organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o393-o394

2-{2,4,6-Tris(bromo­meth­yl)-3,5-bis­­[(1,3-dioxoisoindolin-2-yl)meth­yl]benz­yl}iso­indoline-1,3-dione toluene monosolvate

aInstitut für Organische Chemie, echnische Universität Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

(Received 29 January 2014; accepted 25 February 2014; online 5 March 2014)

In the title compound, C36H24Br3N3O6·C7H8, the toluene solvent mol­ecule is associated with the receptor mol­ecule via C—H⋯π bonding. The planes of the phthalimido groups are inclined at 77.0 (1), 63.0 (1) and 77.8 (1)° with respect to the benzene ring. The mol­ecular conformation is stabilized by C—H⋯O and C—H⋯Br hydrogen bonds. The crystal structure features non-classical hydrogen bonds of the C—H⋯N, C—H⋯O and C—H⋯Br type, leading to a three-dimensional cross-linking of molecules. The pattern of non-covalent inter­molecular bonding is completed by O⋯Br halogen bonds [3.306 (3) Å], which link the receptor mol­ecules into infinite strands extending along the a-axis direction.

Related literature

For heteroditopic receptors and their applications, see: McConnell & Beer (2012[McConnell, A. J. & Beer, P. D. (2012). Angew. Chem. 124, 5138-5148.]); Kirkovits et al. (2001[Kirkovits, G. J., Shriver, J. A., Gale, P. A. & Sessler, J. L. (2001). J. Incl. Phenom. Macro. 41, 69-75.]); Kinnear et al. (1994[Kinnear, K. I., Mousley, D. P., Arafa, E. & Lockhart, J. C. (1994). J. Chem. Soc. Dalton Trans. pp. 3637-3643.]); Hossain & Schneider (1998[Hossain, M. A. & Schneider, H.-J. (1998). J. Am. Chem. Soc. 120, 11208-11209.]); Tsukube et al. (1999[Tsukube, H., Wada, M., Shinoda, S. & Tamiaki, H. (1999). Chem. Commun. pp. 1007-1008.]); Smith (2010[Smith, B. D. (2010). Macrocyclic Chemistry: Current Trends and Future Perspectives, 1st ed., edited by K. Gloe. pp. 137-153. Dordrecht: Springer.]). For C—H⋯π inter­actions, see: Nishio et al. (2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]). For halogen bonding, see: Metrangolo & Resnati (2008[Metrangolo, P. & Resnati, G. (2008). In Halogen Bonding: Fundamentals and Applications. Berlin: Springer.]). For the synthesis and use of the title compound, see: Roelens et al. (2009[Roelens, S., Vacca, A., Francesconi, O. & Venturi, C. (2009). Chem. Eur. J. 15, 8296-8302.]).

[Scheme 1]

Experimental

Crystal data
  • C36H24Br3N3O6·C7H8

  • Mr = 926.45

  • Orthorhombic, P n a 21

  • a = 9.2879 (2) Å

  • b = 39.2730 (11) Å

  • c = 10.5592 (3) Å

  • V = 3851.61 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 100 K

  • 0.50 × 0.42 × 0.34 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.298, Tmax = 0.410

  • 59694 measured reflections

  • 10997 independent reflections

  • 10267 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.057

  • S = 1.06

  • 10997 reflections

  • 482 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5205 Friedel pairs

  • Absolute structure parameter: 0.015 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of the C1A–C6A and C21–C26 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O3 0.99 2.47 3.309 (3) 142
C8—H8A⋯O4 0.99 2.18 3.061 (3) 147
C8—H8B⋯O5 0.99 2.36 3.036 (3) 125
C8—H8B⋯O6i 0.99 2.58 3.477 (3) 151
C9—H9A⋯O1 0.99 2.54 3.308 (3) 135
C10—H10B⋯Br3 0.99 2.77 3.519 (2) 133
C14—H14⋯O5ii 0.95 2.49 3.080 (3) 121
C19—H19A⋯Br1 0.99 2.89 3.642 (2) 133
C24—H24⋯O2iii 0.95 2.43 3.290 (3) 150
C28—H28A⋯O6i 0.99 2.58 3.344 (2) 134
C33—H33⋯Br2iv 0.95 2.77 3.590 (3) 145
C22—H22⋯Cg1v 0.95 2.66 3.599 (3) 169
C6A—H6ACg2 0.95 2.99 3.795 (3) 143
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x-1, y, z-1; (iii) [-x+2, -y, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (v) [-x+2, -y-1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Our interest in the title compound, C36H24N3O6Br3, arises from its use as a precursor in the synthesis of novel heteroditopic artificial receptors containing a hexasubstituted benzene scaffold. The synthesis of ditopic receptors, which interact simultaneously with cationic and anionic guests in so called ion-pair recognition processes, is a rapidly developing area of research (McConnell & Beer, 2012). A number of ditopic receptors based on a macrocylic or acyclic scaffold have been designed and studied (Kinnear et al. (1994), Kirkovits et al. (2001), Hossain & Schneider (1998), Tsukube et al. (1999) and Smith (2010)) Interesting applications, such as binding of amino acids in their zwitterionic state, salt extraction and membrane transport, have been reported in the literature (for a recent review, see McConnell & Beer, 2012). In this context, the title compound is a particularly useful building block for the construction of a large number of receptors with different recognition units, because it provides a base for many synthetic modifications of the molecule structure. Crystallization of the title compound from toluene yields a 1:1 solvent complex (Fig. 1). According to the three-dimensional arrangement of the substituent groups around the periphery of the central arene ring, the conformational isomer of the receptor can be described as 1-down, 3,5-up tris((phthalimidomethyl), 2,4-down, 6-up tris(bromomethyl)benzene. The mean planes of the phthalimido moieties are inclined at angles of 77.0 (1), 63.0 (1) and 77.8 (1)° with reference to the plane of the benzene ring. The torsion angles given by the atomic sequences C1—C2—C7—Br1, C3—C4—C8—Br2 and C5—C6—C9—Br3 are 93.3 (2), 92.5 (2) and -99.8 (2) °, respectively. The host lattice is stabilized by non-conventional hydrogen bonds of the C—H···N [d(H···N) 2.55 Å], C—H···O [d(H···O) 2.18–2.58 Å] and C—H···Br type [d(H···Br) 2.77, 2.89 Å]. Moreover, the intermolecular distance O1···Br2 [3.306 (3) Å], which is less than the sum of van der Waals radii of the respective atoms [3.37 Å], indicates the presence of a weak C=O···Br halogen bond. As depicted in Fig. 2, the interactions between the receptor and the solvent molecule are reduced to weak C—H···π contacts with the aromatic ring of the toluene molecule and one of the phthalimido units of the receptor acting as acceptors [C22—H22···cg1 2.66 Å, 169 °, C6A—H6A···cg2 2.99 Å, 143 °]. Taking into account this kind of interactions, the crystal structure can be regarded as being composed of infinite strands of 1:1 complex units running along the crystallographic a-axis (Fig. 3).

Related literature top

For heteroditopic receptors and their applications, see: McConnell & Beer (2012); Kirkovits et al. (2001); Kinnear et al. (1994); Hossain & Schneider (1998); Tsukube et al. (1999); Smith (2010). For C—H···π interactions, see: Nishio et al. (2009). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999). For halogen bonding, see: Metrangolo & Resnati (2008). For the synthesis and use of the title compound, see: Roelens et al. (2009).

Experimental top

The synthesis of the title compound was carried out in a slightly modified literature procedure (Roelens et al. 2009). 1,3,5-Tris(phthalimidomethyl)-2,4,6-trimethylbenzene (1.00 g, 1.67 mmol) was dissolved in 1,2-dibromoethane (20 ml) and bromine (0.28 ml, 5.50 mmol) was added. The reaction mixture was stirred for overall 48 h under reflux and irradiation with a halogen bulb (500 W); after 24 h an additional amount of bromine (0.28 ml, 5.50 mmol) was added. The reaction mixture was cooled and washed with saturated aqueous solutions of sodium metabisulfite (2 x 20 ml), sodium bicarbonate (20 ml), and distilled water (20 ml). The organic phase was dried over sodium sulfate and the solvent removed by distillation. The residue was purified by column chromatography (SiO2, CH2Cl2, Rf= 0.32) and the product obtained as an off-white solid. Analysis data: m.p. > 467 K; 1H NMR (400 MHz, CDCl3) δ 7.87–7.77 (m, 6H, aryl), 7.75–7.67 (m, 6H, aryl), 5.10 (s, 12H CH2); 13C NMR (100 MHz, CDCl3) δ 29.26, 36.40, 123.48, 132.03, 134.18, 134.87, 140.32, 168.28; EI—MS (70 eV) m/z: 595, 675, 754.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aryl, C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for methylene and C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure. Displacement ellipsoids of the non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing motif of the crystal structure of the complex in which the C—H···O hydrogen bond is displayed as a broken line and C—H···π contacts as broken double lines.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the c axis. The hydrogen atoms are omitted for clarity. N atoms are displayed as blue, O atoms as red and bromine atoms as violet circles. The intermolecular contacts are marked by broken lines.
2-{2,4,6-Tris(bromomethyl)-3,5-bis[(1,3-dioxoisoindolin-2-yl)methyl]benzyl}isoindoline-1,3-dione toluene monosolvate top
Crystal data top
C36H24Br3N3O6·C7H8F(000) = 1856
Mr = 926.45Dx = 1.598 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9504 reflections
a = 9.2879 (2) Åθ = 2.6–30.1°
b = 39.2730 (11) ŵ = 3.20 mm1
c = 10.5592 (3) ÅT = 100 K
V = 3851.61 (17) Å3Irregular, colourless
Z = 40.50 × 0.42 × 0.34 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10997 independent reflections
Radiation source: fine-focus sealed tube10267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 29.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.298, Tmax = 0.410k = 5454
59694 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0167P)2 + 1.9141P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
10997 reflectionsΔρmax = 0.41 e Å3
482 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 5205 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (4)
Crystal data top
C36H24Br3N3O6·C7H8V = 3851.61 (17) Å3
Mr = 926.45Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.2879 (2) ŵ = 3.20 mm1
b = 39.2730 (11) ÅT = 100 K
c = 10.5592 (3) Å0.50 × 0.42 × 0.34 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10997 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
10267 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 0.410Rint = 0.029
59694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.41 e Å3
S = 1.06Δρmin = 0.43 e Å3
10997 reflectionsAbsolute structure: Flack (1983), 5205 Friedel pairs
482 parametersAbsolute structure parameter: 0.015 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.87579 (2)0.101954 (5)0.01024 (2)0.02056 (5)
Br21.31949 (2)0.203008 (5)0.23399 (2)0.01976 (4)
Br30.62645 (2)0.184625 (6)0.55424 (2)0.02518 (5)
O10.62966 (17)0.18819 (4)0.09052 (18)0.0237 (4)
O20.50556 (16)0.07721 (3)0.15611 (16)0.0186 (3)
O31.16142 (18)0.04624 (4)0.10085 (18)0.0278 (4)
O41.3171 (2)0.10168 (4)0.45440 (17)0.0289 (4)
O51.10398 (16)0.16994 (4)0.62809 (16)0.0188 (3)
O60.81813 (16)0.26402 (4)0.58804 (16)0.0197 (3)
N10.58624 (17)0.13273 (4)0.15120 (17)0.0138 (3)
N21.20917 (17)0.08138 (4)0.27224 (17)0.0144 (3)
N30.97292 (17)0.21791 (4)0.57551 (16)0.0123 (3)
C10.79776 (19)0.14557 (5)0.29093 (19)0.0118 (4)
C20.90990 (19)0.12503 (4)0.2461 (2)0.0120 (3)
C31.0543 (2)0.13449 (5)0.26749 (18)0.0117 (4)
C41.0854 (2)0.16428 (5)0.33462 (19)0.0113 (4)
C50.9733 (2)0.18575 (4)0.37434 (19)0.0109 (4)
C60.8299 (2)0.17643 (5)0.35213 (19)0.0120 (4)
C70.8773 (2)0.09313 (5)0.1739 (2)0.0146 (4)
H7A0.78230.08420.20030.017*
H7B0.95080.07570.19350.017*
C81.2373 (2)0.17347 (5)0.3659 (2)0.0132 (4)
H8A1.29570.15250.37330.016*
H8B1.24010.18540.44840.016*
C90.7111 (2)0.19981 (5)0.3924 (2)0.0164 (4)
H9A0.63560.20030.32630.020*
H9B0.74940.22320.40210.020*
C100.6420 (2)0.13404 (5)0.2795 (2)0.0144 (4)
H10A0.63320.11110.31760.017*
H10B0.58100.14970.32970.017*
C110.5808 (2)0.16045 (5)0.0676 (2)0.0181 (4)
C120.5030 (2)0.14809 (6)0.0454 (2)0.0193 (4)
C130.4667 (2)0.16503 (7)0.1558 (2)0.0302 (6)
H130.49530.18790.17030.036*
C140.3862 (2)0.14693 (9)0.2448 (3)0.0396 (7)
H140.36030.15770.32210.048*
C150.3432 (3)0.11369 (9)0.2229 (3)0.0413 (8)
H150.28700.10220.28480.050*
C160.3809 (2)0.09660 (8)0.1111 (3)0.0302 (6)
H160.35230.07380.09570.036*
C170.4624 (2)0.11481 (6)0.0243 (2)0.0196 (4)
C180.5164 (2)0.10438 (5)0.1015 (2)0.0151 (4)
C191.1748 (2)0.11348 (5)0.20873 (19)0.0132 (4)
H19A1.14840.10840.11990.016*
H19B1.26300.12760.20670.016*
C201.2076 (2)0.05012 (5)0.2068 (2)0.0194 (5)
C211.2715 (2)0.02478 (5)0.2940 (2)0.0220 (5)
C221.2896 (2)0.01012 (6)0.2806 (3)0.0313 (6)
H221.26030.02170.20590.038*
C231.3520 (3)0.02728 (6)0.3804 (4)0.0386 (7)
H231.36430.05120.37490.046*
C241.3972 (3)0.01038 (6)0.4888 (4)0.0392 (7)
H241.44070.02290.55550.047*
C251.3799 (3)0.02466 (6)0.5013 (3)0.0327 (6)
H251.41090.03640.57510.039*
C261.3160 (2)0.04157 (5)0.4020 (2)0.0223 (5)
C271.2844 (2)0.07837 (5)0.3867 (2)0.0191 (4)
C281.0073 (2)0.21895 (5)0.44127 (19)0.0124 (4)
H28A1.11100.22410.43090.015*
H28B0.95200.23760.40090.015*
C291.0301 (2)0.19385 (5)0.6595 (2)0.0148 (4)
C300.9806 (2)0.20383 (5)0.7871 (2)0.0170 (4)
C311.0109 (2)0.18917 (6)0.9036 (2)0.0217 (5)
H311.07160.16980.91100.026*
C320.9476 (3)0.20435 (6)1.0092 (2)0.0292 (5)
H320.96580.19531.09110.035*
C330.8587 (3)0.23229 (6)0.9963 (3)0.0299 (5)
H330.81640.24191.07010.036*
C340.8289 (3)0.24692 (6)0.8796 (2)0.0232 (5)
H340.76760.26620.87210.028*
C350.8927 (2)0.23217 (5)0.7747 (2)0.0172 (4)
C360.8850 (2)0.24137 (5)0.6388 (2)0.0155 (4)
C1A0.8364 (2)0.03354 (5)0.44059 (17)0.0507 (9)
C2A0.7319 (2)0.05829 (5)0.4604 (2)0.0498 (8)
H2A0.64350.05730.41510.060*
C3A0.7565 (3)0.08446 (5)0.5463 (2)0.0810 (14)
H3A0.68500.10140.55980.097*
C4A0.8858 (4)0.08588 (6)0.6124 (2)0.0887 (18)
H4A0.90260.10380.67120.106*
C5A0.9904 (3)0.06113 (8)0.5927 (2)0.0813 (15)
H5A1.07870.06210.63790.098*
C6A0.96570 (19)0.03496 (7)0.5067 (2)0.0693 (12)
H6A1.03720.01800.49320.083*
C7A0.8255 (4)0.00470 (6)0.3449 (2)0.0941 (18)
H7A10.72400.00120.33190.141*
H7A20.87760.01520.37670.141*
H7A30.86770.01200.26420.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02090 (10)0.02545 (10)0.01532 (10)0.00046 (8)0.00065 (9)0.00518 (9)
Br20.01633 (8)0.02241 (9)0.02055 (10)0.00556 (8)0.00482 (9)0.00259 (9)
Br30.01890 (10)0.03088 (11)0.02576 (12)0.00392 (8)0.01001 (10)0.01086 (10)
O10.0196 (7)0.0195 (7)0.0320 (10)0.0003 (6)0.0050 (7)0.0052 (7)
O20.0196 (7)0.0134 (6)0.0228 (8)0.0023 (5)0.0005 (6)0.0051 (6)
O30.0283 (9)0.0211 (8)0.0340 (10)0.0060 (6)0.0097 (7)0.0118 (7)
O40.0437 (11)0.0207 (8)0.0223 (9)0.0049 (7)0.0119 (7)0.0006 (7)
O50.0186 (7)0.0170 (7)0.0208 (8)0.0065 (5)0.0003 (6)0.0032 (6)
O60.0195 (7)0.0140 (7)0.0255 (9)0.0049 (5)0.0014 (6)0.0022 (6)
N10.0108 (8)0.0153 (7)0.0152 (9)0.0007 (6)0.0010 (6)0.0015 (6)
N20.0132 (8)0.0125 (7)0.0176 (9)0.0024 (6)0.0003 (6)0.0013 (6)
N30.0141 (7)0.0108 (7)0.0120 (9)0.0015 (6)0.0002 (6)0.0023 (6)
C10.0089 (8)0.0136 (8)0.0130 (10)0.0002 (6)0.0009 (7)0.0008 (7)
C20.0125 (8)0.0120 (8)0.0114 (9)0.0012 (6)0.0001 (7)0.0007 (7)
C30.0121 (8)0.0107 (8)0.0122 (9)0.0024 (6)0.0002 (7)0.0019 (7)
C40.0099 (8)0.0124 (8)0.0116 (10)0.0004 (6)0.0004 (7)0.0025 (7)
C50.0103 (8)0.0105 (8)0.0119 (10)0.0008 (6)0.0003 (7)0.0011 (7)
C60.0105 (8)0.0134 (8)0.0121 (9)0.0014 (6)0.0008 (7)0.0012 (7)
C70.0154 (9)0.0129 (8)0.0153 (10)0.0006 (7)0.0003 (8)0.0021 (7)
C80.0110 (8)0.0133 (8)0.0153 (10)0.0033 (7)0.0005 (7)0.0013 (7)
C90.0114 (9)0.0165 (9)0.0211 (11)0.0014 (7)0.0001 (8)0.0059 (8)
C100.0100 (8)0.0182 (9)0.0148 (10)0.0022 (7)0.0003 (7)0.0027 (7)
C110.0116 (8)0.0216 (9)0.0211 (11)0.0037 (7)0.0046 (8)0.0024 (9)
C120.0113 (9)0.0303 (11)0.0163 (11)0.0051 (8)0.0026 (7)0.0028 (8)
C130.0156 (10)0.0522 (15)0.0228 (13)0.0093 (10)0.0039 (9)0.0130 (11)
C140.0174 (11)0.082 (2)0.0198 (13)0.0076 (12)0.0012 (10)0.0112 (13)
C150.0153 (11)0.089 (2)0.0190 (13)0.0030 (12)0.0040 (9)0.0087 (14)
C160.0153 (11)0.0512 (15)0.0242 (13)0.0040 (10)0.0011 (9)0.0113 (11)
C170.0124 (9)0.0274 (10)0.0189 (11)0.0051 (7)0.0001 (8)0.0066 (9)
C180.0091 (8)0.0188 (9)0.0176 (10)0.0018 (7)0.0017 (7)0.0067 (8)
C190.0122 (8)0.0132 (8)0.0142 (11)0.0009 (7)0.0015 (7)0.0003 (7)
C200.0141 (9)0.0149 (9)0.0291 (14)0.0011 (7)0.0005 (8)0.0034 (8)
C210.0149 (9)0.0156 (9)0.0354 (14)0.0010 (7)0.0021 (9)0.0019 (9)
C220.0228 (11)0.0169 (10)0.0542 (18)0.0028 (8)0.0008 (11)0.0001 (10)
C230.0284 (13)0.0144 (10)0.073 (2)0.0023 (9)0.0004 (13)0.0116 (12)
C240.0355 (14)0.0264 (12)0.0558 (19)0.0055 (10)0.0055 (14)0.0185 (14)
C250.0336 (13)0.0279 (11)0.0366 (15)0.0050 (10)0.0006 (12)0.0129 (11)
C260.0188 (10)0.0174 (9)0.0306 (13)0.0021 (8)0.0019 (9)0.0067 (9)
C270.0195 (10)0.0190 (9)0.0189 (11)0.0036 (8)0.0002 (8)0.0018 (8)
C280.0123 (9)0.0120 (8)0.0128 (9)0.0003 (7)0.0016 (7)0.0002 (7)
C290.0119 (9)0.0169 (9)0.0157 (10)0.0012 (7)0.0012 (8)0.0018 (8)
C300.0155 (9)0.0205 (10)0.0150 (10)0.0058 (8)0.0004 (8)0.0003 (8)
C310.0207 (11)0.0261 (11)0.0184 (11)0.0059 (8)0.0015 (9)0.0039 (9)
C320.0363 (14)0.0348 (13)0.0164 (12)0.0132 (10)0.0043 (10)0.0003 (9)
C330.0392 (14)0.0307 (11)0.0197 (12)0.0137 (10)0.0120 (11)0.0092 (11)
C340.0257 (11)0.0197 (10)0.0241 (13)0.0056 (8)0.0079 (10)0.0081 (9)
C350.0161 (9)0.0172 (9)0.0182 (11)0.0049 (7)0.0005 (8)0.0051 (8)
C360.0127 (9)0.0134 (8)0.0202 (11)0.0013 (7)0.0001 (8)0.0048 (8)
C1A0.055 (2)0.059 (2)0.0382 (19)0.0185 (16)0.0039 (15)0.0224 (16)
C2A0.057 (2)0.0499 (18)0.042 (2)0.0087 (15)0.0076 (15)0.0249 (15)
C3A0.150 (5)0.045 (2)0.048 (2)0.016 (2)0.005 (3)0.0289 (19)
C4A0.180 (6)0.055 (2)0.032 (2)0.052 (3)0.004 (3)0.0074 (18)
C5A0.077 (3)0.096 (3)0.071 (3)0.053 (3)0.007 (2)0.020 (3)
C6A0.0417 (19)0.109 (3)0.057 (3)0.019 (2)0.0108 (17)0.028 (2)
C7A0.171 (6)0.058 (2)0.053 (3)0.017 (3)0.016 (3)0.011 (2)
Geometric parameters (Å, º) top
Br1—C71.975 (2)C16—C171.387 (3)
Br2—C81.967 (2)C16—H160.9500
Br3—C91.974 (2)C17—C181.478 (3)
O1—C111.205 (3)C19—H19A0.9900
O2—C181.217 (3)C19—H19B0.9900
O3—C201.208 (3)C20—C211.480 (3)
O4—C271.201 (3)C21—C261.380 (3)
O5—C291.209 (2)C21—C221.388 (3)
O6—C361.210 (2)C22—C231.379 (4)
N1—C181.391 (2)C22—H220.9500
N1—C111.403 (3)C23—C241.388 (5)
N1—C101.451 (3)C23—H230.9500
N2—C271.401 (3)C24—C251.392 (4)
N2—C201.409 (3)C24—H240.9500
N2—C191.463 (2)C25—C261.376 (4)
N3—C361.401 (2)C25—H250.9500
N3—C291.401 (3)C26—C271.484 (3)
N3—C281.454 (3)C28—H28A0.9900
C1—C21.400 (3)C28—H28B0.9900
C1—C61.405 (3)C29—C301.477 (3)
C1—C101.521 (3)C30—C351.387 (3)
C2—C31.410 (2)C30—C311.387 (3)
C2—C71.498 (3)C31—C321.395 (4)
C3—C41.398 (3)C31—H310.9500
C3—C191.523 (3)C32—C331.380 (4)
C4—C51.404 (3)C32—H320.9500
C4—C81.494 (3)C33—C341.388 (4)
C5—C61.401 (3)C33—H330.9500
C5—C281.517 (3)C34—C351.383 (3)
C6—C91.496 (3)C34—H340.9500
C7—H7A0.9900C35—C361.482 (3)
C7—H7B0.9900C1A—C2A1.3900
C8—H8A0.9900C1A—C6A1.3900
C8—H8B0.9900C1A—C7A1.5213
C9—H9A0.9900C2A—C3A1.3900
C9—H9B0.9900C2A—H2A0.9500
C10—H10A0.9900C3A—C4A1.3900
C10—H10B0.9900C3A—H3A0.9500
C11—C121.476 (3)C4A—C5A1.3900
C12—C171.378 (3)C4A—H4A0.9500
C12—C131.384 (3)C5A—C6A1.3900
C13—C141.396 (4)C5A—H5A0.9500
C13—H130.9500C6A—H6A0.9500
C14—C151.385 (5)C7A—H7A10.9800
C14—H140.9500C7A—H7A20.9800
C15—C161.402 (4)C7A—H7A30.9800
C15—H150.9500
C18—N1—C11111.52 (18)H19A—C19—H19B107.4
C18—N1—C10123.14 (17)O3—C20—N2124.61 (19)
C11—N1—C10124.97 (17)O3—C20—C21129.3 (2)
C27—N2—C20110.78 (17)N2—C20—C21106.06 (19)
C27—N2—C19125.23 (16)C26—C21—C22121.3 (2)
C20—N2—C19121.58 (17)C26—C21—C20108.21 (18)
C36—N3—C29111.29 (17)C22—C21—C20130.5 (2)
C36—N3—C28125.06 (17)C23—C22—C21117.1 (3)
C29—N3—C28123.58 (16)C23—C22—H22121.5
C2—C1—C6119.64 (16)C21—C22—H22121.5
C2—C1—C10120.62 (17)C22—C23—C24121.6 (2)
C6—C1—C10119.67 (17)C22—C23—H23119.2
C1—C2—C3120.11 (17)C24—C23—H23119.2
C1—C2—C7120.26 (16)C23—C24—C25121.1 (3)
C3—C2—C7119.63 (16)C23—C24—H24119.5
C4—C3—C2119.88 (17)C25—C24—H24119.5
C4—C3—C19120.55 (16)C26—C25—C24117.1 (3)
C2—C3—C19119.42 (17)C26—C25—H25121.5
C3—C4—C5120.07 (17)C24—C25—H25121.5
C3—C4—C8120.62 (17)C25—C26—C21121.9 (2)
C5—C4—C8119.31 (17)C25—C26—C27129.7 (2)
C6—C5—C4119.88 (17)C21—C26—C27108.4 (2)
C6—C5—C28120.05 (16)O4—C27—N2125.15 (19)
C4—C5—C28120.07 (16)O4—C27—C26128.9 (2)
C5—C6—C1120.26 (17)N2—C27—C26105.95 (19)
C5—C6—C9119.51 (17)N3—C28—C5112.61 (16)
C1—C6—C9120.22 (17)N3—C28—H28A109.1
C2—C7—Br1110.86 (14)C5—C28—H28A109.1
C2—C7—H7A109.5N3—C28—H28B109.1
Br1—C7—H7A109.5C5—C28—H28B109.1
C2—C7—H7B109.5H28A—C28—H28B107.8
Br1—C7—H7B109.5O5—C29—N3124.4 (2)
H7A—C7—H7B108.1O5—C29—C30129.29 (19)
C4—C8—Br2110.66 (14)N3—C29—C30106.26 (16)
C4—C8—H8A109.5C35—C30—C31122.4 (2)
Br2—C8—H8A109.5C35—C30—C29108.11 (18)
C4—C8—H8B109.5C31—C30—C29129.5 (2)
Br2—C8—H8B109.5C30—C31—C32116.5 (2)
H8A—C8—H8B108.1C30—C31—H31121.8
C6—C9—Br3110.74 (14)C32—C31—H31121.8
C6—C9—H9A109.5C33—C32—C31120.9 (2)
Br3—C9—H9A109.5C33—C32—H32119.5
C6—C9—H9B109.5C31—C32—H32119.5
Br3—C9—H9B109.5C32—C33—C34122.4 (2)
H9A—C9—H9B108.1C32—C33—H33118.8
N1—C10—C1115.09 (17)C34—C33—H33118.8
N1—C10—H10A108.5C35—C34—C33116.9 (2)
C1—C10—H10A108.5C35—C34—H34121.6
N1—C10—H10B108.5C33—C34—H34121.6
C1—C10—H10B108.5C34—C35—C30120.9 (2)
H10A—C10—H10B107.5C34—C35—C36130.8 (2)
O1—C11—N1124.2 (2)C30—C35—C36108.36 (18)
O1—C11—C12130.1 (2)O6—C36—N3124.9 (2)
N1—C11—C12105.73 (17)O6—C36—C35129.2 (2)
C17—C12—C13121.7 (2)N3—C36—C35105.89 (17)
C17—C12—C11108.37 (19)C2A—C1A—C6A120.0
C13—C12—C11129.9 (2)C2A—C1A—C7A125.0
C12—C13—C14116.9 (3)C6A—C1A—C7A114.9
C12—C13—H13121.5C3A—C2A—C1A120.0
C14—C13—H13121.5C3A—C2A—H2A120.0
C15—C14—C13121.5 (3)C1A—C2A—H2A120.0
C15—C14—H14119.3C2A—C3A—C4A120.0
C13—C14—H14119.3C2A—C3A—H3A120.0
C14—C15—C16121.3 (3)C4A—C3A—H3A120.0
C14—C15—H15119.4C5A—C4A—C3A120.0
C16—C15—H15119.3C5A—C4A—H4A120.0
C17—C16—C15116.5 (3)C3A—C4A—H4A120.0
C17—C16—H16121.8C6A—C5A—C4A120.0
C15—C16—H16121.8C6A—C5A—H5A120.0
C12—C17—C16122.1 (2)C4A—C5A—H5A120.0
C12—C17—C18108.37 (19)C5A—C6A—C1A120.0
C16—C17—C18129.5 (2)C5A—C6A—H6A120.0
O2—C18—N1124.2 (2)C1A—C6A—H6A120.0
O2—C18—C17129.84 (19)C1A—C7A—H7A1109.5
N1—C18—C17105.98 (17)C1A—C7A—H7A2109.5
N2—C19—C3116.12 (16)H7A1—C7A—H7A2109.5
N2—C19—H19A108.3C1A—C7A—H7A3109.5
C3—C19—H19A108.3H7A1—C7A—H7A3109.5
N2—C19—H19B108.3H7A2—C7A—H7A3109.5
C3—C19—H19B108.3
C6—C1—C2—C33.0 (3)C19—N2—C20—O39.9 (3)
C10—C1—C2—C3174.19 (18)C27—N2—C20—C217.1 (2)
C6—C1—C2—C7176.32 (19)C19—N2—C20—C21170.34 (17)
C10—C1—C2—C76.5 (3)O3—C20—C21—C26176.7 (2)
C1—C2—C3—C40.6 (3)N2—C20—C21—C263.6 (2)
C7—C2—C3—C4179.86 (18)O3—C20—C21—C223.3 (4)
C1—C2—C3—C19174.93 (18)N2—C20—C21—C22176.4 (2)
C7—C2—C3—C194.3 (3)C26—C21—C22—C230.9 (4)
C2—C3—C4—C53.7 (3)C20—C21—C22—C23179.1 (2)
C19—C3—C4—C5171.81 (18)C21—C22—C23—C241.1 (4)
C2—C3—C4—C8175.78 (18)C22—C23—C24—C250.6 (4)
C19—C3—C4—C88.8 (3)C23—C24—C25—C260.2 (4)
C3—C4—C5—C63.2 (3)C24—C25—C26—C210.4 (4)
C8—C4—C5—C6176.28 (18)C24—C25—C26—C27179.3 (2)
C3—C4—C5—C28176.88 (18)C22—C21—C26—C250.1 (4)
C8—C4—C5—C283.7 (3)C20—C21—C26—C25179.9 (2)
C4—C5—C6—C10.4 (3)C22—C21—C26—C27179.0 (2)
C28—C5—C6—C1179.56 (18)C20—C21—C26—C271.0 (2)
C4—C5—C6—C9178.73 (19)C20—N2—C27—O4170.9 (2)
C28—C5—C6—C91.3 (3)C19—N2—C27—O48.4 (3)
C2—C1—C6—C53.4 (3)C20—N2—C27—C267.7 (2)
C10—C1—C6—C5173.72 (18)C19—N2—C27—C26170.18 (18)
C2—C1—C6—C9175.67 (19)C25—C26—C27—O45.7 (4)
C10—C1—C6—C97.2 (3)C21—C26—C27—O4173.3 (2)
C1—C2—C7—Br193.3 (2)C25—C26—C27—N2175.8 (2)
C3—C2—C7—Br185.9 (2)C21—C26—C27—N25.3 (2)
C3—C4—C8—Br292.48 (19)C36—N3—C28—C5126.16 (18)
C5—C4—C8—Br288.1 (2)C29—N3—C28—C557.0 (2)
C5—C6—C9—Br399.78 (19)C6—C5—C28—N372.1 (2)
C1—C6—C9—Br381.1 (2)C4—C5—C28—N3107.8 (2)
C18—N1—C10—C1129.25 (19)C36—N3—C29—O5176.44 (19)
C11—N1—C10—C158.3 (2)C28—N3—C29—O56.3 (3)
C2—C1—C10—N168.4 (2)C36—N3—C29—C303.0 (2)
C6—C1—C10—N1114.4 (2)C28—N3—C29—C30174.23 (16)
C18—N1—C11—O1177.67 (19)O5—C29—C30—C35177.2 (2)
C10—N1—C11—O14.5 (3)N3—C29—C30—C352.2 (2)
C18—N1—C11—C121.2 (2)O5—C29—C30—C313.0 (4)
C10—N1—C11—C12174.34 (17)N3—C29—C30—C31177.6 (2)
O1—C11—C12—C17177.0 (2)C35—C30—C31—C320.3 (3)
N1—C11—C12—C171.7 (2)C29—C30—C31—C32179.9 (2)
O1—C11—C12—C130.7 (4)C30—C31—C32—C330.5 (3)
N1—C11—C12—C13179.4 (2)C31—C32—C33—C340.7 (4)
C17—C12—C13—C140.3 (3)C32—C33—C34—C350.0 (3)
C11—C12—C13—C14177.1 (2)C33—C34—C35—C300.8 (3)
C12—C13—C14—C150.7 (4)C33—C34—C35—C36179.4 (2)
C13—C14—C15—C161.1 (4)C31—C30—C35—C341.0 (3)
C14—C15—C16—C170.4 (4)C29—C30—C35—C34179.18 (19)
C13—C12—C17—C161.1 (3)C31—C30—C35—C36179.16 (19)
C11—C12—C17—C16176.8 (2)C29—C30—C35—C360.7 (2)
C13—C12—C17—C18179.57 (19)C29—N3—C36—O6177.11 (19)
C11—C12—C17—C181.6 (2)C28—N3—C36—O65.7 (3)
C15—C16—C17—C120.7 (3)C29—N3—C36—C352.6 (2)
C15—C16—C17—C18178.8 (2)C28—N3—C36—C35174.60 (17)
C11—N1—C18—O2179.56 (19)C34—C35—C36—O61.3 (4)
C10—N1—C18—O26.2 (3)C30—C35—C36—O6178.6 (2)
C11—N1—C18—C170.2 (2)C34—C35—C36—N3179.1 (2)
C10—N1—C18—C17173.51 (17)C30—C35—C36—N31.1 (2)
C12—C17—C18—O2179.3 (2)C6A—C1A—C2A—C3A0.0
C16—C17—C18—O22.4 (4)C7A—C1A—C2A—C3A176.9
C12—C17—C18—N10.9 (2)C1A—C2A—C3A—C4A0.0
C16—C17—C18—N1177.4 (2)C2A—C3A—C4A—C5A0.0
C27—N2—C19—C374.7 (2)C3A—C4A—C5A—C6A0.0
C20—N2—C19—C3124.55 (19)C4A—C5A—C6A—C1A0.0
C4—C3—C19—N2106.5 (2)C2A—C1A—C6A—C5A0.0
C2—C3—C19—N278.0 (2)C7A—C1A—C6A—C5A177.2
C27—N2—C20—O3173.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are centroids of the C1A–C6A and C21–C26 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7B···O30.992.473.309 (3)142
C8—H8A···O40.992.183.061 (3)147
C8—H8B···O50.992.363.036 (3)125
C8—H8B···O6i0.992.583.477 (3)151
C9—H9A···O10.992.543.308 (3)135
C10—H10B···Br30.992.773.519 (2)133
C14—H14···O5ii0.952.493.080 (3)121
C19—H19A···Br10.992.893.642 (2)133
C24—H24···O2iii0.952.433.290 (3)150
C28—H28A···O6i0.992.583.344 (2)134
C33—H33···Br2iv0.952.773.590 (3)145
C22—H22···Cg1v0.952.663.599 (3)169
C6A—H6A···Cg20.952.993.795 (3)143
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z1; (iii) x+2, y, z+1/2; (iv) x1/2, y+1/2, z+1; (v) x+2, y1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are centroids of the C1A–C6A and C21–C26 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7B···O30.992.473.309 (3)141.8
C8—H8A···O40.992.183.061 (3)147.4
C8—H8B···O50.992.363.036 (3)124.9
C8—H8B···O6i0.992.583.477 (3)151.1
C9—H9A···O10.992.543.308 (3)134.8
C10—H10B···Br30.992.773.519 (2)132.7
C14—H14···O5ii0.952.493.080 (3)120.7
C19—H19A···Br10.992.893.642 (2)133.3
C24—H24···O2iii0.952.433.290 (3)149.9
C28—H28A···O6i0.992.583.344 (2)133.7
C33—H33···Br2iv0.952.773.590 (3)144.8
C22—H22···Cg1v0.952.663.599 (3)168.5
C6A—H6A···Cg20.952.993.795 (3)142.9
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z1; (iii) x+2, y, z+1/2; (iv) x1/2, y+1/2, z+1; (v) x+2, y1, z+1/2.
 

Acknowledgements

Financial support of the Dr.-Erich-Krüger-Stiftung is gratefully acknowledged.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHossain, M. A. & Schneider, H.-J. (1998). J. Am. Chem. Soc. 120, 11208–11209.  Web of Science CrossRef CAS Google Scholar
First citationKinnear, K. I., Mousley, D. P., Arafa, E. & Lockhart, J. C. (1994). J. Chem. Soc. Dalton Trans. pp. 3637–3643.  CrossRef Web of Science Google Scholar
First citationKirkovits, G. J., Shriver, J. A., Gale, P. A. & Sessler, J. L. (2001). J. Incl. Phenom. Macro. 41, 69–75.  Web of Science CrossRef CAS Google Scholar
First citationMcConnell, A. J. & Beer, P. D. (2012). Angew. Chem. 124, 5138–5148.  CrossRef Google Scholar
First citationMetrangolo, P. & Resnati, G. (2008). In Halogen Bonding: Fundamentals and Applications. Berlin: Springer.  Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationRoelens, S., Vacca, A., Francesconi, O. & Venturi, C. (2009). Chem. Eur. J. 15, 8296–8302.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, B. D. (2010). Macrocyclic Chemistry: Current Trends and Future Perspectives, 1st ed., edited by K. Gloe. pp. 137–153. Dordrecht: Springer.  Google Scholar
First citationTsukube, H., Wada, M., Shinoda, S. & Tamiaki, H. (1999). Chem. Commun. pp. 1007–1008.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o393-o394
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds