metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[5-(pyrazin-2-yl-κN1)-3-(pyridin-3-yl)-1,2,4-triazolido-κN1]zinc

aCollege of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: dongww1@126.com

(Received 20 February 2014; accepted 23 February 2014; online 5 March 2014)

In the title compound, [Zn(C11H7N6)2(H2O)2], the ZnII cation, located on an inversion center, is N,N′-chelated by two 5-(pyrazin-2-yl)-3-(pyridin-3-yl)-1,2,4-triazolide anions and is further coordinated by two water mol­ecules in a distorted N4O2 octa­hedral geometry. In the anionic ligand, the pyrazine and pyridine rings are twisted with respect to the central triazole ring by 5.77 (10) and 11.54 (10)°, respectively. In the crystal, classical O—H⋯N and weak C—H⋯O hydrogen bonds and ππ stacking inter­actions between aromatic rings [the centroid–centroid distances between triazole and pyrazine rings, and between triazole and pyridine rings are 3.623 (2) and 3.852 (2) Å, respectively] connect the mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For applications and related structures of 1,2,4-triazole derivatives, see: Zhang et al. (2012[Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. (2012). Chem. Rev. 112, 1001-1033.]); Chen et al. (2006[Chen, J.-C., Zhou, A.-J., Hu, S., Tong, M.-L. & Tong, Y.-X. (2006). J. Mol. Struct. 794, 225-229.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H7N6)2(H2O)2]

  • Mr = 547.85

  • Monoclinic, P 21 /c

  • a = 8.600 (5) Å

  • b = 5.728 (3) Å

  • c = 22.288 (12) Å

  • β = 100.646 (6)°

  • V = 1079.0 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 296 K

  • 0.18 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.80, Tmax = 0.86

  • 11003 measured reflections

  • 2493 independent reflections

  • 2304 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.05

  • 2493 reflections

  • 175 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.1054 (16)
Zn1—N1 2.1853 (18)
Zn1—N5 2.1733 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N6i 0.85 (2) 1.93 (2) 2.736 (2) 159 (2)
O1—H1B⋯N4ii 0.87 (2) 1.91 (2) 2.771 (2) 170 (2)
C1—H1⋯O1iii 0.93 2.41 3.266 (3) 153
Symmetry codes: (i) x+1, y+1, z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole derivatives are important building blocks of many important compounds widely used in medicine, agriculture, industry, and coordination chemistry (Zhang et al., 2012; Chen et al., 2006). During the synthesis of polymeric complexes using 2-(5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)pyrazine as building blocks and, to our surprise, the title monomeric Zn(II) complex was obtained.

The title compound is a crstallographically centrosymmetric mononuclear complex. The ZnII cation is in a distaorted octahedral geometry (Fig. 1) and is coordinated by four N atoms from two 2-(5-(pyridin-3-yl)-1,2,4-triazolido-3-yl)pyrazine ligands and two coordinated water molecules. The observed Zn–O and Zn–N bond distances and bond angles reveal usual values. In the crystal, classic O–H···N hydrogen bonds, weak C—H···O hydrogen bond and π-π stacking between aromatic rings connect the molecules into the three dimensional supramolecular architecture [centroids between triazole and pyrazine rings and between triazole and pyridine rings being 3.623 (2) and 3.852 (2) Å, respectively].

Related literature top

For applications and related structures of 1,2,4-triazole derivatives, see: Zhang et al. (2012); Chen et al. (2006).

Experimental top

A mixture of 2-(5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)pyrazine (0.0448 g, 0.2 mmol), Zn(CH3COO)2.2H2O (0.0220 g, 0.1 mmol), water (6 mL), N,N-dimethylformamide (2 mL) was stirred vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h-1 to obtain crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å, Uiso(H) = 1.2 Ueq(C) for aromatic hydrogen atoms. The H-atoms of O atoms were identified from a difference Fourier map and refined with O–H = 0.85 (2) Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram.
Diaquabis[5-(pyrazin-2-yl-κN1)-3-(pyridin-3-yl)-1,2,4-triazolido-κN1]zinc top
Crystal data top
[Zn(C11H7N6)2(H2O)2]F(000) = 560
Mr = 547.85Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2880 reflections
a = 8.600 (5) Åθ = 2.4–27.6°
b = 5.728 (3) ŵ = 1.19 mm1
c = 22.288 (12) ÅT = 296 K
β = 100.646 (6)°Prism, colorless
V = 1079.0 (10) Å30.18 × 0.15 × 0.13 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
2493 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
phi and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.80, Tmax = 0.86k = 77
11003 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.2938P]
where P = (Fo2 + 2Fc2)/3
2493 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn(C11H7N6)2(H2O)2]V = 1079.0 (10) Å3
Mr = 547.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.600 (5) ŵ = 1.19 mm1
b = 5.728 (3) ÅT = 296 K
c = 22.288 (12) Å0.18 × 0.15 × 0.13 mm
β = 100.646 (6)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2493 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2304 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.86Rint = 0.083
11003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.44 e Å3
2493 reflectionsΔρmin = 0.59 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00001.00000.50000.02623 (14)
O10.17564 (15)0.7938 (2)0.47155 (6)0.0298 (3)
H1B0.218 (3)0.679 (4)0.4940 (11)0.045*
H1A0.252 (3)0.871 (4)0.4624 (11)0.045*
N10.03718 (18)1.1583 (3)0.40926 (7)0.0255 (3)
N20.0898 (2)1.2803 (3)0.28622 (8)0.0364 (4)
N30.32425 (18)0.7016 (3)0.35570 (7)0.0273 (3)
N40.27382 (18)0.5864 (3)0.45419 (7)0.0271 (3)
N50.17912 (18)0.7731 (3)0.44860 (7)0.0258 (3)
N60.6262 (2)0.0459 (3)0.41338 (9)0.0357 (4)
C10.0312 (2)1.3446 (3)0.38951 (9)0.0302 (4)
H10.09921.43550.41740.036*
C20.0033 (3)1.4058 (3)0.32853 (9)0.0339 (4)
H20.05121.53930.31670.041*
C30.1585 (3)1.0954 (4)0.30615 (9)0.0331 (4)
H30.22511.00390.27790.040*
C40.1352 (2)1.0330 (3)0.36728 (9)0.0238 (4)
C50.2139 (2)0.8348 (3)0.38977 (8)0.0242 (4)
C60.3581 (2)0.5502 (3)0.39810 (9)0.0249 (4)
C70.4734 (2)0.3611 (3)0.38268 (8)0.0261 (4)
C80.5332 (2)0.3074 (4)0.32153 (9)0.0312 (4)
H80.50290.39510.29050.037*
C90.6372 (2)0.1240 (4)0.30748 (10)0.0353 (4)
H90.67830.08650.26710.042*
C100.6790 (3)0.0028 (3)0.35465 (12)0.0362 (5)
H100.74750.12850.34500.043*
C110.5265 (2)0.2270 (4)0.42666 (9)0.0317 (4)
H110.49120.26450.46750.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0291 (2)0.0287 (2)0.0197 (2)0.00523 (11)0.00119 (13)0.00147 (10)
O10.0282 (7)0.0286 (7)0.0331 (7)0.0035 (5)0.0064 (5)0.0056 (5)
N10.0268 (7)0.0255 (7)0.0238 (7)0.0033 (6)0.0040 (6)0.0002 (5)
N20.0442 (10)0.0369 (9)0.0274 (8)0.0051 (8)0.0044 (7)0.0068 (7)
N30.0269 (7)0.0293 (8)0.0249 (7)0.0060 (6)0.0023 (6)0.0017 (6)
N40.0266 (7)0.0279 (8)0.0264 (8)0.0056 (6)0.0042 (6)0.0020 (6)
N50.0273 (7)0.0253 (7)0.0240 (7)0.0057 (6)0.0030 (6)0.0013 (6)
N60.0303 (9)0.0395 (9)0.0382 (10)0.0096 (7)0.0089 (8)0.0040 (8)
C10.0326 (9)0.0266 (9)0.0314 (9)0.0077 (7)0.0059 (7)0.0027 (7)
C20.0414 (11)0.0271 (9)0.0344 (10)0.0045 (8)0.0105 (8)0.0050 (8)
C30.0386 (10)0.0359 (10)0.0234 (9)0.0081 (8)0.0018 (7)0.0009 (8)
C40.0229 (8)0.0257 (8)0.0227 (9)0.0007 (6)0.0036 (7)0.0005 (6)
C50.0237 (8)0.0266 (9)0.0222 (8)0.0032 (7)0.0036 (6)0.0002 (6)
C60.0212 (8)0.0289 (8)0.0246 (9)0.0035 (7)0.0041 (7)0.0005 (7)
C70.0203 (8)0.0277 (8)0.0300 (9)0.0035 (7)0.0040 (7)0.0002 (7)
C80.0295 (9)0.0353 (10)0.0281 (9)0.0078 (8)0.0040 (7)0.0013 (8)
C90.0318 (10)0.0409 (11)0.0324 (10)0.0073 (8)0.0036 (8)0.0064 (8)
C100.0306 (11)0.0336 (12)0.0442 (14)0.0114 (7)0.0063 (10)0.0056 (8)
C110.0250 (8)0.0396 (10)0.0304 (9)0.0077 (8)0.0048 (7)0.0014 (8)
Geometric parameters (Å, º) top
Zn1—O1i2.1054 (16)N6—C101.334 (3)
Zn1—O12.1054 (16)N6—C111.344 (3)
Zn1—N12.1853 (18)C1—C21.381 (3)
Zn1—N1i2.1853 (18)C1—H10.9300
Zn1—N52.1733 (16)C2—H20.9300
Zn1—N5i2.1733 (16)C3—C41.387 (3)
O1—H1B0.867 (16)C3—H30.9300
O1—H1A0.848 (16)C4—C51.457 (2)
N1—C11.332 (2)C6—C71.466 (3)
N1—C41.345 (2)C7—C111.387 (3)
N2—C31.329 (3)C7—C81.399 (3)
N2—C21.330 (3)C8—C91.377 (3)
N3—C51.339 (2)C8—H80.9300
N3—C61.353 (2)C9—C101.379 (3)
N4—C61.340 (2)C9—H90.9300
N4—N51.364 (2)C10—H100.9300
N5—C51.338 (2)C11—H110.9300
O1i—Zn1—O1180.00 (7)N2—C2—C1122.23 (18)
O1i—Zn1—N590.93 (7)N2—C2—H2118.9
O1—Zn1—N589.07 (7)C1—C2—H2118.9
O1i—Zn1—N5i89.07 (7)N2—C3—C4122.76 (18)
O1—Zn1—N5i90.93 (7)N2—C3—H3118.6
N5—Zn1—N5i180.0C4—C3—H3118.6
O1i—Zn1—N193.18 (6)N1—C4—C3120.28 (17)
O1—Zn1—N186.82 (6)N1—C4—C5116.58 (17)
N5—Zn1—N178.00 (6)C3—C4—C5123.13 (17)
N5i—Zn1—N1102.00 (6)N5—C5—N3114.31 (16)
O1i—Zn1—N1i86.82 (6)N5—C5—C4120.63 (16)
O1—Zn1—N1i93.18 (6)N3—C5—C4125.06 (16)
N5—Zn1—N1i102.00 (6)N4—C6—N3113.79 (17)
N5i—Zn1—N1i78.00 (6)N4—C6—C7123.96 (17)
N1—Zn1—N1i180.000 (1)N3—C6—C7122.22 (17)
Zn1—O1—H1B120.2 (18)C11—C7—C8117.17 (17)
Zn1—O1—H1A114.1 (18)C11—C7—C6122.69 (17)
H1B—O1—H1A106 (2)C8—C7—C6120.14 (17)
C1—N1—C4117.11 (16)C9—C8—C7119.71 (18)
C1—N1—Zn1129.81 (13)C9—C8—H8120.1
C4—N1—Zn1112.83 (12)C7—C8—H8120.1
C3—N2—C2116.14 (17)C8—C9—C10118.57 (19)
C5—N3—C6100.99 (15)C8—C9—H9120.7
C6—N4—N5105.37 (15)C10—C9—H9120.7
C5—N5—N4105.55 (14)N6—C10—C9123.25 (19)
C5—N5—Zn1111.52 (11)N6—C10—H10118.4
N4—N5—Zn1142.93 (12)C9—C10—H10118.4
C10—N6—C11117.76 (19)N6—C11—C7123.48 (19)
N1—C1—C2121.43 (18)N6—C11—H11118.3
N1—C1—H1119.3C7—C11—H11118.3
C2—C1—H1119.3
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N6ii0.85 (2)1.93 (2)2.736 (2)159 (2)
O1—H1B···N4iii0.87 (2)1.91 (2)2.771 (2)170 (2)
C1—H1···O1iv0.932.413.266 (3)153
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x, y+1, z.
Selected bond lengths (Å) top
Zn1—O12.1054 (16)Zn1—N52.1733 (16)
Zn1—N12.1853 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N6i0.848 (16)1.928 (17)2.736 (2)159 (2)
O1—H1B···N4ii0.867 (16)1.914 (16)2.771 (2)170 (2)
C1—H1···O1iii0.932.413.266 (3)153
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Project of Hubei Provincial Education Office, China (grant No. Q20131304).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J.-C., Zhou, A.-J., Hu, S., Tong, M.-L. & Tong, Y.-X. (2006). J. Mol. Struct. 794, 225–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. (2012). Chem. Rev. 112, 1001–1033.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds