organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(2,6-Di­chloro­benz­yl­oxy)-2-phenyl­eth­yl]-2H-indazole

aDepartment of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 27 February 2014; accepted 3 March 2014; online 8 March 2014)

In the title compound, C22H18Cl2N2O, the indazole ring system is approximately planar [maximum deviation = 0.031 (2) Å], its mean plane is oriented at 3.17 (4) and 19.34 (4)° with respect to the phenyl and benzene rings. In the crystal, weak C—H⋯π inter­actions link the mol­ecules into supra­molecular chains running along the b-axis direction.

Related literature

For clinical uses of azole anti­fungals possessing an imidazole ring such as micozanole and econazole, see: Godefroi et al. (1969[Godefroi, E. F., Heeres, J., van Custem, J. & Janssen, P. A. (1969). J. Med. Chem. 12, 784-791.]). Some indazole derivatives have been known as antifungal also, see: Lebouvier et al. (2007[Lebouvier, N., Pagniez, F., Duflos, M., Le Pape, P., Na, Y. M., Le Baut, G. & Le Borgne, M. (2007). Bioorg. & Med. Chem. Lett. 17, 3686-3689.]); Park et al. (2007[Park, J. S., Yu, K. A., Kang, T. H., Kim, S. & Suh, Y. G. (2007). Bioorg. & Med. Chem. Lett. 17, 3486-3490.]). For related structures, see: Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Özel Güven et al. (2008[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1437.], 2010[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o107-o108.], 2013[Özel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o184.]); Peeters et al. (1979[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461-2464.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18Cl2N2O

  • Mr = 397.28

  • Monoclinic, P 21 /n

  • a = 15.2399 (4) Å

  • b = 5.3814 (3) Å

  • c = 23.0461 (6) Å

  • β = 90.871 (3)°

  • V = 1889.84 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.918, Tmax = 0.948

  • 18118 measured reflections

  • 4737 independent reflections

  • 3685 reflections with I > 2σ(I)

  • Rint = 0.038

  • 3 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.08

  • 4737 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg3i 0.93 2.91 3.591 (2) 131
C11—H11⋯Cg2i 0.93 2.87 3.616 (2) 138
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The azole antifungals possesing an imidazole ring such as miconazole and econazole have been developed for clinical uses (Godefroi et al., 1969). Some indazole derivatives have been known as antifungal also (Lebouvier et al., 2007; Park et al., 2007). The crystal structure of indazole group containing ketone has been reported recently (Özel Güven et al., 2013). The crystal structures of imidazole ring containg ethers like miconazole (Peeters et al., 1979) and econazole (Freer et al., 1986) have been reported before. The crystal structures of benzimidazole ring containing ether (Özel Güven et al., 2008) and 1,2,4-triazole ring containg ether have been reported previously (Özel Güven et al., 2010). Now, we report herein the crystal structure of the title indazole derivative, (I).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The indazole [B (N1/N2/(C9—C15)] ring system is approximately planar with a maximum deviation of -0.031 (2)Å (for atom C12). Its mean plane is oriented with respect to the phenyl [A (C2—C7)] and benzene [ C (C17—C22)] rings at dihedral angles of A/B = 3.17 (4) and B/C = 19.34 (4) °. The dihedral angle between phenyl and benzene rings is A/C = 17.20 (5)°. Atom C8 is 0.016 (2) Å away from the indazole ring plane, while atoms C1 and O1 are -0.026 (2) and 0.599 (1) Å away from the phenyl ring plane. On the other hand, atoms Cl1, Cl2 and C16 are at distances of -0.0258 (5), -0.0693 (5) and -0.074 (2) Å to the benzene ring plane.

In the crystal structure, weak C—H···π interactions (Table 1) may be effective in the stabilization of the structure.

Related literature top

For clinical uses of the azole antifungals possesing an imidazole ring such as micozanole and econazole, see: Godefroi et al. (1969). For indazole derivatives known as antifungal, see: Lebouvier et al. (2007); Park et al. (2007). For related structures, see: Freer et al. (1986); Özel Güven et al. (2008, 2010, 2013); Peeters et al. (1979).

Experimental top

The title compound, (I), was synthesized by the reaction of 1-phenyl-2-(2H-indazol-2-yl)ethanol with NaH and appropriate benzyl halide. NaH (0.025 g, 0.63 mmol) was added in small fractions to a solution of alcohol (0.150 g, 0.63 mmol) in DMF (3-4 ml). Then, appropriate benzyl halide (0.151 g, 0.63 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and the excess hydride was decomposed with a small amount of methyl alcohol. After evaporation to dryness under reduced pressure, small amount of water was added and extracted with methylene chloride. The organic layer was separated, dried over anhydrous sodium sulfate, and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using hexane-ethyl acetate mixture (10:1) as eluent. The ether was recrystallized from 2-propanol to obtain colourless crystals suitable for X-ray analysis (yield; 0.178 g, 71%).

Refinement top

Atom H9 (for C9) was located in a difference Fourier map and was refined freely. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.98 Å for aromatic, methylene and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound [H-atoms have been omitted for clarity].
2-[2-(2,6-Dichlorobenzyloxy)-2-phenylethyl]-2H-indazole top
Crystal data top
C22H18Cl2N2OF(000) = 824
Mr = 397.28Dx = 1.396 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14300 reflections
a = 15.2399 (4) Åθ = 3.2–28.7°
b = 5.3814 (3) ŵ = 0.36 mm1
c = 23.0461 (6) ÅT = 294 K
β = 90.871 (3)°Block, colorless
V = 1889.84 (13) Å30.35 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
3685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 28.7°, θmin = 3.2°
ω scansh = 1820
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 75
Tmin = 0.918, Tmax = 0.948l = 3030
18118 measured reflections3 standard reflections every 120 min
4737 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0441P)2 + 1.2113P]
where P = (Fo2 + 2Fc2)/3
4737 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C22H18Cl2N2OV = 1889.84 (13) Å3
Mr = 397.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.2399 (4) ŵ = 0.36 mm1
b = 5.3814 (3) ÅT = 294 K
c = 23.0461 (6) Å0.35 × 0.20 × 0.15 mm
β = 90.871 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
3685 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Rint = 0.038
Tmin = 0.918, Tmax = 0.9483 standard reflections every 120 min
18118 measured reflections intensity decay: 1%
4737 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.90 e Å3
4737 reflectionsΔρmin = 0.39 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58707 (3)0.36179 (10)0.038690 (19)0.03077 (13)
Cl20.59584 (3)0.32700 (10)0.21081 (2)0.03171 (14)
O10.45045 (7)0.0767 (2)0.14650 (5)0.0203 (3)
N10.37932 (9)0.0888 (3)0.25917 (6)0.0175 (3)
N20.36785 (9)0.1165 (3)0.29187 (6)0.0192 (3)
C10.36816 (10)0.0354 (3)0.15680 (7)0.0180 (3)
H10.37770.20660.16990.022*
C20.30805 (10)0.0383 (3)0.10389 (7)0.0173 (3)
C30.24565 (11)0.2256 (4)0.09721 (7)0.0204 (4)
H30.24190.35050.12500.024*
C40.18898 (11)0.2275 (4)0.04948 (8)0.0226 (4)
H40.14730.35270.04540.027*
C50.19463 (11)0.0432 (4)0.00800 (7)0.0230 (4)
H50.15700.04480.02410.028*
C60.25637 (11)0.1439 (4)0.01424 (8)0.0236 (4)
H60.26000.26820.01370.028*
C70.31302 (11)0.1467 (4)0.06211 (7)0.0214 (4)
H70.35440.27290.06610.026*
C80.32805 (11)0.1131 (4)0.20580 (7)0.0208 (4)
H8A0.32500.28690.19480.025*
H8B0.26870.05510.21230.025*
C90.44260 (11)0.2432 (4)0.27907 (8)0.0213 (4)
H90.4532 (13)0.394 (4)0.2614 (9)0.026 (5)*
C100.42719 (10)0.0863 (3)0.33553 (7)0.0172 (3)
C110.44000 (11)0.2431 (4)0.38429 (7)0.0225 (4)
H110.40760.38810.38870.027*
C120.50195 (12)0.1731 (4)0.42472 (8)0.0249 (4)
H120.51110.27190.45740.030*
C130.55255 (11)0.0458 (4)0.41821 (8)0.0248 (4)
H130.59460.08560.44640.030*
C140.54104 (11)0.1992 (4)0.37171 (8)0.0241 (4)
H140.57470.34220.36780.029*
C150.47645 (10)0.1351 (3)0.32951 (7)0.0190 (4)
C160.50628 (10)0.0652 (4)0.10963 (7)0.0220 (4)
H16A0.49260.03200.06910.026*
H16B0.49920.24160.11680.026*
C170.59832 (10)0.0160 (4)0.12443 (7)0.0200 (4)
C180.64021 (11)0.2102 (4)0.09629 (7)0.0225 (4)
C190.72309 (12)0.2942 (4)0.11220 (8)0.0256 (4)
H190.74880.42520.09240.031*
C200.76702 (12)0.1802 (4)0.15798 (8)0.0254 (4)
H200.82290.23400.16880.031*
C210.72823 (11)0.0131 (4)0.18762 (7)0.0242 (4)
H210.75770.09020.21830.029*
C220.64479 (11)0.0904 (4)0.17093 (7)0.0223 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0290 (2)0.0384 (3)0.0247 (2)0.0036 (2)0.00486 (17)0.0070 (2)
Cl20.0240 (2)0.0412 (3)0.0298 (2)0.0085 (2)0.00291 (17)0.0100 (2)
O10.0146 (5)0.0249 (7)0.0213 (6)0.0006 (5)0.0014 (4)0.0040 (5)
N10.0169 (6)0.0201 (8)0.0155 (6)0.0005 (6)0.0000 (5)0.0019 (6)
N20.0184 (7)0.0199 (8)0.0194 (7)0.0031 (6)0.0007 (5)0.0021 (6)
C10.0146 (7)0.0193 (10)0.0199 (8)0.0005 (6)0.0013 (6)0.0025 (7)
C20.0137 (7)0.0183 (9)0.0197 (8)0.0026 (6)0.0004 (6)0.0009 (7)
C30.0205 (8)0.0187 (10)0.0219 (8)0.0004 (7)0.0004 (6)0.0021 (7)
C40.0195 (8)0.0207 (10)0.0275 (9)0.0021 (7)0.0029 (7)0.0043 (7)
C50.0192 (8)0.0304 (11)0.0194 (8)0.0035 (7)0.0043 (6)0.0034 (7)
C60.0243 (9)0.0246 (11)0.0219 (8)0.0022 (7)0.0023 (7)0.0050 (7)
C70.0178 (8)0.0215 (10)0.0248 (8)0.0024 (7)0.0023 (6)0.0031 (7)
C80.0160 (8)0.0290 (11)0.0173 (7)0.0038 (7)0.0023 (6)0.0020 (7)
C90.0212 (8)0.0183 (10)0.0243 (8)0.0034 (7)0.0013 (7)0.0027 (7)
C100.0159 (7)0.0182 (9)0.0175 (7)0.0002 (6)0.0004 (6)0.0014 (6)
C110.0251 (9)0.0205 (10)0.0218 (8)0.0013 (7)0.0002 (7)0.0026 (7)
C120.0267 (9)0.0268 (11)0.0209 (8)0.0081 (8)0.0027 (7)0.0012 (7)
C130.0195 (8)0.0304 (11)0.0243 (8)0.0051 (7)0.0067 (7)0.0070 (8)
C140.0189 (8)0.0230 (11)0.0303 (9)0.0029 (7)0.0020 (7)0.0051 (8)
C150.0166 (7)0.0195 (10)0.0210 (8)0.0008 (7)0.0023 (6)0.0011 (7)
C160.0166 (8)0.0303 (11)0.0192 (8)0.0020 (7)0.0005 (6)0.0058 (7)
C170.0164 (8)0.0269 (11)0.0167 (7)0.0030 (7)0.0011 (6)0.0063 (7)
C180.0212 (8)0.0300 (11)0.0162 (7)0.0047 (7)0.0002 (6)0.0012 (7)
C190.0241 (9)0.0298 (12)0.0230 (8)0.0021 (8)0.0028 (7)0.0028 (8)
C200.0194 (8)0.0341 (12)0.0226 (8)0.0024 (8)0.0020 (7)0.0010 (8)
C210.0194 (8)0.0336 (12)0.0195 (8)0.0005 (7)0.0035 (6)0.0011 (8)
C220.0186 (8)0.0297 (11)0.0188 (8)0.0005 (7)0.0007 (6)0.0009 (7)
Geometric parameters (Å, º) top
Cl1—C181.7467 (18)C9—H90.92 (2)
Cl2—C221.7446 (19)C10—C111.417 (2)
O1—C11.4150 (19)C11—C121.369 (2)
O1—C161.432 (2)C11—H110.9300
N1—N21.350 (2)C12—H120.9300
N1—C81.453 (2)C13—C121.417 (3)
N1—C91.348 (2)C13—C141.362 (3)
N2—C101.352 (2)C13—H130.9300
C1—C21.514 (2)C14—H140.9300
C1—C81.519 (2)C15—C91.392 (2)
C1—H10.9800C15—C101.416 (2)
C2—C71.388 (2)C15—C141.416 (2)
C3—C21.393 (2)C16—H16A0.9700
C3—C41.388 (2)C16—H16B0.9700
C3—H30.9300C17—C161.503 (2)
C4—H40.9300C17—C181.390 (3)
C5—C41.381 (3)C17—C221.398 (2)
C5—C61.384 (3)C18—C191.386 (3)
C5—H50.9300C19—H190.9300
C6—C71.391 (2)C20—C191.384 (3)
C6—H60.9300C20—H200.9300
C7—H70.9300C21—C201.382 (3)
C8—H8A0.9700C21—C221.387 (2)
C8—H8B0.9700C21—H210.9300
C1—O1—C16114.10 (14)C15—C10—C11120.81 (16)
N2—N1—C8118.27 (14)C10—C11—H11121.3
C9—N1—N2114.35 (14)C12—C11—C10117.45 (18)
C9—N1—C8127.25 (15)C12—C11—H11121.3
N1—N2—C10103.07 (14)C11—C12—C13121.84 (17)
O1—C1—C2113.34 (13)C11—C12—H12119.1
O1—C1—C8105.53 (14)C13—C12—H12119.1
O1—C1—H1108.9C12—C13—H13119.2
C2—C1—C8111.02 (13)C14—C13—C12121.56 (17)
C2—C1—H1108.9C14—C13—H13119.2
C8—C1—H1108.9C13—C14—C15118.20 (18)
C3—C2—C1120.00 (15)C13—C14—H14120.9
C7—C2—C1120.84 (15)C15—C14—H14120.9
C7—C2—C3119.15 (15)C9—C15—C10104.07 (15)
C2—C3—H3119.7C9—C15—C14135.79 (18)
C4—C3—C2120.55 (17)C14—C15—C10120.12 (16)
C4—C3—H3119.7O1—C16—C17105.74 (14)
C3—C4—H4120.0O1—C16—H16A110.6
C5—C4—C3119.91 (17)O1—C16—H16B110.6
C5—C4—H4120.0C17—C16—H16A110.6
C4—C5—C6120.00 (16)C17—C16—H16B110.6
C4—C5—H5120.0H16A—C16—H16B108.7
C6—C5—H5120.0C18—C17—C16123.10 (16)
C5—C6—C7120.22 (17)C18—C17—C22115.75 (15)
C5—C6—H6119.9C22—C17—C16120.99 (17)
C7—C6—H6119.9C17—C18—Cl1119.65 (13)
C2—C7—C6120.18 (17)C19—C18—Cl1117.32 (15)
C2—C7—H7119.9C19—C18—C17123.03 (16)
C6—C7—H7119.9C18—C19—H19120.5
N1—C8—C1111.38 (13)C20—C19—C18119.05 (18)
N1—C8—H8A109.4C20—C19—H19120.5
N1—C8—H8B109.4C19—C20—H20119.8
C1—C8—H8A109.4C21—C20—C19120.30 (17)
C1—C8—H8B109.4C21—C20—H20119.8
H8A—C8—H8B108.0C20—C21—C22119.08 (17)
N1—C9—C15106.30 (16)C20—C21—H21120.5
N1—C9—H9121.4 (13)C22—C21—H21120.5
C15—C9—H9132.1 (13)C17—C22—Cl2119.14 (13)
N2—C10—C11126.94 (17)C21—C22—Cl2118.07 (14)
N2—C10—C15112.20 (15)C21—C22—C17122.78 (18)
C16—O1—C1—C269.95 (19)C10—C11—C12—C130.8 (3)
C16—O1—C1—C8168.36 (13)C14—C13—C12—C111.0 (3)
C1—O1—C16—C17155.79 (14)C12—C13—C14—C150.2 (3)
C8—N1—N2—C10177.04 (14)C10—C15—C9—N10.20 (18)
C9—N1—N2—C100.86 (18)C14—C15—C9—N1178.25 (19)
N2—N1—C8—C180.77 (18)C9—C15—C10—N20.76 (19)
C9—N1—C8—C194.9 (2)C9—C15—C10—C11176.80 (16)
N2—N1—C9—C150.4 (2)C14—C15—C10—N2179.19 (15)
C8—N1—C9—C15176.19 (15)C14—C15—C10—C111.6 (2)
N1—N2—C10—C11176.40 (16)C9—C15—C14—C13176.39 (19)
N1—N2—C10—C150.98 (18)C10—C15—C14—C131.4 (3)
O1—C1—C2—C3151.29 (16)C18—C17—C16—O190.65 (19)
O1—C1—C2—C729.9 (2)C22—C17—C16—O184.6 (2)
C8—C1—C2—C390.1 (2)C16—C17—C18—Cl13.0 (2)
C8—C1—C2—C788.65 (19)C16—C17—C18—C19176.14 (17)
O1—C1—C8—N164.67 (18)C22—C17—C18—Cl1178.45 (13)
C2—C1—C8—N1172.15 (15)C22—C17—C18—C190.7 (3)
C1—C2—C7—C6178.90 (16)C16—C17—C22—Cl21.9 (2)
C3—C2—C7—C60.1 (3)C16—C17—C22—C21177.02 (17)
C4—C3—C2—C1178.70 (15)C18—C17—C22—Cl2177.45 (13)
C4—C3—C2—C70.1 (3)C18—C17—C22—C211.4 (3)
C2—C3—C4—C50.4 (3)Cl1—C18—C19—C20179.44 (15)
C6—C5—C4—C30.4 (3)C17—C18—C19—C200.3 (3)
C4—C5—C6—C70.2 (3)C21—C20—C19—C180.6 (3)
C5—C6—C7—C20.1 (3)C22—C21—C20—C190.2 (3)
N2—C10—C11—C12177.68 (17)C20—C21—C22—Cl2177.68 (15)
C15—C10—C11—C120.5 (2)C20—C21—C22—C171.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.913.591 (2)131
C11—H11···Cg2i0.932.873.616 (2)138
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.913.591 (2)131
C11—H11···Cg2i0.932.873.616 (2)138
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2012-10-03-12).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGodefroi, E. F., Heeres, J., van Custem, J. & Janssen, P. A. (1969). J. Med. Chem. 12, 784–791.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLebouvier, N., Pagniez, F., Duflos, M., Le Pape, P., Na, Y. M., Le Baut, G. & Le Borgne, M. (2007). Bioorg. & Med. Chem. Lett. 17, 3686–3689.  Web of Science CrossRef CAS Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o107–o108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o184.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, J. S., Yu, K. A., Kang, T. H., Kim, S. & Suh, Y. G. (2007). Bioorg. & Med. Chem. Lett. 17, 3486–3490.  Web of Science CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds