metal-organic compounds
Dimethylammonium tetraaqua(hydrogensulfato)sulfatocuprate(II)
aInstitut für Kristallographie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de
In the title salt, [(CH3)2NH2][Cu(HSO4)(SO4)(H2O)4], one type of cation and anion is present in the The CuII atom in the complex anion, [Cu(HSO4)(SO4)(H2O)4]−, has a tetragonal bipyramidal [4 + 2] coordination caused by a Jahn–Teller distortion, with the aqua ligands in equatorial and two O atoms of tetrahedral HSO4 and SO4 units in apical positions. Both types of ions form sheets parallel to (010). The interconnection within and between the sheets is reinforced by O—H⋯O and N—H⋯O hydrogen bonds, respectively, involving the water molecules, the two types of sulfate anions and the ammonium groups.
CCDC reference: 988936
Related literature
For related structures, see: Montgomery & Lingafelter (1966); Montgomery et al. (1967); Held (2003, 2014). For bond-valence parameters, see: Brown & Altermatt (1985).
Experimental
Crystal data
|
Data collection: CAD-4 (Enraf–Nonius, 1989); cell CAD-4; data reduction: WinGX (Farrugia, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 988936
10.1107/S1600536814004486/wm5006sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004486/wm5006Isup2.hkl
The title compound was obtained by reaction of aqueous solution of copper(II) sulfate with dimethylamine and sulfuric acid in the stoichiometric ratio 1:1:1. The solution was kept at room temperature by cooling. The title compound crystallized by slow evaporation of the solvent at room temperature in form of optical clear, light-blue crystals with dimensions up to 5 mm within a few weeks.
The H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares ≈ 0.87 Å.
with C—H = 0.96 Å for methyl H atoms (Uiso(H) = 1.5Ueq(C)), with N—H = 0.90 Å (Uiso(H) = 1.2Ueq(N)) and with O—H = 0.82 Å (Uiso(H) = 1.2Ueq(O)) for the H atom of the HSO4- anion . All H atoms of the water molecules were refined with a distance restraint of O—HData collection: CAD-4 (Enraf–Nonius, 1989); cell
CAD-4 (Enraf–Nonius, 1989); data reduction: WinGX (Farrugia, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular entities in the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. (100)-projection of the crystal structure of the title compound. Colour scheme: [Cu(H2O)4(SO4)(HSO4)] bipyramids (red), (SO4) tetrahedra (yellow), N (orange), C (grey) and H (white). | |
Fig. 3. (001)-projection of the crystal structure of the title compound. Colour scheme as in Fig. 2. Hydrogen bonding is indicated by small grey lines. |
(C2H8N)[Cu(HSO4)(SO4)(H2O)4] | F(000) = 1544 |
Mr = 374.8 | Dx = 1.985 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 7.1825 (9) Å | θ = 21.0–26.0° |
b = 17.9973 (15) Å | µ = 2.13 mm−1 |
c = 19.410 (3) Å | T = 295 K |
V = 2509.0 (6) Å3 | Parallelepiped, light blue |
Z = 8 | 0.29 × 0.27 × 0.25 mm |
Nonius MACH3 diffractometer | 2231 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.055 |
Graphite monochromator | θmax = 30.4°, θmin = 2.3° |
ω/2θ scans | h = −10→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −25→0 |
Tmin = 0.960, Tmax = 0.999 | l = −27→27 |
7482 measured reflections | 3 standard reflections every 100 reflections |
3801 independent reflections | intensity decay: −1.4% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0423P)2 + 0.4413P] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max = 0.001 |
3801 reflections | Δρmax = 0.74 e Å−3 |
196 parameters | Δρmin = −0.44 e Å−3 |
8 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0081 (3) |
(C2H8N)[Cu(HSO4)(SO4)(H2O)4] | V = 2509.0 (6) Å3 |
Mr = 374.8 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.1825 (9) Å | µ = 2.13 mm−1 |
b = 17.9973 (15) Å | T = 295 K |
c = 19.410 (3) Å | 0.29 × 0.27 × 0.25 mm |
Nonius MACH3 diffractometer | 2231 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.055 |
Tmin = 0.960, Tmax = 0.999 | 3 standard reflections every 100 reflections |
7482 measured reflections | intensity decay: −1.4% |
3801 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 8 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.74 e Å−3 |
3801 reflections | Δρmin = −0.44 e Å−3 |
196 parameters |
Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.73284 (4) | 0.015242 (18) | 0.126573 (17) | 0.01956 (10) | |
O1 | 0.8740 (3) | 0.07478 (12) | 0.19257 (11) | 0.0228 (4) | |
O2 | 0.5919 (3) | −0.02976 (12) | 0.20235 (11) | 0.0253 (5) | |
O3 | 0.8752 (3) | 0.06422 (15) | 0.05293 (11) | 0.0293 (5) | |
O4 | 0.5959 (3) | −0.04258 (14) | 0.06014 (12) | 0.0312 (5) | |
S1 | 0.31024 (8) | 0.11572 (4) | 0.11869 (4) | 0.01745 (14) | |
O11 | 0.5141 (3) | 0.12213 (11) | 0.11860 (11) | 0.0278 (5) | |
O12 | 0.2463 (3) | 0.07405 (15) | 0.17900 (12) | 0.0422 (6) | |
O13 | 0.2226 (3) | 0.18941 (12) | 0.11961 (17) | 0.0566 (9) | |
O14 | 0.2441 (3) | 0.07687 (16) | 0.05733 (11) | 0.0425 (7) | |
S2 | 1.14451 (9) | −0.12021 (4) | 0.13213 (4) | 0.01923 (15) | |
O21 | 1.0717 (3) | −0.20091 (11) | 0.13532 (13) | 0.0376 (6) | |
H21 | 1.1602 | −0.2297 | 0.1359 | 0.056* | |
O22 | 0.9771 (3) | −0.07646 (12) | 0.13129 (14) | 0.0397 (6) | |
O23 | 1.2575 (3) | −0.11363 (13) | 0.07020 (10) | 0.0326 (5) | |
O24 | 1.2594 (3) | −0.10790 (13) | 0.19321 (10) | 0.0305 (5) | |
N3 | −0.3234 (4) | −0.27683 (14) | 0.12215 (14) | 0.0310 (6) | |
H3A | −0.2138 | −0.3010 | 0.1241 | 0.037* | |
H3B | −0.4141 | −0.3113 | 0.1212 | 0.037* | |
C1 | −0.3443 (6) | −0.2325 (2) | 0.1854 (2) | 0.0477 (10) | |
H1A | −0.3395 | −0.2647 | 0.2248 | 0.072* | |
H1B | −0.4617 | −0.2070 | 0.1845 | 0.072* | |
H1C | −0.2452 | −0.1968 | 0.1881 | 0.072* | |
C2 | −0.3304 (6) | −0.2343 (2) | 0.0576 (2) | 0.0465 (10) | |
H2A | −0.3167 | −0.2676 | 0.0192 | 0.070* | |
H2B | −0.2312 | −0.1986 | 0.0570 | 0.070* | |
H2C | −0.4478 | −0.2091 | 0.0543 | 0.070* | |
H1D | 0.841 (5) | 0.0743 (19) | 0.2340 (11) | 0.044 (12)* | |
H1E | 0.992 (3) | 0.075 (2) | 0.193 (2) | 0.052 (14)* | |
H2D | 0.651 (4) | −0.0538 (16) | 0.2328 (13) | 0.026 (9)* | |
H2E | 0.489 (4) | −0.051 (2) | 0.198 (2) | 0.053 (13)* | |
H3D | 0.827 (5) | 0.077 (2) | 0.0141 (13) | 0.056 (13)* | |
H3E | 0.994 (3) | 0.063 (2) | 0.050 (2) | 0.040 (11)* | |
H4D | 0.490 (3) | −0.062 (2) | 0.062 (2) | 0.058 (14)* | |
H4E | 0.637 (6) | −0.054 (2) | 0.0194 (13) | 0.072 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.01968 (17) | 0.02313 (17) | 0.01587 (14) | −0.00449 (13) | 0.00006 (14) | 0.00032 (16) |
O1 | 0.0208 (11) | 0.0291 (11) | 0.0184 (10) | −0.0035 (9) | −0.0013 (8) | −0.0016 (9) |
O2 | 0.0204 (11) | 0.0325 (13) | 0.0230 (10) | −0.0041 (10) | −0.0013 (8) | 0.0079 (9) |
O3 | 0.0179 (11) | 0.0488 (15) | 0.0212 (10) | −0.0047 (11) | −0.0006 (9) | 0.0110 (10) |
O4 | 0.0244 (12) | 0.0445 (14) | 0.0247 (11) | −0.0111 (11) | 0.0019 (9) | −0.0131 (10) |
S1 | 0.0138 (3) | 0.0171 (3) | 0.0214 (3) | 0.0002 (2) | −0.0004 (2) | −0.0004 (3) |
O11 | 0.0145 (8) | 0.0256 (10) | 0.0433 (13) | −0.0021 (7) | −0.0001 (9) | 0.0009 (10) |
O12 | 0.0254 (12) | 0.0729 (19) | 0.0283 (11) | −0.0128 (13) | −0.0034 (10) | 0.0189 (12) |
O13 | 0.0242 (11) | 0.0190 (10) | 0.127 (3) | 0.0033 (9) | −0.0063 (16) | −0.0017 (15) |
O14 | 0.0236 (11) | 0.0750 (19) | 0.0288 (11) | −0.0113 (13) | 0.0038 (10) | −0.0206 (12) |
S2 | 0.0168 (3) | 0.0172 (3) | 0.0237 (3) | 0.0008 (2) | −0.0003 (3) | −0.0003 (3) |
O21 | 0.0240 (10) | 0.0198 (10) | 0.0689 (16) | −0.0024 (8) | 0.0041 (11) | −0.0010 (11) |
O22 | 0.0227 (10) | 0.0305 (12) | 0.0658 (16) | 0.0115 (9) | −0.0030 (12) | −0.0021 (13) |
O23 | 0.0296 (11) | 0.0438 (13) | 0.0244 (10) | −0.0043 (12) | 0.0014 (9) | 0.0018 (9) |
O24 | 0.0281 (11) | 0.0400 (12) | 0.0233 (10) | −0.0026 (11) | −0.0024 (9) | −0.0032 (9) |
N3 | 0.0294 (12) | 0.0226 (11) | 0.0411 (15) | 0.0025 (10) | 0.0030 (12) | −0.0047 (12) |
C1 | 0.037 (2) | 0.053 (2) | 0.053 (2) | −0.0009 (19) | 0.0071 (18) | −0.023 (2) |
C2 | 0.046 (3) | 0.039 (2) | 0.055 (2) | −0.0008 (19) | −0.0074 (19) | 0.0110 (19) |
Cu—O4 | 1.927 (2) | S1—O11 | 1.4689 (19) |
Cu—O1 | 1.954 (2) | S2—O22 | 1.438 (2) |
Cu—O2 | 1.961 (2) | S2—O23 | 1.455 (2) |
Cu—O3 | 1.966 (2) | S2—O24 | 1.461 (2) |
Cu—O22 | 2.410 (2) | S2—O21 | 1.545 (2) |
Cu—O11 | 2.489 (2) | O21—H21 | 0.8200 |
O1—H1D | 0.838 (18) | N3—C2 | 1.470 (5) |
O1—H1E | 0.846 (18) | N3—C1 | 1.471 (4) |
O2—H2D | 0.848 (18) | N3—H3A | 0.9000 |
O2—H2E | 0.837 (19) | N3—H3B | 0.9000 |
O3—H3D | 0.857 (18) | C1—H1A | 0.9600 |
O3—H3E | 0.852 (18) | C1—H1B | 0.9600 |
O4—H4D | 0.843 (18) | C1—H1C | 0.9600 |
O4—H4E | 0.869 (19) | C2—H2A | 0.9600 |
S1—O14 | 1.461 (2) | C2—H2B | 0.9600 |
S1—O12 | 1.464 (2) | C2—H2C | 0.9600 |
S1—O13 | 1.468 (2) | ||
O4—Cu—O1 | 178.97 (10) | O14—S1—O11 | 111.16 (14) |
O4—Cu—O2 | 90.88 (10) | O12—S1—O11 | 110.73 (14) |
O1—Cu—O2 | 90.15 (9) | O13—S1—O11 | 110.88 (13) |
O4—Cu—O3 | 91.21 (11) | S1—O11—Cu | 124.65 (12) |
O1—Cu—O3 | 87.76 (9) | O22—S2—O23 | 114.37 (15) |
O2—Cu—O3 | 177.57 (10) | O22—S2—O24 | 113.48 (15) |
O4—Cu—O22 | 91.55 (10) | O23—S2—O24 | 110.06 (12) |
O1—Cu—O22 | 88.45 (9) | O22—S2—O21 | 103.44 (13) |
O2—Cu—O22 | 93.69 (9) | O23—S2—O21 | 107.35 (14) |
O3—Cu—O22 | 87.49 (10) | O24—S2—O21 | 107.53 (14) |
O4—Cu—O11 | 93.07 (9) | S2—O21—H21 | 109.5 |
O1—Cu—O11 | 86.81 (8) | S2—O22—Cu | 169.84 (15) |
O2—Cu—O11 | 92.29 (8) | C2—N3—C1 | 115.2 (3) |
O3—Cu—O11 | 86.36 (9) | C2—N3—H3A | 108.5 |
O22—Cu—O11 | 172.37 (7) | C1—N3—H3A | 108.5 |
Cu—O1—H1D | 118 (3) | C2—N3—H3B | 108.5 |
Cu—O1—H1E | 122 (3) | C1—N3—H3B | 108.5 |
H1D—O1—H1E | 106 (4) | H3A—N3—H3B | 107.5 |
Cu—O2—H2D | 118 (2) | N3—C1—H1A | 109.5 |
Cu—O2—H2E | 125 (3) | N3—C1—H1B | 109.5 |
H2D—O2—H2E | 106 (4) | H1A—C1—H1B | 109.5 |
Cu—O3—H3D | 123 (3) | N3—C1—H1C | 109.5 |
Cu—O3—H3E | 123 (3) | H1A—C1—H1C | 109.5 |
H3D—O3—H3E | 111 (4) | H1B—C1—H1C | 109.5 |
Cu—O4—H4D | 132 (3) | N3—C2—H2A | 109.5 |
Cu—O4—H4E | 124 (3) | N3—C2—H2B | 109.5 |
H4D—O4—H4E | 104 (4) | H2A—C2—H2B | 109.5 |
O14—S1—O12 | 107.74 (15) | N3—C2—H2C | 109.5 |
O14—S1—O13 | 107.63 (17) | H2A—C2—H2C | 109.5 |
O12—S1—O13 | 108.58 (17) | H2B—C2—H2C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O13i | 0.90 | 2.22 | 2.932 (4) | 136 |
N3—H3A···O11ii | 0.90 | 2.00 | 2.871 (3) | 164 |
O1—H1D···O12iii | 0.84 (2) | 1.82 (2) | 2.656 (3) | 175 (4) |
O1—H1E···O12iv | 0.85 (2) | 1.85 (2) | 2.687 (3) | 171 (4) |
O2—H2D···O24v | 0.85 (2) | 1.90 (2) | 2.745 (3) | 174 (3) |
O2—H2E···O24vi | 0.84 (2) | 1.94 (2) | 2.777 (3) | 174 (4) |
O3—H3D···O23vii | 0.86 (2) | 1.87 (2) | 2.722 (3) | 173 (4) |
O3—H3E···O14iv | 0.85 (2) | 1.82 (2) | 2.661 (3) | 167 (4) |
O4—H4D···O23vi | 0.84 (2) | 1.91 (2) | 2.753 (3) | 175 (4) |
O4—H4E···O14viii | 0.87 (2) | 1.76 (2) | 2.627 (3) | 171 (5) |
O21—H21···O13ix | 0.82 | 1.71 | 2.484 (3) | 156 |
Symmetry codes: (i) −x−1/2, y−1/2, z; (ii) −x+1/2, y−1/2, z; (iii) x+1/2, y, −z+1/2; (iv) x+1, y, z; (v) x−1/2, y, −z+1/2; (vi) x−1, y, z; (vii) −x+2, −y, −z; (viii) −x+1, −y, −z; (ix) −x+3/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O13i | 0.90 | 2.22 | 2.932 (4) | 136.1 |
N3—H3A···O11ii | 0.90 | 2.00 | 2.871 (3) | 164.0 |
O1—H1D···O12iii | 0.838 (18) | 1.821 (19) | 2.656 (3) | 175 (4) |
O1—H1E···O12iv | 0.846 (18) | 1.85 (2) | 2.687 (3) | 171 (4) |
O2—H2D···O24v | 0.848 (18) | 1.901 (18) | 2.745 (3) | 174 (3) |
O2—H2E···O24vi | 0.837 (19) | 1.943 (19) | 2.777 (3) | 174 (4) |
O3—H3D···O23vii | 0.857 (18) | 1.870 (19) | 2.722 (3) | 173 (4) |
O3—H3E···O14iv | 0.852 (18) | 1.82 (2) | 2.661 (3) | 167 (4) |
O4—H4D···O23vi | 0.843 (18) | 1.912 (19) | 2.753 (3) | 175 (4) |
O4—H4E···O14viii | 0.869 (19) | 1.76 (2) | 2.627 (3) | 171 (5) |
O21—H21···O13ix | 0.82 | 1.71 | 2.484 (3) | 156.4 |
Symmetry codes: (i) −x−1/2, y−1/2, z; (ii) −x+1/2, y−1/2, z; (iii) x+1/2, y, −z+1/2; (iv) x+1, y, z; (v) x−1/2, y, −z+1/2; (vi) x−1, y, z; (vii) −x+2, −y, −z; (viii) −x+1, −y, −z; (ix) −x+3/2, y−1/2, z. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Enraf–Nonius (1989). CAD-4. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Held, P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 13–14. CAS Google Scholar
Held, P. (2014). Acta Cryst. E70, o129. CSD CrossRef IUCr Journals Google Scholar
Montgomery, H., Morosin, B., Natt, J. J., Witkowska, A. M. & Lingafelter, E. C. (1967). Acta Cryst. 22, 775–780. CrossRef CAS IUCr Journals Web of Science Google Scholar
Montgomery, H. & Lingafelter, E. C. (1966). Acta Cryst. 20, 659–662. CrossRef CAS IUCr Journals Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of a systematic search for new "double salts" of simple secondary amines and monovalent cations of various inorganic acids, the structures of the new compounds (C2N2H10)Li2(SO4)2 and [NH2(CH2CH3)2][H2PO4] have been described (Held, 2003, 2014). In continuation of these studies, ethylenediamine and lithium were replaced with dimethylamine and divalent copper, respectively, yielding crystals of the title compound with composition [(CH3)2NH2][Cu(HSO4)(SO4)(H2O)4].
The structure of the title compound consists of SO42- and HSO4- anions, NH2(CH3)2+ and Cu2+ cations as well as water molecules as basic structure units. All atoms are located on general Wykoff position 8c. The Cu2+ cation is surrounded by six O atoms of four equatorially placed water molecules (averaged distance = 1.952 (17) Å) and of two apical sulfate groups (averaged distance = 2.45 (6) Å), forming a distorted tetragonal bipyramid, [Cu(H2O)4(SO4)(HSO4)], which is markedly elongated to both apices due to the Jahn-Teller-effect of the Cu2+ cation, leading to a pronounced [4 + 2] coordination (Fig. 1) and an overall bond valence sum (Brown & Altermatt, 1985) of 2.17 valence units. Caused by the dissimilar coordination partners, the Cu—O distances vary widely in comparison with more uniform O environments, e.g. in the Tutton's salt (NH4)2Cu(SO4)2(H2O)6 with a hexa-coordination of Cu2+ by water molecules (Montgomery & Lingafelter (1966); Montgomery et al.(1967)). As expected, the S—O distance of the OH-function (1.545 (2) Å) is considerably longer than the other S—O distances (average distance 1.459 (11) Å).
In the title compound, the [Cu(H2O)4Cu(SO4)2]2- anions form sheets parallel to (010), hold apart from each other by dimethylammonium groups (Fig. 2). Hydrogen bonds of medium strength involving water molecules as donor groups and O atoms of the sulfate anions as acceptor groups interconnect neighbouring [Cu(H2O)4(SO4)(HSO4)]2- units. Together with N—H···O hydrogen bonds of the ammonium hydrogen atoms, a three-dimensional framework (Fig. 3) is formed.