organic compounds
2-((1E)-1-{2-[(2Z)-3,4-Diphenyl-2,3-dihydro-1,3-thiazol-2-ylidene]hydrazin-1-ylidene}ethyl)pyridin-1-ium bromide monohydrate
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C22H19N4S+·Br−·H2O, the dihedral angles between the phenyl groups and the mean plane of the thiazolylidene ring are 34.69 (13) and 64.27 (13)°, respectively, while that between the thiazolylidene and pyridinium rings is 14.73 (13)°. In the crystal, zigzag chains of alternating bromide ions and water molecules associate through O—H⋯Br interactions run in channels approximately parallel to the b axis. These chains help form parallel chains of cations through N—H⋯O, C—H⋯N and C—H⋯Br hydrogen bonds.
CCDC reference: 992782
Related literature
For the synthesis of thiazoles see: Zambon et al. (2008); Franklin et al. (2008); Karegoudar et al. (2008); Ochiai et al. (2003). For the biological significance of thiazole scaffold compounds, see: Masquelin & Obrecht (2001); Hirai et al. (1980); Ali & El–Kazak (2010); Andreani et al. (1996, 2008); Budriesi et al. (2008); Walczynski et al. (2005). For similar structures, see: Mague et al. (2014); Mohamed et al. (2013a,b).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 992782
10.1107/S1600536814006229/xu5779sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814006229/xu5779Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814006229/xu5779Isup3.cml
The title compound has been prepared according to our reported method (Mohamed et al., 2013b). Orange crystals suitable for X-ray diffraction (m.p.: 507 K) have been obtained by crystallization of the crude product (I) from ethanol.
H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.89 and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Perspective view of the asymmetric unit showing one of the O—H···Br interactions as a dotted line. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Packing viewed down the b axis showing the interionic interactions as dotted lines (O—H···Br, orange; N—H···O, blue; C—H···Br, green; C—H···N, grey. |
C22H19N4S+·Br−·H2O | F(000) = 960 |
Mr = 469.40 | Dx = 1.487 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 9578 reflections |
a = 21.8890 (17) Å | θ = 2.2–28.6° |
b = 5.7384 (4) Å | µ = 2.08 mm−1 |
c = 16.6941 (13) Å | T = 150 K |
V = 2096.9 (3) Å3 | Column, orange |
Z = 4 | 0.19 × 0.08 × 0.06 mm |
Bruker SMART APEX CCD diffractometer | 5394 independent reflections |
Radiation source: fine-focus sealed tube | 4943 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 28.9°, θmin = 1.9° |
ϕ and ω scans | h = −29→29 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −7→7 |
Tmin = 0.69, Tmax = 0.89 | l = −22→21 |
35645 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.060 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.60 e Å−3 |
5394 reflections | Δρmin = −0.18 e Å−3 |
263 parameters | Absolute structure: Flack parameter determined using 2220 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
71 restraints | Absolute structure parameter: 0.011 (4) |
C22H19N4S+·Br−·H2O | V = 2096.9 (3) Å3 |
Mr = 469.40 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 21.8890 (17) Å | µ = 2.08 mm−1 |
b = 5.7384 (4) Å | T = 150 K |
c = 16.6941 (13) Å | 0.19 × 0.08 × 0.06 mm |
Bruker SMART APEX CCD diffractometer | 5394 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 4943 reflections with I > 2σ(I) |
Tmin = 0.69, Tmax = 0.89 | Rint = 0.046 |
35645 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.060 | Δρmax = 0.60 e Å−3 |
S = 1.05 | Δρmin = −0.18 e Å−3 |
5394 reflections | Absolute structure: Flack parameter determined using 2220 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
263 parameters | Absolute structure parameter: 0.011 (4) |
71 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.61850 (3) | 0.09593 (11) | 0.85092 (4) | 0.0229 (2) | |
N1 | 0.51800 (10) | 0.2131 (3) | 0.78160 (14) | 0.0192 (6) | |
N2 | 0.57004 (10) | −0.0860 (4) | 0.71385 (14) | 0.0217 (6) | |
N3 | 0.61924 (10) | −0.2324 (4) | 0.72594 (15) | 0.0205 (6) | |
N4 | 0.71202 (10) | −0.5216 (4) | 0.75415 (13) | 0.0213 (6) | |
C1 | 0.57446 (12) | 0.3189 (4) | 0.89084 (17) | 0.0230 (8) | |
C2 | 0.52293 (11) | 0.3602 (4) | 0.84921 (17) | 0.0206 (7) | |
C3 | 0.56577 (11) | 0.0597 (4) | 0.77396 (16) | 0.0194 (7) | |
C4 | 0.47512 (11) | 0.5271 (4) | 0.87249 (16) | 0.0205 (7) | |
C5 | 0.49212 (15) | 0.7326 (4) | 0.91199 (19) | 0.0265 (8) | |
C6 | 0.44860 (15) | 0.8887 (5) | 0.93869 (18) | 0.0310 (9) | |
C7 | 0.38714 (15) | 0.8462 (5) | 0.92659 (19) | 0.0314 (9) | |
C8 | 0.36944 (14) | 0.6413 (5) | 0.88887 (18) | 0.0281 (8) | |
C9 | 0.41249 (12) | 0.4834 (5) | 0.86216 (16) | 0.0236 (8) | |
C10 | 0.47325 (11) | 0.2338 (4) | 0.71884 (18) | 0.0194 (7) | |
C11 | 0.43411 (12) | 0.0479 (5) | 0.70314 (18) | 0.0259 (8) | |
C12 | 0.39293 (13) | 0.0661 (5) | 0.6403 (2) | 0.0337 (10) | |
C13 | 0.39056 (15) | 0.2685 (6) | 0.5947 (2) | 0.0362 (10) | |
C14 | 0.42835 (15) | 0.4519 (6) | 0.61191 (18) | 0.0351 (10) | |
C15 | 0.47038 (12) | 0.4360 (5) | 0.67431 (16) | 0.0247 (8) | |
C16 | 0.63290 (12) | −0.3691 (5) | 0.66705 (16) | 0.0208 (7) | |
C17 | 0.60418 (15) | −0.3685 (6) | 0.58542 (18) | 0.0324 (9) | |
C18 | 0.68144 (11) | −0.5385 (4) | 0.68431 (15) | 0.0195 (7) | |
C19 | 0.69676 (14) | −0.7211 (5) | 0.63304 (17) | 0.0252 (8) | |
C20 | 0.74126 (14) | −0.8816 (5) | 0.65600 (18) | 0.0290 (9) | |
C21 | 0.77059 (14) | −0.8562 (6) | 0.7283 (2) | 0.0302 (9) | |
C22 | 0.75536 (14) | −0.6732 (5) | 0.77747 (19) | 0.0265 (9) | |
Br1 | 0.72775 (2) | 0.20153 (4) | 0.99633 (2) | 0.0276 (1) | |
O1 | 0.71716 (11) | 0.6961 (3) | 0.89932 (15) | 0.0354 (7) | |
H1 | 0.58560 | 0.40360 | 0.93750 | 0.0280* | |
H4 | 0.70300 | −0.40570 | 0.78750 | 0.0260* | |
H5 | 0.53420 | 0.76510 | 0.92050 | 0.0320* | |
H6 | 0.46100 | 1.02660 | 0.96560 | 0.0370* | |
H7 | 0.35740 | 0.95570 | 0.94390 | 0.0380* | |
H8 | 0.32720 | 0.60930 | 0.88140 | 0.0340* | |
H9 | 0.39960 | 0.34400 | 0.83650 | 0.0280* | |
H11 | 0.43560 | −0.08920 | 0.73500 | 0.0310* | |
H12 | 0.36630 | −0.05990 | 0.62840 | 0.0400* | |
H13 | 0.36260 | 0.27960 | 0.55140 | 0.0430* | |
H14 | 0.42590 | 0.59080 | 0.58110 | 0.0420* | |
H15 | 0.49680 | 0.56290 | 0.68610 | 0.0300* | |
H17A | 0.57680 | −0.23420 | 0.58060 | 0.0490* | |
H17B | 0.58080 | −0.51260 | 0.57790 | 0.0490* | |
H17C | 0.63620 | −0.35830 | 0.54450 | 0.0490* | |
H19 | 0.67700 | −0.73610 | 0.58270 | 0.0300* | |
H20 | 0.75130 | −1.00820 | 0.62180 | 0.0350* | |
H21 | 0.80110 | −0.96440 | 0.74420 | 0.0360* | |
H22 | 0.77530 | −0.65380 | 0.82760 | 0.0320* | |
H1A | 0.72270 | 0.57880 | 0.92850 | 0.0420* | |
H1B | 0.71770 | 0.81980 | 0.92620 | 0.0420* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0172 (3) | 0.0289 (3) | 0.0225 (3) | 0.0002 (3) | −0.0039 (3) | −0.0032 (3) |
N1 | 0.0174 (11) | 0.0204 (9) | 0.0197 (12) | −0.0007 (8) | −0.0022 (8) | −0.0024 (8) |
N2 | 0.0199 (11) | 0.0255 (11) | 0.0198 (11) | 0.0030 (9) | −0.0001 (9) | −0.0031 (9) |
N3 | 0.0171 (11) | 0.0236 (10) | 0.0207 (12) | −0.0002 (9) | −0.0010 (9) | −0.0009 (9) |
N4 | 0.0211 (10) | 0.0234 (10) | 0.0193 (12) | 0.0016 (9) | 0.0014 (9) | −0.0043 (9) |
C1 | 0.0231 (13) | 0.0260 (12) | 0.0198 (14) | −0.0024 (10) | −0.0016 (11) | −0.0049 (10) |
C2 | 0.0211 (12) | 0.0227 (11) | 0.0180 (13) | −0.0039 (9) | 0.0015 (11) | −0.0014 (10) |
C3 | 0.0163 (12) | 0.0234 (12) | 0.0186 (13) | −0.0019 (10) | −0.0011 (10) | 0.0005 (10) |
C4 | 0.0255 (13) | 0.0203 (11) | 0.0157 (13) | −0.0004 (10) | 0.0031 (10) | 0.0003 (9) |
C5 | 0.0332 (15) | 0.0244 (12) | 0.0218 (15) | −0.0043 (12) | 0.0038 (12) | −0.0016 (10) |
C6 | 0.0455 (18) | 0.0220 (13) | 0.0254 (16) | −0.0022 (12) | 0.0086 (14) | −0.0026 (11) |
C7 | 0.0420 (18) | 0.0276 (14) | 0.0247 (16) | 0.0114 (13) | 0.0082 (14) | 0.0017 (11) |
C8 | 0.0266 (14) | 0.0366 (14) | 0.0210 (14) | 0.0056 (12) | 0.0026 (12) | 0.0015 (12) |
C9 | 0.0255 (13) | 0.0264 (12) | 0.0190 (14) | −0.0004 (11) | −0.0011 (11) | −0.0012 (11) |
C10 | 0.0175 (12) | 0.0245 (12) | 0.0162 (13) | 0.0034 (10) | −0.0018 (10) | −0.0051 (10) |
C11 | 0.0204 (13) | 0.0226 (12) | 0.0348 (17) | 0.0012 (11) | −0.0028 (11) | −0.0047 (11) |
C12 | 0.0239 (14) | 0.0354 (16) | 0.0417 (19) | 0.0039 (13) | −0.0080 (13) | −0.0144 (14) |
C13 | 0.0323 (16) | 0.0530 (19) | 0.0234 (16) | 0.0137 (15) | −0.0102 (13) | −0.0095 (14) |
C14 | 0.0458 (19) | 0.0388 (17) | 0.0206 (15) | 0.0114 (15) | −0.0038 (13) | 0.0031 (12) |
C15 | 0.0284 (14) | 0.0272 (13) | 0.0186 (14) | 0.0025 (11) | 0.0008 (11) | −0.0033 (10) |
C16 | 0.0191 (12) | 0.0255 (12) | 0.0178 (13) | −0.0011 (10) | 0.0011 (10) | 0.0002 (10) |
C17 | 0.0326 (16) | 0.0433 (16) | 0.0212 (16) | 0.0109 (14) | −0.0024 (12) | −0.0033 (13) |
C18 | 0.0188 (12) | 0.0229 (11) | 0.0167 (12) | −0.0027 (10) | 0.0036 (10) | 0.0001 (10) |
C19 | 0.0259 (14) | 0.0322 (14) | 0.0175 (14) | 0.0014 (11) | 0.0009 (11) | −0.0057 (11) |
C20 | 0.0333 (16) | 0.0281 (14) | 0.0256 (16) | 0.0050 (12) | 0.0066 (12) | −0.0080 (12) |
C21 | 0.0289 (16) | 0.0307 (14) | 0.0310 (17) | 0.0088 (12) | 0.0025 (12) | −0.0009 (13) |
C22 | 0.0240 (14) | 0.0310 (15) | 0.0245 (16) | 0.0035 (12) | −0.0009 (12) | −0.0034 (11) |
Br1 | 0.0380 (2) | 0.0227 (1) | 0.0221 (1) | −0.0011 (1) | −0.0049 (1) | −0.0042 (1) |
O1 | 0.0582 (15) | 0.0222 (10) | 0.0257 (12) | 0.0051 (9) | −0.0093 (10) | −0.0045 (8) |
S1—C1 | 1.735 (3) | C14—C15 | 1.393 (4) |
S1—C3 | 1.740 (3) | C16—C18 | 1.469 (4) |
O1—H1A | 0.8400 | C16—C17 | 1.501 (4) |
O1—H1B | 0.8400 | C18—C19 | 1.394 (4) |
N1—C2 | 1.414 (3) | C19—C20 | 1.394 (4) |
N1—C10 | 1.439 (4) | C20—C21 | 1.375 (4) |
N1—C3 | 1.373 (3) | C21—C22 | 1.374 (5) |
N2—C3 | 1.310 (3) | C1—H1 | 0.9500 |
N2—N3 | 1.381 (3) | C5—H5 | 0.9500 |
N3—C16 | 1.293 (4) | C6—H6 | 0.9500 |
N4—C18 | 1.348 (3) | C7—H7 | 0.9500 |
N4—C22 | 1.345 (4) | C8—H8 | 0.9500 |
N4—H4 | 0.8900 | C9—H9 | 0.9500 |
C1—C2 | 1.346 (4) | C11—H11 | 0.9500 |
C2—C4 | 1.471 (3) | C12—H12 | 0.9500 |
C4—C9 | 1.404 (4) | C13—H13 | 0.9500 |
C4—C5 | 1.401 (4) | C14—H14 | 0.9500 |
C5—C6 | 1.382 (4) | C15—H15 | 0.9500 |
C6—C7 | 1.382 (5) | C17—H17C | 0.9800 |
C7—C8 | 1.389 (4) | C17—H17A | 0.9800 |
C8—C9 | 1.381 (4) | C17—H17B | 0.9800 |
C10—C11 | 1.393 (4) | C19—H19 | 0.9500 |
C10—C15 | 1.379 (4) | C20—H20 | 0.9500 |
C11—C12 | 1.387 (4) | C21—H21 | 0.9500 |
C12—C13 | 1.390 (5) | C22—H22 | 0.9500 |
C13—C14 | 1.369 (5) | ||
C1—S1—C3 | 90.18 (12) | C19—C20—C21 | 119.8 (3) |
H1A—O1—H1B | 111.00 | C20—C21—C22 | 119.5 (3) |
C2—N1—C10 | 125.7 (2) | N4—C22—C21 | 119.5 (3) |
C3—N1—C10 | 120.3 (2) | S1—C1—H1 | 123.00 |
C2—N1—C3 | 113.5 (2) | C2—C1—H1 | 123.00 |
N3—N2—C3 | 109.4 (2) | C6—C5—H5 | 120.00 |
N2—N3—C16 | 116.0 (2) | C4—C5—H5 | 120.00 |
C18—N4—C22 | 123.7 (2) | C5—C6—H6 | 120.00 |
C22—N4—H4 | 117.00 | C7—C6—H6 | 120.00 |
C18—N4—H4 | 119.00 | C8—C7—H7 | 120.00 |
S1—C1—C2 | 113.4 (2) | C6—C7—H7 | 120.00 |
C1—C2—C4 | 125.1 (2) | C9—C8—H8 | 120.00 |
N1—C2—C1 | 111.8 (2) | C7—C8—H8 | 120.00 |
N1—C2—C4 | 123.1 (2) | C4—C9—H9 | 120.00 |
N1—C3—N2 | 122.3 (2) | C8—C9—H9 | 120.00 |
S1—C3—N1 | 111.11 (18) | C10—C11—H11 | 121.00 |
S1—C3—N2 | 126.51 (19) | C12—C11—H11 | 121.00 |
C2—C4—C5 | 118.9 (2) | C13—C12—H12 | 120.00 |
C2—C4—C9 | 123.1 (2) | C11—C12—H12 | 120.00 |
C5—C4—C9 | 117.9 (2) | C12—C13—H13 | 120.00 |
C4—C5—C6 | 121.0 (3) | C14—C13—H13 | 120.00 |
C5—C6—C7 | 120.6 (3) | C15—C14—H14 | 120.00 |
C6—C7—C8 | 119.2 (3) | C13—C14—H14 | 120.00 |
C7—C8—C9 | 120.8 (3) | C10—C15—H15 | 120.00 |
C4—C9—C8 | 120.6 (3) | C14—C15—H15 | 120.00 |
C11—C10—C15 | 121.0 (3) | C16—C17—H17B | 109.00 |
N1—C10—C11 | 119.5 (2) | C16—C17—H17C | 109.00 |
N1—C10—C15 | 119.5 (2) | H17A—C17—H17B | 109.00 |
C10—C11—C12 | 119.0 (3) | H17A—C17—H17C | 109.00 |
C11—C12—C13 | 120.1 (3) | H17B—C17—H17C | 110.00 |
C12—C13—C14 | 120.3 (3) | C16—C17—H17A | 109.00 |
C13—C14—C15 | 120.4 (3) | C18—C19—H19 | 120.00 |
C10—C15—C14 | 119.2 (3) | C20—C19—H19 | 120.00 |
N3—C16—C17 | 126.3 (3) | C21—C20—H20 | 120.00 |
N3—C16—C18 | 114.8 (2) | C19—C20—H20 | 120.00 |
C17—C16—C18 | 118.9 (2) | C20—C21—H21 | 120.00 |
C16—C18—C19 | 123.5 (2) | C22—C21—H21 | 120.00 |
N4—C18—C19 | 117.8 (2) | N4—C22—H22 | 120.00 |
N4—C18—C16 | 118.8 (2) | C21—C22—H22 | 120.00 |
C18—C19—C20 | 119.7 (3) | ||
C3—S1—C1—C2 | 0.9 (2) | C1—C2—C4—C5 | 33.9 (4) |
C1—S1—C3—N1 | −0.31 (19) | C1—C2—C4—C9 | −141.5 (3) |
C1—S1—C3—N2 | 177.4 (2) | C2—C4—C5—C6 | −176.6 (3) |
C3—N1—C2—C1 | 1.0 (3) | C9—C4—C5—C6 | −1.0 (4) |
C3—N1—C2—C4 | −175.7 (2) | C2—C4—C9—C8 | 176.7 (3) |
C10—N1—C2—C1 | −170.8 (2) | C5—C4—C9—C8 | 1.3 (4) |
C10—N1—C2—C4 | 12.5 (4) | C4—C5—C6—C7 | −0.4 (5) |
C2—N1—C3—S1 | −0.3 (3) | C5—C6—C7—C8 | 1.6 (5) |
C2—N1—C3—N2 | −178.1 (2) | C6—C7—C8—C9 | −1.3 (5) |
C10—N1—C3—S1 | 171.96 (17) | C7—C8—C9—C4 | −0.1 (4) |
C10—N1—C3—N2 | −5.8 (4) | N1—C10—C11—C12 | −177.3 (3) |
C2—N1—C10—C11 | −121.3 (3) | C15—C10—C11—C12 | 1.7 (4) |
C2—N1—C10—C15 | 59.7 (4) | N1—C10—C15—C14 | 177.9 (3) |
C3—N1—C10—C11 | 67.5 (3) | C11—C10—C15—C14 | −1.1 (4) |
C3—N1—C10—C15 | −111.5 (3) | C10—C11—C12—C13 | −0.8 (4) |
C3—N2—N3—C16 | −172.8 (2) | C11—C12—C13—C14 | −0.6 (5) |
N3—N2—C3—S1 | 8.2 (3) | C12—C13—C14—C15 | 1.2 (5) |
N3—N2—C3—N1 | −174.4 (2) | C13—C14—C15—C10 | −0.4 (4) |
N2—N3—C16—C17 | 5.7 (4) | N3—C16—C18—N4 | −7.6 (4) |
N2—N3—C16—C18 | −174.3 (2) | N3—C16—C18—C19 | 170.7 (3) |
C22—N4—C18—C16 | 177.0 (3) | C17—C16—C18—N4 | 172.4 (2) |
C22—N4—C18—C19 | −1.4 (4) | C17—C16—C18—C19 | −9.3 (4) |
C18—N4—C22—C21 | 0.5 (4) | N4—C18—C19—C20 | 1.7 (4) |
S1—C1—C2—N1 | −1.2 (3) | C16—C18—C19—C20 | −176.6 (3) |
S1—C1—C2—C4 | 175.4 (2) | C18—C19—C20—C21 | −1.3 (4) |
N1—C2—C4—C5 | −149.9 (3) | C19—C20—C21—C22 | 0.4 (5) |
N1—C2—C4—C9 | 34.8 (4) | C20—C21—C22—N4 | 0.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Br1 | 0.84 | 2.45 | 3.276 (2) | 170 |
O1—H1B···Br1i | 0.84 | 2.49 | 3.330 (2) | 174 |
N4—H4···O1ii | 0.89 | 1.98 | 2.729 (3) | 141 |
C15—H15···N2i | 0.95 | 2.62 | 3.566 (4) | 178 |
C20—H20···Br1iii | 0.95 | 2.72 | 3.645 (3) | 166 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+3/2, y−3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Br1 | 0.84 | 2.45 | 3.276 (2) | 170 |
O1—H1B···Br1i | 0.84 | 2.49 | 3.330 (2) | 174 |
N4—H4···O1ii | 0.89 | 1.98 | 2.729 (3) | 141 |
C15—H15···N2i | 0.95 | 2.62 | 3.566 (4) | 178 |
C20—H20···Br1iii | 0.95 | 2.72 | 3.645 (3) | 166 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+3/2, y−3/2, z−1/2. |
Acknowledgements
We gratefully acknowledge Manchester Metropolitan University, Tulane University and Erciyes University for supporting this study.
References
Ali, T. E. & El–Kazak, A. M. (2010). Eur. J. Med. Chem. 1, 6–11. CrossRef CAS Google Scholar
Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809–816. Web of Science CrossRef PubMed CAS Google Scholar
Andreani, A., Rambaldi, M., Leoni, A., Locatelli, A., Andreani, F. & Gehret, J. C. (1996). Pharm. Acta Helv. 71, 247–252. CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Budriesi, R., Ioan, P., Locatelli, A., Cosconati, S., Leoni, A., Ugenti, M. P., Andreani, A., Di Toro, R., Bedini, A., Spampinato, S., Marinelli, L., Novellino, E. & Chiarini, A. (2008). J. Med. Chem. 51, 1592–1600. Web of Science CrossRef PubMed CAS Google Scholar
Franklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129–134. Web of Science CrossRef PubMed CAS Google Scholar
Hirai, K., Sugimoto, H. & Ishiba, T. (1980). J. Org. Chem. 45, 253–260. CrossRef CAS Web of Science Google Scholar
Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261–267. Web of Science CrossRef PubMed CAS Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328–o329. CSD CrossRef CAS IUCr Journals Google Scholar
Masquelin, T. & Obrecht, D. (2001). Tetrahedron, 6, 153–156. Web of Science CrossRef Google Scholar
Mohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013a). Acta Cryst. E69, o1563–o1564. CSD CrossRef IUCr Journals Google Scholar
Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013b). Acta Cryst. E69, o1324. CSD CrossRef IUCr Journals Google Scholar
Ochiai, M., Nishi, Y., Hashimoto, S., Tsuchimoto, Y. & Chen, D. W. (2003). J. Org. Chem. 68, 7887–7888. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walczynski, K., Zuiderveld, O. P. & Timmerman, H. (2005). Eur. J. Med. Chem. 40, 15–23. Web of Science PubMed CAS Google Scholar
Zambon, A., Borsato, G., Brussolo, S., Frascella, P. & Lucchini, V. (2008). Tetrahedron Lett. 49, 66–69. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Several methods for the synthesis of thiazole derivatives have been developed (Zambon et al., 2008; Franklin et al., 2008; Karegoudar et al., 2008) with the most widely used method being the Hantzsch's synthesis utilizing thioamides and α–halocarbonyl compounds as the starting materials (Ochiai et al., 2003). 1,3–Thiazole scaffold compounds are present in many pharmacologically active substances (Masquelin & Obrecht, 2001). They have found to possess strong anti–inflammatory (Hirai et al., 1980), antimicrobial (Ali & El–Kazak, 2010), antitumor (Andreani et al., 2008) and selective cardiodepressant activities (Budriesi et al., 2008). Other compounds containing the thiazole ring have been reported as being histamine H3 antagonists (Walczynski et al., 2005) and herbicidals (Andreani et al., 1996). In view of these findings and as part of our efforts (Mague et al., 2014; Mohamed et al., 2013a,b) to identify new candidates that may be of value in designing new and potent antimicrobial agents we report the synthesis and crystal structure of the title compound.
In the title compound (I, Fig. 1), the dihedral angle between the S1/N1C1–C3 thiazolylidene and N4/C18–C22 pyridinium rings is 14.73 (13)° while that between the phenyl groups C4–C9 and C10–C15 and the mean plane of the thiazolylidene ring are, respectively, 34.69 (13) and 64.27 (13)°. The N1–C3–N2–N3, C3–N2–N3–C16, N2–N3–C16–C17, N2–N3–C16–C18 and N3–C16–C18–C19 torsion angles are 174.4 (2), -172.8 (2), 5.7 (4), -174.3 (2) and 170.7 (3) °, respectively. The bond lengths and bond angles in (I) are normal and comparable to those previously reported for similar structures (Mague et al., 2014; Mohamed et al., 2013a,b).
In the crystal, zigzag chains of alternating bromide ions and water molecules associated through O—H···Br interactions run in channels approximately parallel to the b axis. These chains help form parallel chains of cations through N—H···O, C—H···N and C—H···Br hydrogen bonds (Fig. 2 and Table 1).