organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o442-o443

9-(2-Chloro­phen­yl)-4a-hy­dr­oxy-3,4,4a,5,6,7,9,9a-octa­hydro-2H-xanthene-1,8-dione

aJiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: wangfmzj@just.edu.cn

(Received 2 March 2014; accepted 7 March 2014; online 15 March 2014)

In the title compound, C19H19ClO4, the di­hydro­pyran ring and the cyclo­hexane ring adopt a half-chair conformation and a chair conformation, respectively. The cyclo­hexene ring has an envelope conformation with the central CH2 C atom as the flap. This atom is disordered over two positions [site-occupancy ratio = 0.744 (12):0.256 (12)] above and below the mean plane formed by the other five atoms. In the crystal, O—H⋯O hydrogen bonds between hy­droxy and carbonyl groups link mol­ecules into chains propagating along [001].

Related literature

For the background, synthesis and activities of xanthenes, see: Knight & Stephens (1989[Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-689.]); Srividya et al. (1996[Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083-5089.]); Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent No. 6 583 168.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]); Mehdi et al. (2011[Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719-o1720.]); Altieri et al.(2013[Altieri, A., Alvino, A. & Ohnmacht, S. (2013). Molecules, 11, 13446-13470.]). For related structures, see: Hua et al. (2006[Hua, G., Xu, J., Jiang, B., Zhang, Y. & Tu, S. (2006). Acta Cryst. E62, o332-o333.]); Yang et al. (2011[Yang, Y., Lu, W., Lian, C. & Zhu, Y. (2011). Acta Cryst. E67, o2386.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19ClO4

  • Mr = 346.79

  • Monoclinic, P 21 /c

  • a = 15.3099 (13) Å

  • b = 9.2815 (8) Å

  • c = 12.3216 (11) Å

  • β = 110.716 (1)°

  • V = 1637.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 291 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.94, Tmax = 0.96

  • 12319 measured reflections

  • 3207 independent reflections

  • 2208 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.137

  • S = 1.00

  • 3207 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2i 0.82 2.00 2.784 (2) 161
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Introduction top

Xanthenes and its derivatives are an important class of organic compounds with biological and pharmacological activity, such as anti­tumoral, fungicidal, anti-inflammatory, bactericidal properties, and so on. (Knight & Stephens, 1989; Srividya et al., 1996; Menchen et al., 2003; Reddy et al., 2009; Mehdi et al., 2011). In addition, xanthene derivatives are essential synthetic inter­mediates in heterocyclic compounds synthesis (Altieri et al., 2013).

In the main structure of this compound (Figure 1), there exist central di­hydro­pyran ring (O1/C5/C6/C7/C8/C13) adopts a half-chair conformations while the cyclo­hexane ring adopts a chair conformation. The cyclo­hexene ring displays an approximate envelope conformation, and in the crystal this ring is disordered over two positions in an occupancy ratio of 0.744 (12):0.256 (12) with the flap atom located on the opposite sides of the mean plane formed by other five atoms. The bond lengths and angles are comparable to those in a related structure (Hua et al., 2006; Yang et al., 2011). The crystal packing is stabilized by inter­molecular O—H···O hydrogen bond between hydroxyl and carbonyl groups, which links the molecules into supra­molecular chains running along the c-axis direction.

Experimental top

1H NMR (400 MHz, DMSO-d6) δ: 7.11-7.31 (m, 4H), 6.93(s, 1H), 4.63(s, 1H), 3.06(s, 1H), 2.39(m, 3H), 2.21(m, 4H), 2.02(m, 2H), 1.85(m, 2H),1.58(m, 1H); IR (KBr pellet): 3442(br), 2962(m), 1711(m), 1640(m), 1609(s), 1389(s), 1079(s) ,773(m); MS (ESI) m/z : 347.1 (M—H+).

Synthesis and crystallization top

To a 100 mL flask, there were added 1,3-cyclo­hexane­dione (4.5 g, 40mmol) and 2-chloro-benzaldehyde (2.8 g, 20mmol)in 40mL methanol, using L-proline (0.5 g) as the catalyst. The mixture were stirred at room temperature for 8h. The white precipitate was vacuum filtered and washed with methanol. And Then dried under vacuum to yield the white solid (6.1 g, 88% yield).

Single crystals of the title compound suitable for X-ray structure determination were obtained by slow evaporation from mixture solution of anhydrous ethanol and di­chloro­methane (v: v = 1:1) at room temperature to yield colorless, block-shaped crystal.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyl­ene), 0.98 Å (methine), 0.93 Å (phenyl), O–H = 0.82 Å (hy­droxy), with individual displacement parameters as Uiso(H) = 1.2Ueq (C) or 1.2Ueq (O) .

Related literature top

For the background, synthesis and activities of xanthenes, see: Knight & Stephens (1989); Srividya et al. (1996); Menchen et al. (2003); Reddy et al. (2009); Mehdi et al. (2011); Altieri et al.(2013). For related structures, see: Hua et al. (2006); Yang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of title compound as viewed along b axis (dotted lines are H-bonds)
9-(2-Chlorophenyl)-4a-hydroxy-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione top
Crystal data top
C19H19ClO4F(000) = 728
Mr = 346.79Dx = 1.406 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2557 reflections
a = 15.3099 (13) Åθ = 2.6–22.6°
b = 9.2815 (8) ŵ = 0.25 mm1
c = 12.3216 (11) ÅT = 291 K
β = 110.716 (1)°Block, colorless
V = 1637.7 (2) Å30.25 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3207 independent reflections
Radiation source: sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.94, Tmax = 0.96k = 1111
12319 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0852P)2]
where P = (Fo2 + 2Fc2)/3
3207 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H19ClO4V = 1637.7 (2) Å3
Mr = 346.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3099 (13) ŵ = 0.25 mm1
b = 9.2815 (8) ÅT = 291 K
c = 12.3216 (11) Å0.25 × 0.23 × 0.18 mm
β = 110.716 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3207 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2208 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.96Rint = 0.037
12319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
3207 reflectionsΔρmin = 0.24 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.36292 (16)0.6212 (3)0.22858 (19)0.0374 (5)
C20.4586 (2)0.5704 (3)0.3045 (3)0.0679 (9)
H2A0.45190.50380.36180.082*
H2B0.48650.51780.25690.082*
C30.5220 (3)0.6854 (6)0.3646 (6)0.0557 (18)0.744 (12)
H3A0.54050.73630.30750.067*0.744 (12)
H3B0.57780.64410.42110.067*0.744 (12)
C3'0.4986 (10)0.6331 (16)0.4163 (11)0.048 (4)0.256 (12)
H3'A0.56490.62400.43620.058*0.256 (12)
H3'B0.48200.58080.47330.058*0.256 (12)
C40.48086 (16)0.7929 (3)0.4227 (2)0.0474 (7)
H4A0.51850.87980.43800.057*
H4B0.48260.75430.49660.057*
C50.38240 (15)0.8304 (2)0.35106 (17)0.0325 (5)
C60.32588 (14)0.7506 (2)0.26163 (17)0.0304 (5)
C70.22743 (14)0.7965 (2)0.19183 (17)0.0294 (5)
H7A0.22240.79500.11030.035*
C80.21218 (14)0.9542 (2)0.21988 (16)0.0287 (5)
H8A0.14470.96770.19860.034*
C90.24489 (16)1.0626 (3)0.14999 (18)0.0368 (5)
C100.2394 (2)1.2177 (3)0.1799 (2)0.0475 (6)
H10A0.17451.24560.15910.057*
H10B0.26711.27690.13570.057*
C110.29051 (17)1.2435 (3)0.3093 (2)0.0408 (6)
H11A0.35681.22650.32840.049*
H11B0.28221.34290.32780.049*
C120.25337 (16)1.1442 (3)0.38055 (19)0.0374 (6)
H12A0.28981.15780.46210.045*
H12B0.18931.17050.36850.045*
C130.25672 (14)0.9869 (2)0.35002 (17)0.0296 (5)
C140.15332 (15)0.6935 (2)0.20126 (18)0.0308 (5)
C150.06507 (16)0.6870 (2)0.11488 (19)0.0364 (5)
C160.00219 (17)0.5888 (3)0.1178 (2)0.0461 (6)
H16A0.06010.58660.05820.055*
C170.01752 (18)0.4942 (3)0.2097 (2)0.0491 (7)
H17A0.02680.42680.21190.059*
C180.10288 (18)0.5000 (3)0.2982 (2)0.0450 (6)
H18A0.11570.43780.36110.054*
C190.17003 (16)0.5983 (2)0.29409 (19)0.0364 (5)
H19A0.22750.60070.35450.044*
Cl10.03711 (4)0.80536 (8)0.00262 (5)0.0547 (2)
O10.35645 (10)0.95441 (16)0.38789 (12)0.0361 (4)
O20.31864 (12)0.55190 (18)0.14146 (13)0.0472 (5)
O30.27329 (14)1.0251 (2)0.07442 (15)0.0588 (5)
O40.21588 (11)0.89704 (16)0.40837 (12)0.0387 (4)
H4O0.24960.89200.47690.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (13)0.0346 (13)0.0383 (12)0.0004 (10)0.0139 (10)0.0021 (10)
C20.0515 (18)0.0584 (19)0.078 (2)0.0237 (15)0.0032 (15)0.0164 (16)
C30.028 (2)0.049 (3)0.082 (4)0.0068 (18)0.009 (2)0.012 (3)
C3'0.036 (7)0.058 (8)0.040 (6)0.010 (6)0.001 (5)0.010 (5)
C40.0312 (13)0.0437 (16)0.0537 (14)0.0042 (11)0.0020 (11)0.0068 (12)
C50.0302 (12)0.0337 (13)0.0322 (11)0.0010 (10)0.0093 (9)0.0022 (9)
C60.0281 (11)0.0311 (12)0.0308 (10)0.0014 (9)0.0089 (9)0.0009 (9)
C70.0275 (11)0.0328 (12)0.0254 (10)0.0014 (9)0.0064 (8)0.0030 (8)
C80.0258 (11)0.0289 (11)0.0292 (10)0.0023 (9)0.0070 (8)0.0001 (9)
C90.0373 (13)0.0400 (14)0.0280 (11)0.0077 (10)0.0052 (9)0.0007 (9)
C100.0578 (16)0.0362 (14)0.0457 (14)0.0037 (12)0.0149 (12)0.0069 (11)
C110.0434 (14)0.0301 (13)0.0463 (13)0.0036 (11)0.0129 (11)0.0038 (10)
C120.0381 (13)0.0355 (13)0.0388 (12)0.0011 (10)0.0138 (10)0.0054 (10)
C130.0281 (11)0.0308 (12)0.0298 (10)0.0006 (9)0.0101 (9)0.0010 (9)
C140.0290 (11)0.0291 (12)0.0334 (10)0.0005 (9)0.0098 (9)0.0080 (9)
C150.0334 (12)0.0380 (14)0.0353 (11)0.0004 (10)0.0092 (9)0.0054 (10)
C160.0298 (13)0.0542 (17)0.0524 (14)0.0094 (12)0.0123 (11)0.0158 (13)
C170.0439 (15)0.0463 (16)0.0654 (17)0.0161 (12)0.0298 (13)0.0139 (13)
C180.0543 (16)0.0380 (15)0.0505 (14)0.0036 (12)0.0281 (12)0.0005 (11)
C190.0358 (12)0.0347 (13)0.0381 (12)0.0038 (10)0.0122 (10)0.0025 (10)
Cl10.0444 (4)0.0587 (5)0.0442 (4)0.0027 (3)0.0052 (3)0.0053 (3)
O10.0286 (8)0.0362 (9)0.0366 (8)0.0016 (7)0.0031 (6)0.0094 (7)
O20.0585 (11)0.0397 (10)0.0387 (9)0.0032 (8)0.0114 (8)0.0113 (8)
O30.0818 (14)0.0590 (12)0.0456 (10)0.0228 (11)0.0348 (10)0.0083 (9)
O40.0442 (9)0.0397 (10)0.0322 (8)0.0043 (8)0.0136 (7)0.0019 (7)
Geometric parameters (Å, º) top
C1—O21.229 (3)C8—H8A0.9800
C1—C61.447 (3)C9—O31.210 (3)
C1—C21.509 (3)C9—C101.495 (3)
C2—C3'1.419 (11)C10—C111.526 (3)
C2—C31.456 (5)C10—H10A0.9700
C2—H2A0.9700C10—H10B0.9700
C2—H2B0.9700C11—C121.515 (3)
C3—C41.490 (5)C11—H11A0.9700
C3—H3A0.9700C11—H11B0.9700
C3—H3B0.9700C12—C131.513 (3)
C3—H3'A1.0608C12—H12A0.9700
C3'—C41.514 (13)C12—H12B0.9700
C3'—H3B1.1976C13—O41.386 (2)
C3'—H3'A0.9601C13—O11.461 (2)
C3'—H3'B0.9599C14—C151.395 (3)
C4—C51.494 (3)C14—C191.396 (3)
C4—H4A0.9700C15—C161.385 (3)
C4—H4B0.9700C15—Cl11.746 (2)
C5—O11.348 (3)C16—C171.380 (4)
C5—C61.355 (3)C16—H16A0.9300
C6—C71.509 (3)C17—C181.375 (4)
C7—C141.519 (3)C17—H17A0.9300
C7—C81.541 (3)C18—C191.389 (3)
C7—H7A0.9800C18—H18A0.9300
C8—C91.520 (3)C19—H19A0.9300
C8—C131.535 (3)O4—H4O0.8200
O2—C1—C6122.0 (2)C8—C7—H7A106.3
O2—C1—C2119.5 (2)C9—C8—C13110.33 (17)
C6—C1—C2118.4 (2)C9—C8—C7113.29 (17)
C3'—C2—C339.2 (6)C13—C8—C7112.07 (17)
C3'—C2—C1117.7 (5)C9—C8—H8A106.9
C3—C2—C1114.3 (3)C13—C8—H8A106.9
C3'—C2—H2A71.1C7—C8—H8A106.9
C3—C2—H2A108.7O3—C9—C10122.2 (2)
C1—C2—H2A108.7O3—C9—C8121.7 (2)
C3'—C2—H2B131.5C10—C9—C8116.0 (2)
C3—C2—H2B108.7C9—C10—C11110.9 (2)
C1—C2—H2B108.7C9—C10—H10A109.5
H2A—C2—H2B107.6C11—C10—H10A109.5
C2—C3—C4114.6 (4)C9—C10—H10B109.5
C2—C3—H3A107.5C11—C10—H10B109.5
C4—C3—H3A107.7H10A—C10—H10B108.1
C2—C3—H3B109.5C12—C11—C10110.56 (19)
C4—C3—H3B109.6C12—C11—H11A109.5
H3A—C3—H3B107.6C10—C11—H11A109.5
C2—C3—H3'A97.7C12—C11—H11B109.5
C4—C3—H3'A101.8C10—C11—H11B109.5
H3A—C3—H3'A127.7H11A—C11—H11B108.1
H3B—C3—H3'A20.2C13—C12—C11112.95 (18)
C2—C3'—C4115.4 (8)C13—C12—H12A109.0
C2—C3'—H3B99.5C11—C12—H12A109.0
C4—C3'—H3B96.4C13—C12—H12B109.0
C2—C3'—H3'A105.4C11—C12—H12B109.0
C4—C3'—H3'A105.5H12A—C12—H12B107.8
H3B—C3'—H3'A15.0O4—C13—O1108.80 (16)
C2—C3'—H3'B111.6O4—C13—C12112.99 (17)
C4—C3'—H3'B111.0O1—C13—C12104.07 (16)
H3B—C3'—H3'B122.2O4—C13—C8107.92 (16)
H3'A—C3'—H3'B107.3O1—C13—C8108.71 (16)
C3—C4—C5112.5 (2)C12—C13—C8114.14 (18)
C3—C4—C3'37.4 (5)C15—C14—C19116.4 (2)
C5—C4—C3'111.1 (5)C15—C14—C7121.16 (19)
C3—C4—H4A109.1C19—C14—C7122.39 (19)
C5—C4—H4A109.1C16—C15—C14122.5 (2)
C3'—C4—H4A136.0C16—C15—Cl1117.97 (18)
C3—C4—H4B109.1C14—C15—Cl1119.50 (17)
C5—C4—H4B109.1C17—C16—C15119.4 (2)
C3'—C4—H4B75.0C17—C16—H16A120.3
H4A—C4—H4B107.8C15—C16—H16A120.3
O1—C5—C6124.11 (19)C18—C17—C16119.8 (2)
O1—C5—C4110.88 (18)C18—C17—H17A120.1
C6—C5—C4125.0 (2)C16—C17—H17A120.1
C5—C6—C1118.8 (2)C17—C18—C19120.3 (2)
C5—C6—C7122.1 (2)C17—C18—H18A119.9
C1—C6—C7119.07 (18)C19—C18—H18A119.9
C6—C7—C14113.68 (17)C18—C19—C14121.5 (2)
C6—C7—C8109.90 (16)C18—C19—H19A119.2
C14—C7—C8113.82 (17)C14—C19—H19A119.2
C6—C7—H7A106.3C5—O1—C13117.90 (16)
C14—C7—H7A106.3C13—O4—H4O109.5
O2—C1—C2—C3'166.3 (10)C7—C8—C9—C10175.13 (18)
C6—C1—C2—C3'13.3 (10)O3—C9—C10—C11126.3 (2)
O2—C1—C2—C3150.0 (4)C8—C9—C10—C1153.9 (3)
C6—C1—C2—C330.3 (5)C9—C10—C11—C1255.0 (3)
C3'—C2—C3—C457.7 (7)C10—C11—C12—C1354.7 (3)
C1—C2—C3—C446.9 (7)C11—C12—C13—O4175.08 (17)
C3—C2—C3'—C456.8 (10)C11—C12—C13—O167.1 (2)
C1—C2—C3'—C438.5 (17)C11—C12—C13—C851.3 (2)
C2—C3—C4—C540.4 (7)C9—C8—C13—O4172.60 (17)
C2—C3—C4—C3'55.3 (7)C7—C8—C13—O460.2 (2)
C2—C3'—C4—C358.2 (10)C9—C8—C13—O169.5 (2)
C2—C3'—C4—C541.6 (15)C7—C8—C13—O157.7 (2)
C3—C4—C5—O1162.2 (4)C9—C8—C13—C1246.1 (2)
C3'—C4—C5—O1157.5 (8)C7—C8—C13—C12173.36 (17)
C3—C4—C5—C618.4 (5)C6—C7—C14—C15156.35 (19)
C3'—C4—C5—C622.0 (9)C8—C7—C14—C1576.8 (2)
O1—C5—C6—C1178.4 (2)C6—C7—C14—C1921.9 (3)
C4—C5—C6—C12.2 (3)C8—C7—C14—C19105.0 (2)
O1—C5—C6—C71.6 (3)C19—C14—C15—C162.0 (3)
C4—C5—C6—C7179.0 (2)C7—C14—C15—C16176.3 (2)
O2—C1—C6—C5172.6 (2)C19—C14—C15—Cl1178.38 (16)
C2—C1—C6—C57.7 (3)C7—C14—C15—Cl13.3 (3)
O2—C1—C6—C74.3 (3)C14—C15—C16—C170.7 (3)
C2—C1—C6—C7175.3 (2)Cl1—C15—C16—C17179.66 (19)
C5—C6—C7—C14116.6 (2)C15—C16—C17—C181.1 (4)
C1—C6—C7—C1466.6 (2)C16—C17—C18—C191.5 (4)
C5—C6—C7—C812.3 (3)C17—C18—C19—C140.1 (3)
C1—C6—C7—C8164.54 (18)C15—C14—C19—C181.6 (3)
C6—C7—C8—C984.2 (2)C7—C14—C19—C18176.7 (2)
C14—C7—C8—C9147.02 (17)C6—C5—O1—C1315.9 (3)
C6—C7—C8—C1341.5 (2)C4—C5—O1—C13163.57 (18)
C14—C7—C8—C1387.3 (2)O4—C13—O1—C572.7 (2)
C13—C8—C9—O3131.7 (2)C12—C13—O1—C5166.63 (17)
C7—C8—C9—O35.1 (3)C8—C13—O1—C544.6 (2)
C13—C8—C9—C1048.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.822.002.784 (2)161
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.822.002.784 (2)161
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

This work is supported by projects from the National Natural Science Foundation of China for Young Scholars (grant No. 21201087), the Natural Science Foundation of Jiangsu Provincial Department of Education (grant No. 11KJB150004), the Natural Science Foundation of Jiangsu Province of China (grant No. BK20131244, BK20130460) and The Starting-up Foundation of Jiangsu University of Science and Technology.

References

First citationAltieri, A., Alvino, A. & Ohnmacht, S. (2013). Molecules, 11, 13446–13470.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHua, G., Xu, J., Jiang, B., Zhang, Y. & Tu, S. (2006). Acta Cryst. E62, o332–o333.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKnight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–689.  CAS PubMed Web of Science Google Scholar
First citationMehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719–o1720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent No. 6 583 168.  Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089.  CrossRef CAS Web of Science Google Scholar
First citationYang, Y., Lu, W., Lian, C. & Zhu, Y. (2011). Acta Cryst. E67, o2386.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o442-o443
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds