organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3S,8R,9S,10R)-9,10-Ep­­oxy-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodeca­ne

aLaboratoire de Synthése Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences Semlalia, BP 2390 Marrakech 40000, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: aititto@uca.ma

(Received 10 March 2014; accepted 20 March 2014; online 26 March 2014)

The title compound, C16H26O, was synthesized by treating (1S,3S,8R)-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodec-9-ene with meta­chloro­perbenzoic acid. The mol­ecule is built up from two fused six- and seven-membered rings. The six-membered ring has a half-chair conformation, whereas the seven-membered ring displays a boat conformation. In the crystal, there are no significant intermolecular interactions present.

Related literature

For the use of ep­oxy­des in organic synthesis, see: Mori (1989[Mori, K. (1989). Tetrahedron, 45, 3233-3298.]); Paddon-Jones et al. (1997[Paddon-Jones, G. C., Moore, C. J., Brecknell, D. J., König, W. A. & Kitching, W. (1997). Tetrahedron Lett. 38, 3479-3482.]); Taylor et al. (1991[Taylor, S. K., Hopkins, J. A., Spangenberg, K. A., McMillen, D. W. & Grutzner, J. B. (1991). J. Org. Chem. 56, 5951-5955. ]). For their biological activity, see: Kupchan et al. (1989[Kupchan, S. M., Dessertine, A. L., Blaylock, B. T. & Bryan, R. F. (1974). J. Org. Chem. 39, 2477-2482.]); Trost et al. (1983[Trost, B. M., Balkovek, J. M. & Mao, M. K. T. (1983). J. Am. Chem. Soc. 105, 6755-6757.]); Vollhardt & Schore (1996[Vollhardt, K. P. C. & Schore, N. E. (1996). Química Orgánica, p. 467. Barcelona: Omega.]); Yang (2004[Yang, D. (2004). Acc. Chem. Res. 37, 497-505.]). For structural discussion, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); Boessenkool & Boyens (1980[Boessenkool, I. K. & Boyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]); Benharref et al. (2010[Benharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.]). For the synthesis, see: Auhmani et al. (2001[Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2001). Acta Cryst. E57, o102-o103.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26O

  • Mr = 234.37

  • Monoclinic, P 21

  • a = 10.5563 (10) Å

  • b = 5.7548 (5) Å

  • c = 11.7096 (13) Å

  • β = 92.777 (8)°

  • V = 710.52 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 180 K

  • 0.31 × 0.31 × 0.25 mm

Data collection
  • Agilent Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]) Tmin = 0.767, Tmax = 1.0

  • 8241 measured reflections

  • 2899 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.105

  • S = 1.05

  • 2899 reflections

  • 158 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Epoxides are important synthetic intermediates that are widely used in organic synthesis. They are described in the synthesis of Antifungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this functional group as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt et al., 1996; Trost et al., 1983; Kupchan et al., 1974). Because of their widespread occurrence and synthetic utility, the development of methods for the direct asymmetric synthesis of epoxides has grown significantly. In order to prepare new epoxides with natural products, we synthesized (1S,3S,8R,9S,10R)-9,10-epoxy-3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane in three stages from β-himachalene. The title compound was prepared by treating (1S,3S,8R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene (Auhmani et al., 2001) by metachloroperbenzoique acide.

The title compound is built up from two fused six and seven-membered rings (Fig. 1). The six-membered-ring has an half chair conformation with puckering parameters: Q = 0.447 (3) Å, θ= 128.5 (4)° and ϕ= 171.6 (6)° (Cremer & Pople, 1975), whereas the seven-membered ring displays a boat conformation with puckering amplitudes: Q2 = 1.142 (4) and Q3 =0.036 (4) (Boessenkool & Boyens, 1980). Although the absolute configuration is different, this structure is closely related to the (1S,3S,8R,9S,10R)-2,2-Dichloro-3,7,7,10-tetramethyl-9,10-epoxytricyclo [6.4.0.01,3]dodecane (Benharref et al., 2010) however the seven-membered ring displays a chair conformation.

The absolute configuration (1S,3S,8R,9S,10R) is deduced from the chemical pathway. The refinement of the Flack's parameter (-0.2 (10)) (Flack, 1983; Flack & Bernardinelli, 2000) as well as the Hooft's parameter ((Spek, 2009) do not allow to define reliably the absolute configuration.

Related literature top

For the use of epoxydes in organic synthesis, see: Mori (1989); Paddon-Jones et al. (1997); Taylor et al. (1991). For their biological activity, see: Kupchan et al. (1974); Trost et al. (1983); Vollhardt & Schore (1996); Yang (2004). For structural discussion, see: Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Spek (2009); Boessenkool & Boyens (1980); Benharref et al. (2010). For the synthesis, see: Auhmani et al. (2001).

Experimental top

In 100 mL flask containing (0.220 g, 1.009 mmol) of (1S,3S,8R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene in 20 ml of dichloromethane was added a stoechiometric quantity of m-chloroperbenzoic acid (m-CPBA). The reaction mixture was stirred at room temperature for 2 h and then treated with 10% solution of sodium hydrogencarbonate. The reaction mixture was extracted with dichloromethane (3x 20 mL) and the organic layer were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (230–400 mesh) with Hexane/Ethyl acetate (97:3) as eluent to give the title compound (1S,3S,8R,9S,10R)-9,10-epoxy-3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane in 72% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.99 Å (methylene) and 1.00 Å (methine) In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular view of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,3S,8R,9S,10R)-9,10-Epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane top
Crystal data top
C16H26OF(000) = 260
Mr = 234.37Dx = 1.095 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1871 reflections
a = 10.5563 (10) Åθ = 3.9–26.5°
b = 5.7548 (5) ŵ = 0.07 mm1
c = 11.7096 (13) ÅT = 180 K
β = 92.777 (8)°Box, colourless
V = 710.52 (12) Å30.31 × 0.31 × 0.25 mm
Z = 2
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
2899 independent reflections
Radiation source: Enhance (Mo) X-ray Source2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 77
Tmin = 0.767, Tmax = 1.0l = 1414
8241 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0267P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2899 reflectionsΔρmax = 0.14 e Å3
158 parametersΔρmin = 0.21 e Å3
Crystal data top
C16H26OV = 710.52 (12) Å3
Mr = 234.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.5563 (10) ŵ = 0.07 mm1
b = 5.7548 (5) ÅT = 180 K
c = 11.7096 (13) Å0.31 × 0.31 × 0.25 mm
β = 92.777 (8)°
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
2899 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2150 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 1.0Rint = 0.055
8241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
2899 reflectionsΔρmin = 0.21 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2747 (3)0.7760 (5)0.3324 (3)0.0241 (7)
C20.2251 (3)0.6047 (6)0.4168 (3)0.0334 (8)
H2A0.22130.43900.39410.040*
H2B0.24610.63220.49900.040*
C30.1336 (3)0.7699 (5)0.3563 (3)0.0276 (7)
C40.0457 (3)0.6751 (6)0.2618 (3)0.0392 (9)
H4A0.03800.64180.29290.047*
H4B0.08050.52710.23380.047*
C50.0281 (3)0.8450 (7)0.1615 (3)0.0493 (11)
H5A0.00170.75710.09270.059*
H5B0.03910.95780.17910.059*
C60.1479 (3)0.9792 (7)0.1341 (3)0.0429 (9)
H6A0.12711.07680.06610.051*
H6B0.16801.08600.19870.051*
C70.2684 (3)0.8433 (6)0.1112 (3)0.0335 (8)
C80.3116 (3)0.6867 (5)0.2160 (3)0.0265 (8)
H80.26750.53420.20430.032*
C90.4518 (3)0.6354 (5)0.2177 (3)0.0295 (8)
H90.48570.59250.14230.035*
C100.5427 (3)0.7440 (6)0.2993 (3)0.0289 (8)
C110.4987 (3)0.9110 (5)0.3879 (3)0.0296 (8)
H11A0.54811.05660.38260.036*
H11B0.51820.84360.46450.036*
C120.3575 (3)0.9715 (5)0.3781 (3)0.0274 (7)
H12A0.32961.01620.45460.033*
H12B0.34541.10780.32720.033*
C130.0746 (3)0.9619 (6)0.4244 (3)0.0381 (9)
H13A0.05821.09700.37500.057*
H13B0.13281.00600.48850.057*
H13C0.00540.90690.45390.057*
C140.2449 (4)0.6836 (8)0.0066 (3)0.0551 (11)
H14A0.17890.57020.02270.083*
H14B0.32350.60180.00940.083*
H14C0.21740.77740.05990.083*
C150.3718 (3)1.0198 (6)0.0830 (3)0.0460 (10)
H15A0.34071.11950.01980.069*
H15B0.44780.93670.06080.069*
H15C0.39281.11570.15050.069*
C160.6798 (3)0.7660 (7)0.2706 (3)0.0460 (10)
H16A0.73400.74990.34060.069*
H16B0.69390.91860.23630.069*
H16C0.70070.64380.21640.069*
O10.50267 (19)0.5041 (4)0.31494 (19)0.0350 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (15)0.0264 (17)0.0278 (18)0.0012 (14)0.0043 (13)0.0014 (15)
C20.0307 (19)0.0345 (19)0.035 (2)0.0008 (16)0.0051 (15)0.0065 (16)
C30.0200 (16)0.0298 (18)0.0331 (19)0.0018 (15)0.0035 (14)0.0032 (16)
C40.0207 (18)0.044 (2)0.053 (3)0.0058 (16)0.0012 (16)0.0024 (19)
C50.032 (2)0.063 (3)0.051 (3)0.006 (2)0.0125 (18)0.001 (2)
C60.039 (2)0.052 (2)0.036 (2)0.008 (2)0.0060 (16)0.012 (2)
C70.036 (2)0.040 (2)0.0245 (19)0.0031 (17)0.0014 (15)0.0003 (16)
C80.0259 (18)0.0267 (18)0.0267 (19)0.0016 (14)0.0000 (14)0.0050 (14)
C90.0309 (19)0.0325 (19)0.0254 (19)0.0047 (16)0.0049 (14)0.0018 (16)
C100.0229 (17)0.0339 (19)0.0299 (19)0.0008 (16)0.0008 (14)0.0046 (16)
C110.0251 (17)0.034 (2)0.0295 (19)0.0038 (14)0.0014 (14)0.0024 (15)
C120.0281 (18)0.0302 (17)0.0242 (18)0.0042 (16)0.0028 (13)0.0060 (15)
C130.0273 (19)0.036 (2)0.052 (2)0.0061 (16)0.0123 (16)0.0024 (18)
C140.065 (3)0.069 (3)0.030 (2)0.006 (2)0.0101 (19)0.010 (2)
C150.055 (2)0.046 (2)0.037 (2)0.002 (2)0.0087 (17)0.0144 (18)
C160.0251 (19)0.071 (3)0.043 (2)0.000 (2)0.0038 (16)0.001 (2)
O10.0302 (13)0.0314 (12)0.0433 (15)0.0050 (12)0.0011 (10)0.0018 (12)
Geometric parameters (Å, º) top
C1—C121.507 (4)C9—O11.448 (4)
C1—C21.508 (4)C9—C101.462 (4)
C1—C81.525 (4)C9—H91.0000
C1—C31.529 (4)C10—O11.458 (4)
C2—C31.507 (4)C10—C111.504 (4)
C2—H2A0.9900C10—C161.507 (4)
C2—H2B0.9900C11—C121.530 (4)
C3—C41.511 (5)C11—H11A0.9900
C3—C131.514 (4)C11—H11B0.9900
C4—C51.533 (5)C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900C13—H13A0.9800
C5—C61.529 (5)C13—H13B0.9800
C5—H5A0.9900C13—H13C0.9800
C5—H5B0.9900C14—H14A0.9800
C6—C71.528 (4)C14—H14B0.9800
C6—H6A0.9900C14—H14C0.9800
C6—H6B0.9900C15—H15A0.9800
C7—C151.538 (5)C15—H15B0.9800
C7—C141.541 (5)C15—H15C0.9800
C7—C81.573 (4)C16—H16A0.9800
C8—C91.508 (4)C16—H16B0.9800
C8—H81.0000C16—H16C0.9800
C12—C1—C2118.0 (3)O1—C9—C8116.1 (2)
C12—C1—C8113.6 (2)C10—C9—C8122.5 (3)
C2—C1—C8118.5 (3)O1—C9—H9115.5
C12—C1—C3120.4 (2)C10—C9—H9115.5
C2—C1—C359.52 (19)C8—C9—H9115.5
C8—C1—C3116.7 (3)O1—C10—C959.45 (19)
C3—C2—C160.9 (2)O1—C10—C11114.7 (2)
C3—C2—H2A117.7C9—C10—C11120.6 (3)
C1—C2—H2A117.7O1—C10—C16113.3 (3)
C3—C2—H2B117.7C9—C10—C16119.9 (3)
C1—C2—H2B117.7C11—C10—C16115.6 (3)
H2A—C2—H2B114.8C10—C11—C12115.2 (3)
C2—C3—C4118.3 (3)C10—C11—H11A108.5
C2—C3—C13118.9 (3)C12—C11—H11A108.5
C4—C3—C13113.3 (3)C10—C11—H11B108.5
C2—C3—C159.5 (2)C12—C11—H11B108.5
C4—C3—C1116.3 (3)H11A—C11—H11B107.5
C13—C3—C1120.6 (3)C1—C12—C11113.8 (2)
C3—C4—C5112.2 (3)C1—C12—H12A108.8
C3—C4—H4A109.2C11—C12—H12A108.8
C5—C4—H4A109.2C1—C12—H12B108.8
C3—C4—H4B109.2C11—C12—H12B108.8
C5—C4—H4B109.2H12A—C12—H12B107.7
H4A—C4—H4B107.9C3—C13—H13A109.5
C6—C5—C4114.3 (3)C3—C13—H13B109.5
C6—C5—H5A108.7H13A—C13—H13B109.5
C4—C5—H5A108.7C3—C13—H13C109.5
C6—C5—H5B108.7H13A—C13—H13C109.5
C4—C5—H5B108.7H13B—C13—H13C109.5
H5A—C5—H5B107.6C7—C14—H14A109.5
C7—C6—C5118.9 (3)C7—C14—H14B109.5
C7—C6—H6A107.6H14A—C14—H14B109.5
C5—C6—H6A107.6C7—C14—H14C109.5
C7—C6—H6B107.6H14A—C14—H14C109.5
C5—C6—H6B107.6H14B—C14—H14C109.5
H6A—C6—H6B107.0C7—C15—H15A109.5
C6—C7—C15107.8 (3)C7—C15—H15B109.5
C6—C7—C14110.0 (3)H15A—C15—H15B109.5
C15—C7—C14108.2 (3)C7—C15—H15C109.5
C6—C7—C8111.6 (3)H15A—C15—H15C109.5
C15—C7—C8111.3 (3)H15B—C15—H15C109.5
C14—C7—C8107.9 (3)C10—C16—H16A109.5
C9—C8—C1110.3 (3)C10—C16—H16B109.5
C9—C8—C7111.7 (2)H16A—C16—H16B109.5
C1—C8—C7115.3 (2)C10—C16—H16C109.5
C9—C8—H8106.3H16A—C16—H16C109.5
C1—C8—H8106.3H16B—C16—H16C109.5
C7—C8—H8106.3C9—O1—C1060.41 (19)
O1—C9—C1060.14 (19)

Experimental details

Crystal data
Chemical formulaC16H26O
Mr234.37
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)10.5563 (10), 5.7548 (5), 11.7096 (13)
β (°) 92.777 (8)
V3)710.52 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.31 × 0.31 × 0.25
Data collection
DiffractometerAgilent Xcalibur Eos Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.767, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
8241, 2899, 2150
Rint0.055
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.105, 1.05
No. of reflections2899
No. of parameters158
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAuhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2001). Acta Cryst. E57, o102–o103.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBenharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoessenkool, I. K. & Boyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKupchan, S. M., Dessertine, A. L., Blaylock, B. T. & Bryan, R. F. (1974). J. Org. Chem. 39, 2477–2482.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMori, K. (1989). Tetrahedron, 45, 3233–3298.  CrossRef CAS Web of Science Google Scholar
First citationPaddon-Jones, G. C., Moore, C. J., Brecknell, D. J., König, W. A. & Kitching, W. (1997). Tetrahedron Lett. 38, 3479–3482.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, S. K., Hopkins, J. A., Spangenberg, K. A., McMillen, D. W. & Grutzner, J. B. (1991). J. Org. Chem. 56, 5951–5955.   CrossRef CAS Web of Science Google Scholar
First citationTrost, B. M., Balkovek, J. M. & Mao, M. K. T. (1983). J. Am. Chem. Soc. 105, 6755–6757.  CrossRef CAS Web of Science Google Scholar
First citationVollhardt, K. P. C. & Schore, N. E. (1996). Química Orgánica, p. 467. Barcelona: Omega.  Google Scholar
First citationYang, D. (2004). Acc. Chem. Res. 37, 497–505.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds