organic compounds
(1S,3S,8R,9S,10R)-9,10-Epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane
aLaboratoire de Synthése Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences Semlalia, BP 2390 Marrakech 40000, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: aititto@uca.ma
The title compound, C16H26O, was synthesized by treating (1S,3S,8R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene with metachloroperbenzoic acid. The molecule is built up from two fused six- and seven-membered rings. The six-membered ring has a half-chair conformation, whereas the seven-membered ring displays a boat conformation. In the crystal, there are no significant intermolecular interactions present.
CCDC reference: 992783
Related literature
For the use of epoxydes in organic synthesis, see: Mori (1989); Paddon-Jones et al. (1997); Taylor et al. (1991). For their biological activity, see: Kupchan et al. (1989); Trost et al. (1983); Vollhardt & Schore (1996); Yang (2004). For structural discussion, see: Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Spek (2009); Boessenkool & Boyens (1980); Benharref et al. (2010). For the synthesis, see: Auhmani et al. (2001).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 992783
10.1107/S1600536814006230/xu5778sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814006230/xu5778Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814006230/xu5778Isup3.cml
In 100 mL flask containing (0.220 g, 1.009 mmol) of (1S,3S,8R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene in 20 ml of dichloromethane was added a stoechiometric quantity of m-chloroperbenzoic acid (m-CPBA). The reaction mixture was stirred at room temperature for 2 h and then treated with 10% solution of sodium hydrogencarbonate. The reaction mixture was extracted with dichloromethane (3x 20 mL) and the organic layer were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by
on silica gel (230–400 mesh) with Hexane/Ethyl acetate (97:3) as to give the title compound (1S,3S,8R,9S,10R)-9,10-epoxy-3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane in 72% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.All H atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.99 Å (methylene) and 1.00 Å (methine) In the absence of significant
the could not be reliably determined and any references to the were removed.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).Fig. 1. : Molecular view of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. |
C16H26O | F(000) = 260 |
Mr = 234.37 | Dx = 1.095 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1871 reflections |
a = 10.5563 (10) Å | θ = 3.9–26.5° |
b = 5.7548 (5) Å | µ = 0.07 mm−1 |
c = 11.7096 (13) Å | T = 180 K |
β = 92.777 (8)° | Box, colourless |
V = 710.52 (12) Å3 | 0.31 × 0.31 × 0.25 mm |
Z = 2 |
Agilent Xcalibur Eos Gemini ultra diffractometer | 2899 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2150 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 26.4°, θmin = 3.5° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −7→7 |
Tmin = 0.767, Tmax = 1.0 | l = −14→14 |
8241 measured reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0267P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2899 reflections | Δρmax = 0.14 e Å−3 |
158 parameters | Δρmin = −0.21 e Å−3 |
C16H26O | V = 710.52 (12) Å3 |
Mr = 234.37 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 10.5563 (10) Å | µ = 0.07 mm−1 |
b = 5.7548 (5) Å | T = 180 K |
c = 11.7096 (13) Å | 0.31 × 0.31 × 0.25 mm |
β = 92.777 (8)° |
Agilent Xcalibur Eos Gemini ultra diffractometer | 2899 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2150 reflections with I > 2σ(I) |
Tmin = 0.767, Tmax = 1.0 | Rint = 0.055 |
8241 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 1 restraint |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.14 e Å−3 |
2899 reflections | Δρmin = −0.21 e Å−3 |
158 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2747 (3) | 0.7760 (5) | 0.3324 (3) | 0.0241 (7) | |
C2 | 0.2251 (3) | 0.6047 (6) | 0.4168 (3) | 0.0334 (8) | |
H2A | 0.2213 | 0.4390 | 0.3941 | 0.040* | |
H2B | 0.2461 | 0.6322 | 0.4990 | 0.040* | |
C3 | 0.1336 (3) | 0.7699 (5) | 0.3563 (3) | 0.0276 (7) | |
C4 | 0.0457 (3) | 0.6751 (6) | 0.2618 (3) | 0.0392 (9) | |
H4A | −0.0380 | 0.6418 | 0.2929 | 0.047* | |
H4B | 0.0805 | 0.5271 | 0.2338 | 0.047* | |
C5 | 0.0281 (3) | 0.8450 (7) | 0.1615 (3) | 0.0493 (11) | |
H5A | −0.0017 | 0.7571 | 0.0927 | 0.059* | |
H5B | −0.0391 | 0.9578 | 0.1791 | 0.059* | |
C6 | 0.1479 (3) | 0.9792 (7) | 0.1341 (3) | 0.0429 (9) | |
H6A | 0.1271 | 1.0768 | 0.0661 | 0.051* | |
H6B | 0.1680 | 1.0860 | 0.1987 | 0.051* | |
C7 | 0.2684 (3) | 0.8433 (6) | 0.1112 (3) | 0.0335 (8) | |
C8 | 0.3116 (3) | 0.6867 (5) | 0.2160 (3) | 0.0265 (8) | |
H8 | 0.2675 | 0.5342 | 0.2043 | 0.032* | |
C9 | 0.4518 (3) | 0.6354 (5) | 0.2177 (3) | 0.0295 (8) | |
H9 | 0.4857 | 0.5925 | 0.1423 | 0.035* | |
C10 | 0.5427 (3) | 0.7440 (6) | 0.2993 (3) | 0.0289 (8) | |
C11 | 0.4987 (3) | 0.9110 (5) | 0.3879 (3) | 0.0296 (8) | |
H11A | 0.5481 | 1.0566 | 0.3826 | 0.036* | |
H11B | 0.5182 | 0.8436 | 0.4645 | 0.036* | |
C12 | 0.3575 (3) | 0.9715 (5) | 0.3781 (3) | 0.0274 (7) | |
H12A | 0.3296 | 1.0162 | 0.4546 | 0.033* | |
H12B | 0.3454 | 1.1078 | 0.3272 | 0.033* | |
C13 | 0.0746 (3) | 0.9619 (6) | 0.4244 (3) | 0.0381 (9) | |
H13A | 0.0582 | 1.0970 | 0.3750 | 0.057* | |
H13B | 0.1328 | 1.0060 | 0.4885 | 0.057* | |
H13C | −0.0054 | 0.9069 | 0.4539 | 0.057* | |
C14 | 0.2449 (4) | 0.6836 (8) | 0.0066 (3) | 0.0551 (11) | |
H14A | 0.1789 | 0.5702 | 0.0227 | 0.083* | |
H14B | 0.3235 | 0.6018 | −0.0094 | 0.083* | |
H14C | 0.2174 | 0.7774 | −0.0599 | 0.083* | |
C15 | 0.3718 (3) | 1.0198 (6) | 0.0830 (3) | 0.0460 (10) | |
H15A | 0.3407 | 1.1195 | 0.0198 | 0.069* | |
H15B | 0.4478 | 0.9367 | 0.0608 | 0.069* | |
H15C | 0.3928 | 1.1157 | 0.1505 | 0.069* | |
C16 | 0.6798 (3) | 0.7660 (7) | 0.2706 (3) | 0.0460 (10) | |
H16A | 0.7340 | 0.7499 | 0.3406 | 0.069* | |
H16B | 0.6939 | 0.9186 | 0.2363 | 0.069* | |
H16C | 0.7007 | 0.6438 | 0.2164 | 0.069* | |
O1 | 0.50267 (19) | 0.5041 (4) | 0.31494 (19) | 0.0350 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0183 (15) | 0.0264 (17) | 0.0278 (18) | −0.0012 (14) | 0.0043 (13) | −0.0014 (15) |
C2 | 0.0307 (19) | 0.0345 (19) | 0.035 (2) | 0.0008 (16) | 0.0051 (15) | 0.0065 (16) |
C3 | 0.0200 (16) | 0.0298 (18) | 0.0331 (19) | −0.0018 (15) | 0.0035 (14) | 0.0032 (16) |
C4 | 0.0207 (18) | 0.044 (2) | 0.053 (3) | −0.0058 (16) | 0.0012 (16) | −0.0024 (19) |
C5 | 0.032 (2) | 0.063 (3) | 0.051 (3) | 0.006 (2) | −0.0125 (18) | −0.001 (2) |
C6 | 0.039 (2) | 0.052 (2) | 0.036 (2) | 0.008 (2) | −0.0060 (16) | 0.012 (2) |
C7 | 0.036 (2) | 0.040 (2) | 0.0245 (19) | 0.0031 (17) | −0.0014 (15) | 0.0003 (16) |
C8 | 0.0259 (18) | 0.0267 (18) | 0.0267 (19) | −0.0016 (14) | 0.0000 (14) | −0.0050 (14) |
C9 | 0.0309 (19) | 0.0325 (19) | 0.0254 (19) | 0.0047 (16) | 0.0049 (14) | 0.0018 (16) |
C10 | 0.0229 (17) | 0.0339 (19) | 0.0299 (19) | 0.0008 (16) | 0.0008 (14) | 0.0046 (16) |
C11 | 0.0251 (17) | 0.034 (2) | 0.0295 (19) | −0.0038 (14) | −0.0014 (14) | −0.0024 (15) |
C12 | 0.0281 (18) | 0.0302 (17) | 0.0242 (18) | −0.0042 (16) | 0.0028 (13) | −0.0060 (15) |
C13 | 0.0273 (19) | 0.036 (2) | 0.052 (2) | 0.0061 (16) | 0.0123 (16) | −0.0024 (18) |
C14 | 0.065 (3) | 0.069 (3) | 0.030 (2) | 0.006 (2) | −0.0101 (19) | −0.010 (2) |
C15 | 0.055 (2) | 0.046 (2) | 0.037 (2) | 0.002 (2) | 0.0087 (17) | 0.0144 (18) |
C16 | 0.0251 (19) | 0.071 (3) | 0.043 (2) | 0.000 (2) | 0.0038 (16) | −0.001 (2) |
O1 | 0.0302 (13) | 0.0314 (12) | 0.0433 (15) | 0.0050 (12) | 0.0011 (10) | 0.0018 (12) |
C1—C12 | 1.507 (4) | C9—O1 | 1.448 (4) |
C1—C2 | 1.508 (4) | C9—C10 | 1.462 (4) |
C1—C8 | 1.525 (4) | C9—H9 | 1.0000 |
C1—C3 | 1.529 (4) | C10—O1 | 1.458 (4) |
C2—C3 | 1.507 (4) | C10—C11 | 1.504 (4) |
C2—H2A | 0.9900 | C10—C16 | 1.507 (4) |
C2—H2B | 0.9900 | C11—C12 | 1.530 (4) |
C3—C4 | 1.511 (5) | C11—H11A | 0.9900 |
C3—C13 | 1.514 (4) | C11—H11B | 0.9900 |
C4—C5 | 1.533 (5) | C12—H12A | 0.9900 |
C4—H4A | 0.9900 | C12—H12B | 0.9900 |
C4—H4B | 0.9900 | C13—H13A | 0.9800 |
C5—C6 | 1.529 (5) | C13—H13B | 0.9800 |
C5—H5A | 0.9900 | C13—H13C | 0.9800 |
C5—H5B | 0.9900 | C14—H14A | 0.9800 |
C6—C7 | 1.528 (4) | C14—H14B | 0.9800 |
C6—H6A | 0.9900 | C14—H14C | 0.9800 |
C6—H6B | 0.9900 | C15—H15A | 0.9800 |
C7—C15 | 1.538 (5) | C15—H15B | 0.9800 |
C7—C14 | 1.541 (5) | C15—H15C | 0.9800 |
C7—C8 | 1.573 (4) | C16—H16A | 0.9800 |
C8—C9 | 1.508 (4) | C16—H16B | 0.9800 |
C8—H8 | 1.0000 | C16—H16C | 0.9800 |
C12—C1—C2 | 118.0 (3) | O1—C9—C8 | 116.1 (2) |
C12—C1—C8 | 113.6 (2) | C10—C9—C8 | 122.5 (3) |
C2—C1—C8 | 118.5 (3) | O1—C9—H9 | 115.5 |
C12—C1—C3 | 120.4 (2) | C10—C9—H9 | 115.5 |
C2—C1—C3 | 59.52 (19) | C8—C9—H9 | 115.5 |
C8—C1—C3 | 116.7 (3) | O1—C10—C9 | 59.45 (19) |
C3—C2—C1 | 60.9 (2) | O1—C10—C11 | 114.7 (2) |
C3—C2—H2A | 117.7 | C9—C10—C11 | 120.6 (3) |
C1—C2—H2A | 117.7 | O1—C10—C16 | 113.3 (3) |
C3—C2—H2B | 117.7 | C9—C10—C16 | 119.9 (3) |
C1—C2—H2B | 117.7 | C11—C10—C16 | 115.6 (3) |
H2A—C2—H2B | 114.8 | C10—C11—C12 | 115.2 (3) |
C2—C3—C4 | 118.3 (3) | C10—C11—H11A | 108.5 |
C2—C3—C13 | 118.9 (3) | C12—C11—H11A | 108.5 |
C4—C3—C13 | 113.3 (3) | C10—C11—H11B | 108.5 |
C2—C3—C1 | 59.5 (2) | C12—C11—H11B | 108.5 |
C4—C3—C1 | 116.3 (3) | H11A—C11—H11B | 107.5 |
C13—C3—C1 | 120.6 (3) | C1—C12—C11 | 113.8 (2) |
C3—C4—C5 | 112.2 (3) | C1—C12—H12A | 108.8 |
C3—C4—H4A | 109.2 | C11—C12—H12A | 108.8 |
C5—C4—H4A | 109.2 | C1—C12—H12B | 108.8 |
C3—C4—H4B | 109.2 | C11—C12—H12B | 108.8 |
C5—C4—H4B | 109.2 | H12A—C12—H12B | 107.7 |
H4A—C4—H4B | 107.9 | C3—C13—H13A | 109.5 |
C6—C5—C4 | 114.3 (3) | C3—C13—H13B | 109.5 |
C6—C5—H5A | 108.7 | H13A—C13—H13B | 109.5 |
C4—C5—H5A | 108.7 | C3—C13—H13C | 109.5 |
C6—C5—H5B | 108.7 | H13A—C13—H13C | 109.5 |
C4—C5—H5B | 108.7 | H13B—C13—H13C | 109.5 |
H5A—C5—H5B | 107.6 | C7—C14—H14A | 109.5 |
C7—C6—C5 | 118.9 (3) | C7—C14—H14B | 109.5 |
C7—C6—H6A | 107.6 | H14A—C14—H14B | 109.5 |
C5—C6—H6A | 107.6 | C7—C14—H14C | 109.5 |
C7—C6—H6B | 107.6 | H14A—C14—H14C | 109.5 |
C5—C6—H6B | 107.6 | H14B—C14—H14C | 109.5 |
H6A—C6—H6B | 107.0 | C7—C15—H15A | 109.5 |
C6—C7—C15 | 107.8 (3) | C7—C15—H15B | 109.5 |
C6—C7—C14 | 110.0 (3) | H15A—C15—H15B | 109.5 |
C15—C7—C14 | 108.2 (3) | C7—C15—H15C | 109.5 |
C6—C7—C8 | 111.6 (3) | H15A—C15—H15C | 109.5 |
C15—C7—C8 | 111.3 (3) | H15B—C15—H15C | 109.5 |
C14—C7—C8 | 107.9 (3) | C10—C16—H16A | 109.5 |
C9—C8—C1 | 110.3 (3) | C10—C16—H16B | 109.5 |
C9—C8—C7 | 111.7 (2) | H16A—C16—H16B | 109.5 |
C1—C8—C7 | 115.3 (2) | C10—C16—H16C | 109.5 |
C9—C8—H8 | 106.3 | H16A—C16—H16C | 109.5 |
C1—C8—H8 | 106.3 | H16B—C16—H16C | 109.5 |
C7—C8—H8 | 106.3 | C9—O1—C10 | 60.41 (19) |
O1—C9—C10 | 60.14 (19) |
Experimental details
Crystal data | |
Chemical formula | C16H26O |
Mr | 234.37 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 180 |
a, b, c (Å) | 10.5563 (10), 5.7548 (5), 11.7096 (13) |
β (°) | 92.777 (8) |
V (Å3) | 710.52 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.31 × 0.31 × 0.25 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos Gemini ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.767, 1.0 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8241, 2899, 2150 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.105, 1.05 |
No. of reflections | 2899 |
No. of parameters | 158 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.21 |
Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2001). Acta Cryst. E57, o102–o103. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Benharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boessenkool, I. K. & Boyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18. CrossRef CAS Web of Science Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kupchan, S. M., Dessertine, A. L., Blaylock, B. T. & Bryan, R. F. (1974). J. Org. Chem. 39, 2477–2482. CrossRef CAS PubMed Web of Science Google Scholar
Mori, K. (1989). Tetrahedron, 45, 3233–3298. CrossRef CAS Web of Science Google Scholar
Paddon-Jones, G. C., Moore, C. J., Brecknell, D. J., König, W. A. & Kitching, W. (1997). Tetrahedron Lett. 38, 3479–3482. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, S. K., Hopkins, J. A., Spangenberg, K. A., McMillen, D. W. & Grutzner, J. B. (1991). J. Org. Chem. 56, 5951–5955. CrossRef CAS Web of Science Google Scholar
Trost, B. M., Balkovek, J. M. & Mao, M. K. T. (1983). J. Am. Chem. Soc. 105, 6755–6757. CrossRef CAS Web of Science Google Scholar
Vollhardt, K. P. C. & Schore, N. E. (1996). Química Orgánica, p. 467. Barcelona: Omega. Google Scholar
Yang, D. (2004). Acc. Chem. Res. 37, 497–505. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Epoxides are important synthetic intermediates that are widely used in organic synthesis. They are described in the synthesis of Antifungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this functional group as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt et al., 1996; Trost et al., 1983; Kupchan et al., 1974). Because of their widespread occurrence and synthetic utility, the development of methods for the direct asymmetric synthesis of epoxides has grown significantly. In order to prepare new epoxides with natural products, we synthesized (1S,3S,8R,9S,10R)-9,10-epoxy-3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane in three stages from β-himachalene. The title compound was prepared by treating (1S,3S,8R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene (Auhmani et al., 2001) by metachloroperbenzoique acide.
The title compound is built up from two fused six and seven-membered rings (Fig. 1). The six-membered-ring has an half chair conformation with puckering parameters: Q = 0.447 (3) Å, θ= 128.5 (4)° and ϕ= 171.6 (6)° (Cremer & Pople, 1975), whereas the seven-membered ring displays a boat conformation with puckering amplitudes: Q2 = 1.142 (4) and Q3 =0.036 (4) (Boessenkool & Boyens, 1980). Although the absolute configuration is different, this structure is closely related to the (1S,3S,8R,9S,10R)-2,2-Dichloro-3,7,7,10-tetramethyl-9,10-epoxytricyclo [6.4.0.01,3]dodecane (Benharref et al., 2010) however the seven-membered ring displays a chair conformation.
The absolute configuration (1S,3S,8R,9S,10R) is deduced from the chemical pathway. The refinement of the Flack's parameter (-0.2 (10)) (Flack, 1983; Flack & Bernardinelli, 2000) as well as the Hooft's parameter ((Spek, 2009) do not allow to define reliably the absolute configuration.