metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m145-m146

Bis(2-meth­­oxy­benzyl­ammonium) di­aqua­bis­­(di­hydrogen diphosphato-κ2O,O′)cobaltate(II) dihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCEMES–CNRS, 29 rue Jeanne Marvig, 31055 Toulouse cedex 4, France
*Correspondence e-mail: ahmedselmi09@yahoo.fr

(Received 12 March 2014; accepted 19 March 2014; online 26 March 2014)

The title compound, (C8H12NO)2[Co(H2P2O7)2(H2O)2]·2H2O, crystallizes isotypically with its MnII analogue. It consists of alternating layers of organic cations and inorganic complex anions, extending parallel to (100). The complex cobaltate(II) anion exhibits -1 symmetry. Its Co2+ atom has an octa­hedral coordination sphere, defined by two water mol­ecules in apical positions and two H2P2O72− ligands in equatorial positions. The cohesion between inorganic and organic layers is accomplished by a set of O—H⋯O and N—H⋯O hydrogen bonds involving the organic cation, the inorganic anion and the remaining lattice water mol­ecules.

Related literature

For the isotypic MnII structure, see: Elboulali et al. (2013b[Elboulali, A., Akriche, S. & Rzaigui, M. (2013b). Acta Cryst. E69, m572.]). For related structures with diphosphate units, see: Alaoui Tahiri et al. (2003[Alaoui Tahiri, A., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003). Acta Cryst. E59, i68-i69.]); Essehli et al. (2005[Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005). Acta Cryst. E61, i61-i63.]); Selmi et al. (2006[Selmi, A., Akriche, S. & Rzaigui, M. (2006). Anal. Sci., 22, x135-x136.], 2009[Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.]); Ahmed et al. (2006[Ahmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796-m1798.]); Gharbi et al. (1994[Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330-337.]); Gharbi & Jouini (2004[Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11-13.]); Elboulali et al. (2013a[Elboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013a). Acta Cryst. E69, o213-o214.]). For distortion index calculations, see: Kobashi et al. (1997[Kobashi, D., Kohara, S., Yamakawa, J. & Kawahara, A. (1997). Acta Cryst. C53, 1523-1525.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12NO)2[Co(H2P2O7)2(H2O)2]·2H2O

  • Mr = 759.28

  • Monoclinic, P 21 /c

  • a = 14.050 (5) Å

  • b = 11.971 (5) Å

  • c = 9.161 (5) Å

  • β = 93.718 (5)°

  • V = 1537.6 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.25 × 0.19 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 33422 measured reflections

  • 4645 independent reflections

  • 3135 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.266

  • S = 1.08

  • 4645 reflections

  • 212 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.59 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.075 (4)
Co1—O1W 2.095 (4)
Co1—O5 2.124 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.85 2.553 (6) 143
O6—H6⋯O7ii 0.82 1.77 2.571 (6) 166
O1W—H1W1⋯O2iii 0.86 (2) 1.98 (3) 2.827 (6) 168 (7)
O1W—H2W1⋯O7ii 0.86 (2) 2.00 (2) 2.851 (6) 171 (8)
N1—H1A⋯O2W 0.89 1.99 2.840 (8) 159
N1—H1A⋯O3ii 0.89 2.53 2.988 (7) 113
N1—H1B⋯O5iv 0.89 2.04 2.810 (7) 145
N1—H1C⋯O1 0.89 2.28 2.944 (7) 131
N1—H1C⋯O8 0.89 2.42 2.972 (9) 120
O2W—H1W2⋯O2ii 0.85 (2) 2.08 (4) 2.885 (7) 157 (9)
O2W—H2W2⋯O7iii 0.85 (2) 2.06 (4) 2.876 (7) 161 (9)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

As a part of our interest in diphosphate materials, we report here the preparation and the structural study of the title compound, (C8H12NO)2[Co(H2P2O7)2(H2O)2]·2H2O, (I), that crystallizes isotypically with its MnII analogue (Elboulali et al., 2013b).

The asymmetric unit of (I) consists of a Co(II) atom, one H2P2O72- anion, one organic cation and two water molecules (one coordinating to Co(II) and the other a lattice water molecule). The Co(II) ion lies on an inversion centre, hence the complete formula unit is generated by this element of symmetry (Fig. 1).

The crystal structure of (I) exhibits the same type of architecture than that of the isotypic MnII analogue. It is built up from centrosymmetric [Co(H2P2O7)2(H2O)2]2- complex anions arranged in layers parallel to (100). These laters are interconnected by a set of O—H···O and N—H···O hydrogen bonds (Table 2, Fig. 2) between the components.

The distortion index calculation (Kobashi et al., 1997) of the CoO6 octahedron in the anion gives a value of 0.023, indicating a rather regular coordination sphere for this ion (radius 0.74 Å). The distortion index for the MnO6 octahedron in the isotypic MnII analogue is with 0.028 slightly greater, probably as a consequence of the larger ionic radius of MnII (0.80 Å). The Co—O bond lengths around Co2+ ion are between 2.075 (4) and 2.124 (4) Å (Table 1), similar to those observed in (NH4)2[Co(H2P2O7)2(H2O)2] (Essehli et al., 2005) and due to the smaller ionic radius shorter than in [Mn(H2P2O7)2(H2O)2] units in related structures (Alaoui Tahiri et al., 2003; Elboulali et al., 2013b).

The P2O7 moiety has a quasi-eclipsed conformation with a mean O—P—O—P torsion angle of 19.6 ° and bridges the Co(II) ion through O1—P1 and O5—P2 linkages. The P2O7 group is bent, with a P1—O4—P2 bond angle of 132.9 (3)° as observed in other M(II)–organic diphosphate frameworks (Elboulali et al. 2013a; Selmi et al. 2006, 2009; Ahmed et al. 2006; Gharbi et al. 2004, 1994).

Related literature top

For the isotypic MnII structure, see: Elboulali et al. (2013b). For related structures with diphosphate units, see: Alaoui Tahiri et al. (2003); Essehli et al. (2005); Selmi et al. (2006, 2009); Ahmed et al. (2006); Gharbi et al. (1994); Gharbi & Jouini (2004); Elboulali et al. (2013a). For distortion index calculations, see: Kobashi et al. (1997).

Experimental top

Crystals of the title compound were obtained by the reaction of diphosphoric acid (2 mmol), CoCl2·6H2O (0.24 g; 1 mmol) and 2-methoxybenzylamine (0.138 g; 1 mmol) carried out in an acidic medium. Diphosphoric acid, H4P2O7, was obtained from Na4P2O7 by using an ion-exchange resin (Amberlite IR 120).

Refinement top

All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for aromatic ring and C—H = 0.97 and 0.96 Å and N—H = 0.89 Å, respectively, for CH2, CH3 and NH3 units and O—H = 0.82 Å for the hydrogen diphosphate anion with Uiso(H) = 1.5Ueq(C, O or N). The water H atoms were refined using restraints [O—H = 0.85 (1) Å, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular entities in the structure of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Perspective view of the crystal packing of (I) in a projection along [010]. The H-atoms not involved in hydrogen bonding were omitted.
Bis(2-methoxybenzylammonium) diaquabis(dihydrogen diphosphato-κ2O,O')cobaltate(II) dihydrate top
Crystal data top
(C8H12NO)2[Co(H2P2O7)2(H2O)2]·2H2OF(000) = 786
Mr = 759.28Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 33422 reflections
a = 14.050 (5) Åθ = 2.2–30.9°
b = 11.971 (5) ŵ = 0.85 mm1
c = 9.161 (5) ÅT = 293 K
β = 93.718 (5)°Prism, pink
V = 1537.6 (12) Å30.25 × 0.19 × 0.13 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3135 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Horizonally mounted graphite crystal monochromatorθmax = 30.9°, θmin = 2.2°
Detector resolution: 9 pixels mm-1h = 2018
ω and ϕ CCD rotation images, thick slices scansk = 1717
33422 measured reflectionsl = 1013
4645 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.266H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0687P)2 + 17.5972P]
where P = (Fo2 + 2Fc2)/3
4645 reflections(Δ/σ)max = 0.003
212 parametersΔρmax = 2.59 e Å3
7 restraintsΔρmin = 1.26 e Å3
Crystal data top
(C8H12NO)2[Co(H2P2O7)2(H2O)2]·2H2OV = 1537.6 (12) Å3
Mr = 759.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.050 (5) ŵ = 0.85 mm1
b = 11.971 (5) ÅT = 293 K
c = 9.161 (5) Å0.25 × 0.19 × 0.13 mm
β = 93.718 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3135 reflections with I > 2σ(I)
33422 measured reflectionsRint = 0.081
4645 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0967 restraints
wR(F2) = 0.266H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0687P)2 + 17.5972P]
where P = (Fo2 + 2Fc2)/3
4645 reflectionsΔρmax = 2.59 e Å3
212 parametersΔρmin = 1.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.0248 (3)
P10.58873 (11)0.24678 (12)0.46988 (14)0.0240 (3)
P20.38517 (11)0.25622 (12)0.51633 (14)0.0249 (3)
O10.5946 (3)0.3708 (3)0.4662 (4)0.0278 (8)
O20.6336 (3)0.1843 (3)0.3488 (4)0.0302 (9)
O30.6288 (4)0.1972 (4)0.6168 (5)0.0471 (13)
H30.64940.24770.67040.071*
O40.4796 (4)0.2083 (4)0.4534 (6)0.0446 (12)
O50.3993 (3)0.3764 (4)0.5528 (5)0.0309 (9)
O60.3105 (4)0.2386 (5)0.3853 (5)0.0434 (12)
H60.33330.25860.30940.065*
O70.3549 (4)0.1825 (4)0.6378 (4)0.0349 (10)
O1W0.4616 (4)0.4955 (4)0.2753 (5)0.0402 (11)
H1W10.441 (6)0.558 (3)0.240 (8)0.060*
H2W10.435 (5)0.438 (3)0.233 (8)0.060*
O80.8402 (5)0.3749 (6)0.5079 (7)0.0663 (18)
N10.7205 (4)0.4951 (5)0.2793 (6)0.0369 (12)
H1A0.72100.47840.18470.055*
H1B0.67160.54030.29340.055*
H1C0.71450.43270.33070.055*
C10.8971 (5)0.4798 (7)0.3192 (8)0.0454 (17)
C20.9128 (6)0.3901 (7)0.4183 (9)0.0514 (19)
C30.9953 (7)0.3286 (9)0.4206 (12)0.068 (3)
H3A1.00570.27080.48750.082*
C41.0628 (8)0.3536 (11)0.3228 (15)0.085 (4)
H41.11910.31260.32530.101*
C51.0490 (8)0.4362 (13)0.2235 (14)0.087 (4)
H51.09520.45090.15780.105*
C60.9657 (7)0.4997 (10)0.2192 (11)0.071 (3)
H6A0.95590.55550.14930.085*
C70.8106 (5)0.5514 (7)0.3277 (9)0.0474 (17)
H7A0.80660.57600.42800.057*
H7B0.81790.61730.26790.057*
C80.8535 (9)0.2951 (13)0.6208 (15)0.103 (5)
H8A0.85840.22200.57880.154*
H8B0.80030.29730.68120.154*
H8C0.91100.31180.67910.154*
O2W0.7511 (4)0.4927 (5)0.0240 (6)0.0487 (13)
H1W20.732 (6)0.435 (4)0.071 (9)0.073*
H2W20.732 (7)0.555 (3)0.061 (9)0.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0412 (6)0.0166 (5)0.0165 (4)0.0007 (4)0.0011 (4)0.0000 (4)
P10.0361 (8)0.0222 (7)0.0139 (5)0.0062 (5)0.0016 (5)0.0004 (5)
P20.0336 (7)0.0266 (7)0.0144 (6)0.0044 (6)0.0011 (5)0.0018 (5)
O10.031 (2)0.0224 (19)0.030 (2)0.0035 (15)0.0028 (16)0.0026 (15)
O20.047 (3)0.029 (2)0.0150 (16)0.0088 (17)0.0041 (16)0.0026 (14)
O30.089 (4)0.034 (3)0.0170 (19)0.015 (3)0.004 (2)0.0004 (17)
O40.050 (3)0.026 (2)0.059 (3)0.002 (2)0.009 (2)0.018 (2)
O50.032 (2)0.028 (2)0.034 (2)0.0022 (16)0.0104 (17)0.0002 (16)
O60.047 (3)0.066 (3)0.0172 (18)0.019 (2)0.0035 (18)0.005 (2)
O70.057 (3)0.029 (2)0.0189 (18)0.0036 (19)0.0000 (18)0.0025 (15)
O1W0.072 (3)0.026 (2)0.0205 (19)0.002 (2)0.014 (2)0.0017 (16)
O80.058 (4)0.087 (5)0.052 (3)0.003 (3)0.001 (3)0.022 (3)
N10.039 (3)0.040 (3)0.032 (3)0.001 (2)0.006 (2)0.003 (2)
C10.035 (4)0.059 (5)0.041 (4)0.004 (3)0.006 (3)0.004 (3)
C20.039 (4)0.058 (5)0.054 (5)0.003 (3)0.012 (3)0.005 (4)
C30.051 (5)0.073 (7)0.078 (7)0.003 (4)0.021 (5)0.013 (5)
C40.053 (6)0.099 (9)0.100 (9)0.018 (6)0.006 (6)0.037 (8)
C50.062 (7)0.130 (11)0.072 (7)0.013 (7)0.022 (5)0.036 (7)
C60.055 (6)0.102 (8)0.055 (5)0.016 (5)0.007 (4)0.002 (5)
C70.047 (4)0.046 (4)0.048 (4)0.002 (3)0.007 (3)0.002 (3)
C80.069 (7)0.140 (12)0.096 (9)0.025 (7)0.019 (6)0.058 (9)
O2W0.056 (3)0.051 (3)0.038 (3)0.005 (3)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
Co1—O1i2.075 (4)N1—H1A0.8900
Co1—O12.075 (4)N1—H1B0.8900
Co1—O1Wi2.095 (4)N1—H1C0.8900
Co1—O1W2.095 (4)C1—C61.393 (12)
Co1—O52.124 (4)C1—C21.414 (12)
Co1—O5i2.124 (4)C1—C71.494 (11)
P1—O11.488 (4)C2—C31.373 (12)
P1—O21.509 (4)C3—C41.379 (17)
P1—O31.543 (4)C3—H3A0.9300
P1—O41.598 (5)C4—C51.349 (18)
P2—O51.488 (5)C4—H40.9300
P2—O71.503 (4)C5—C61.393 (16)
P2—O61.556 (4)C5—H50.9300
P2—O41.588 (5)C6—H6A0.9300
O3—H30.8200C7—H7A0.9700
O6—H60.8200C7—H7B0.9700
O1W—H1W10.86 (2)C8—H8A0.9600
O1W—H2W10.86 (2)C8—H8B0.9600
O8—C21.362 (11)C8—H8C0.9600
O8—C81.411 (12)O2W—H1W20.85 (2)
N1—C71.477 (9)O2W—H2W20.85 (2)
O1i—Co1—O1180.0 (2)C7—N1—H1B109.5
O1i—Co1—O1Wi87.73 (18)H1A—N1—H1B109.5
O1—Co1—O1Wi92.27 (18)C7—N1—H1C109.5
O1i—Co1—O1W92.27 (18)H1A—N1—H1C109.5
O1—Co1—O1W87.73 (18)H1B—N1—H1C109.5
O1Wi—Co1—O1W180.000 (1)C6—C1—C2117.8 (8)
O1i—Co1—O592.42 (16)C6—C1—C7122.5 (8)
O1—Co1—O587.58 (16)C2—C1—C7119.7 (7)
O1Wi—Co1—O585.82 (19)O8—C2—C3125.7 (9)
O1W—Co1—O594.18 (19)O8—C2—C1113.4 (7)
O1i—Co1—O5i87.58 (16)C3—C2—C1120.9 (9)
O1—Co1—O5i92.42 (16)C2—C3—C4119.3 (11)
O1Wi—Co1—O5i94.18 (19)C2—C3—H3A120.4
O1W—Co1—O5i85.82 (19)C4—C3—H3A120.4
O5—Co1—O5i180.00 (16)C5—C4—C3121.5 (11)
O1—P1—O2116.8 (2)C5—C4—H4119.2
O1—P1—O3112.7 (3)C3—C4—H4119.2
O2—P1—O3107.7 (3)C4—C5—C6120.1 (11)
O1—P1—O4109.8 (2)C4—C5—H5119.9
O2—P1—O4103.4 (3)C6—C5—H5119.9
O3—P1—O4105.4 (3)C1—C6—C5120.3 (11)
O5—P2—O7116.2 (2)C1—C6—H6A119.9
O5—P2—O6112.2 (3)C5—C6—H6A119.9
O7—P2—O6106.4 (3)N1—C7—C1114.0 (6)
O5—P2—O4109.2 (2)N1—C7—H7A108.7
O7—P2—O4109.9 (3)C1—C7—H7A108.7
O6—P2—O4102.0 (3)N1—C7—H7B108.7
P1—O1—Co1134.7 (3)C1—C7—H7B108.7
P1—O3—H3109.5H7A—C7—H7B107.6
P2—O4—P1132.9 (3)O8—C8—H8A109.5
P2—O5—Co1134.7 (2)O8—C8—H8B109.5
P2—O6—H6109.5H8A—C8—H8B109.5
Co1—O1W—H1W1114 (5)O8—C8—H8C109.5
Co1—O1W—H2W1123 (5)H8A—C8—H8C109.5
H1W1—O1W—H2W1114 (3)H8B—C8—H8C109.5
C2—O8—C8117.6 (8)H1W2—O2W—H2W2116 (3)
C7—N1—H1A109.5
O2—P1—O1—Co1136.9 (3)O1Wi—Co1—O5—P2116.7 (4)
O3—P1—O1—Co197.5 (4)O1W—Co1—O5—P263.3 (4)
O4—P1—O1—Co119.7 (4)O5i—Co1—O5—P267 (100)
O1i—Co1—O1—P1141 (100)C8—O8—C2—C35.4 (14)
O1Wi—Co1—O1—P188.9 (4)C8—O8—C2—C1173.5 (9)
O1W—Co1—O1—P191.1 (4)C6—C1—C2—O8177.8 (8)
O5—Co1—O1—P13.2 (4)C7—C1—C2—O84.2 (10)
O5i—Co1—O1—P1176.8 (4)C6—C1—C2—C33.3 (12)
O5—P2—O4—P123.1 (6)C7—C1—C2—C3174.7 (8)
O7—P2—O4—P1105.4 (5)O8—C2—C3—C4179.9 (9)
O6—P2—O4—P1142.0 (5)C1—C2—C3—C41.3 (14)
O1—P1—O4—P239.1 (6)C2—C3—C4—C50.8 (16)
O2—P1—O4—P2164.5 (5)C3—C4—C5—C60.8 (18)
O3—P1—O4—P282.6 (5)C2—C1—C6—C53.3 (14)
O7—P2—O5—Co1140.4 (4)C7—C1—C6—C5174.7 (9)
O6—P2—O5—Co196.9 (4)C4—C5—C6—C11.3 (17)
O4—P2—O5—Co115.5 (5)C6—C1—C7—N1111.2 (9)
O1i—Co1—O5—P2155.7 (4)C2—C1—C7—N170.9 (9)
O1—Co1—O5—P224.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.821.852.553 (6)143
O6—H6···O7iii0.821.772.571 (6)166
O1W—H1W1···O2iv0.86 (2)1.98 (3)2.827 (6)168 (7)
O1W—H2W1···O7iii0.86 (2)2.00 (2)2.851 (6)171 (8)
N1—H1A···O2W0.891.992.840 (8)159
N1—H1A···O3iii0.892.532.988 (7)113
N1—H1B···O5i0.892.042.810 (7)145
N1—H1C···O10.892.282.944 (7)131
N1—H1C···O80.892.422.972 (9)120
O2W—H1W2···O2iii0.85 (2)2.08 (4)2.885 (7)157 (9)
O2W—H2W2···O7iv0.85 (2)2.06 (4)2.876 (7)161 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2.
Selected bond lengths (Å) top
Co1—O12.075 (4)Co1—O52.124 (4)
Co1—O1W2.095 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.852.553 (6)142.6
O6—H6···O7ii0.821.772.571 (6)166.0
O1W—H1W1···O2iii0.86 (2)1.98 (3)2.827 (6)168 (7)
O1W—H2W1···O7ii0.86 (2)2.00 (2)2.851 (6)171 (8)
N1—H1A···O2W0.891.992.840 (8)158.6
N1—H1A···O3ii0.892.532.988 (7)112.9
N1—H1B···O5iv0.892.042.810 (7)144.5
N1—H1C···O10.892.282.944 (7)131.2
N1—H1C···O80.892.422.972 (9)120.3
O2W—H1W2···O2ii0.85 (2)2.08 (4)2.885 (7)157 (9)
O2W—H2W2···O7iii0.85 (2)2.06 (4)2.876 (7)161 (9)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

References

First citationAhmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796–m1798.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlaoui Tahiri, A., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003). Acta Cryst. E59, i68–i69.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013a). Acta Cryst. E69, o213–o214.  CSD CrossRef IUCr Journals Google Scholar
First citationElboulali, A., Akriche, S. & Rzaigui, M. (2013b). Acta Cryst. E69, m572.  CSD CrossRef IUCr Journals Google Scholar
First citationEssehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005). Acta Cryst. E61, i61–i63.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11–13.  Web of Science CSD CrossRef Google Scholar
First citationGharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKobashi, D., Kohara, S., Yamakawa, J. & Kawahara, A. (1997). Acta Cryst. C53, 1523–1525.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2006). Anal. Sci., 22, x135–x136.  CAS Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m145-m146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds