D0.843 (18)C1—H1C0.9600
O4—H4E0.869 (19)C2—H2A0.9600
S1—O141.461 (2)C2—H2B0.9600
S1—O121.464 (2)C2—H2C0.9600
S1—O131.468 (2)
O4—Cu—O1178.97 (10)O14—S1—O11111.16 (14)
O4—Cu—O290.88 (10)O12—S1—O11110.73 (14)
O1—Cu—O290.15 (9)O13—S1—O11110.88 (13)
O4—Cu—O391.21 (11)S1—O11—Cu124.65 (12)
O1—Cu—O387.76 (9)O22—S2—O23114.37 (15)
O2—Cu—O3177.57 (10)O22—S2—O24113.48 (15)
O4—Cu—O2291.55 (10)O23—S2—O24110.06 (12)
O1—Cu—O2288.45 (9)O22—S2—O21103.44 (13)
O2—Cu—O2293.69 (9)O23—S2—O21107.35 (14)
O3—Cu—O2287.49 (10)O24—S2—O21107.53 (14)
O4—Cu—O1193.07 (9)S2—O21—H21109.5
O1—Cu—O1186.81 (8)S2—O22—Cu169.84 (15)
O2—Cu—O1192.29 (8)C2—N3—C1115.2 (3)
O3—Cu—O1186.36 (9)C2—N3—H3A108.5
O22—Cu—O11172.37 (7)C1—N3—H3A108.5
Cu—O1—H1D118 (3)C2—N3—H3B108.5
Cu—O1—H1E122 (3)C1—N3—H3B108.5
H1D—O1—H1E106 (4)H3A—N3—H3B107.5
Cu—O2—H2D118 (2)N3—C1—H1A109.5
Cu—O2—H2E125 (3)N3—C1—H1B109.5
H2D—O2—H2E106 (4)H1A—C1—H1B109.5
Cu—O3—H3D123 (3)N3—C1—H1C109.5
Cu—O3—H3E123 (3)H1A—C1—H1C109.5
H3D—O3—H3E111 (4)H1B—C1—H1C109.5
Cu—O4—H4D132 (3)N3—C2—H2A109.5
Cu—O4—H4E124 (3)N3—C2—H2B109.5
H4D—O4—H4E104 (4)H2A—C2—H2B109.5
O14—S1—O12107.74 (15)N3—C2—H2C109.5
O14—S1—O13107.63 (17)H2A—C2—H2C109.5
O12—S1—O13108.58 (17)H2B—C2—H2C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O13i0.902.222.932 (4)136
N3—H3A···O11ii0.902.002.871 (3)164
O1—H1D···O12iii0.84 (2)1.82 (2)2.656 (3)175 (4)
O1—H1E···O12iv0.85 (2)1.85 (2)2.687 (3)171 (4)
O2—H2D···O24v0.85 (2)1.90 (2)2.745 (3)174 (3)
O2—H2E···O24vi0.84 (2)1.94 (2)2.777 (3)174 (4)
O3—H3D···O23vii0.86 (2)1.87 (2)2.722 (3)173 (4)
O3—H3E···O14iv0.85 (2)1.82 (2)2.661 (3)167 (4)
O4—H4D···O23vi0.84 (2)1.91 (2)2.753 (3)175 (4)
O4—H4E···O14viii0.87 (2)1.76 (2)2.627 (3)171 (5)
O21—H21···O13ix0.821.712.484 (3)156
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+1/2; (iv) x+1, y, z; (v) x1/2, y, z+1/2; (vi) x1, y, z; (vii) x+2, y, z; (viii) x+1, y, z; (ix) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O13i0.902.222.932 (4)136.1
N3—H3A···O11ii0.902.002.871 (3)164.0
O1—H1D···O12iii0.838 (18)1.821 (19)2.656 (3)175 (4)
O1—H1E···O12iv0.846 (18)1.85 (2)2.687 (3)171 (4)
O2—H2D···O24v0.848 (18)1.901 (18)2.745 (3)174 (3)
O2—H2E···O24vi0.837 (19)1.943 (19)2.777 (3)174 (4)
O3—H3D···O23vii0.857 (18)1.870 (19)2.722 (3)173 (4)
O3—H3E···O14iv0.852 (18)1.82 (2)2.661 (3)167 (4)
O4—H4D···O23vi0.843 (18)1.912 (19)2.753 (3)175 (4)
O4—H4E···O14viii0.869 (19)1.76 (2)2.627 (3)171 (5)
O21—H21···O13ix0.821.712.484 (3)156.4
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+1/2; (iv) x+1, y, z; (v) x1/2, y, z+1/2; (vi) x1, y, z; (vii) x+2, y, z; (viii) x+1, y, z; (ix) x+3/2, y1/2, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHeld, P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 13–14.  CAS Google Scholar
First citationHeld, P. (2014). Acta Cryst. E70, o129.  CSD CrossRef IUCr Journals Google Scholar
First citationMontgomery, H., Morosin, B., Natt, J. J., Witkowska, A. M. & Lingafelter, E. C. (1967). Acta Cryst. 22, 775–780.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMontgomery, H. & Lingafelter, E. C. (1966). Acta Cryst. 20, 659–662.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds