organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o478-o479

2-((1E)-1-{2-[(2Z)-3,4-Di­phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­­idene]hydrazin-1-yl­­idene}eth­yl)pyridin-1-ium bromide monohydrate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 11 March 2014; accepted 20 March 2014; online 26 March 2014)

In the title compound, C22H19N4S+·Br·H2O, the dihedral angles between the phenyl groups and the mean plane of the thia­zolyl­idene ring are 34.69 (13) and 64.27 (13)°, respectively, while that between the thia­zolyl­idene and pyridinium rings is 14.73 (13)°. In the crystal, zigzag chains of alternating bromide ions and water mol­ecules associate through O—H⋯Br inter­actions run in channels approximately parallel to the b axis. These chains help form parallel chains of cations through N—H⋯O, C—H⋯N and C—H⋯Br hydrogen bonds.

Related literature

For the synthesis of thia­zoles see: Zambon et al. (2008[Zambon, A., Borsato, G., Brussolo, S., Frascella, P. & Lucchini, V. (2008). Tetrahedron Lett. 49, 66-69.]); Franklin et al. (2008[Franklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129-134.]); Karegoudar et al. (2008[Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261-267.]); Ochiai et al. (2003[Ochiai, M., Nishi, Y., Hashimoto, S., Tsuchimoto, Y. & Chen, D. W. (2003). J. Org. Chem. 68, 7887-7888.]). For the biological significance of thia­zole scaffold compounds, see: Masquelin & Obrecht (2001[Masquelin, T. & Obrecht, D. (2001). Tetrahedron, 6, 153-156.]); Hirai et al. (1980[Hirai, K., Sugimoto, H. & Ishiba, T. (1980). J. Org. Chem. 45, 253-260.]); Ali & El–Kazak (2010[Ali, T. E. & El-Kazak, A. M. (2010). Eur. J. Med. Chem. 1, 6-11.]); Andreani et al. (1996[Andreani, A., Rambaldi, M., Leoni, A., Locatelli, A., Andreani, F. & Gehret, J. C. (1996). Pharm. Acta Helv. 71, 247-252.], 2008[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809-816.]); Budriesi et al. (2008[Budriesi, R., Ioan, P., Locatelli, A., Cosconati, S., Leoni, A., Ugenti, M. P., Andreani, A., Di Toro, R., Bedini, A., Spampinato, S., Marinelli, L., Novellino, E. & Chiarini, A. (2008). J. Med. Chem. 51, 1592-1600.]); Walczynski et al. (2005[Walczynski, K., Zuiderveld, O. P. & Timmerman, H. (2005). Eur. J. Med. Chem. 40, 15-23.]). For similar structures, see: Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328-o329.]); Mohamed et al. (2013a[Mohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013a). Acta Cryst. E69, o1563-o1564.],b[Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013b). Acta Cryst. E69, o1324.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N4S+·Br·H2O

  • Mr = 469.40

  • Orthorhombic, P n a 21

  • a = 21.8890 (17) Å

  • b = 5.7384 (4) Å

  • c = 16.6941 (13) Å

  • V = 2096.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 150 K

  • 0.19 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.69, Tmax = 0.89

  • 35645 measured reflections

  • 5394 independent reflections

  • 4943 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.060

  • S = 1.05

  • 5394 reflections

  • 263 parameters

  • 71 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack parameter determined using 2220 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.011 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br1 0.84 2.45 3.276 (2) 170
O1—H1B⋯Br1i 0.84 2.49 3.330 (2) 174
N4—H4⋯O1ii 0.89 1.98 2.729 (3) 141
C15—H15⋯N2i 0.95 2.62 3.566 (4) 178
C20—H20⋯Br1iii 0.95 2.72 3.645 (3) 166
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several methods for the synthesis of thiazole derivatives have been developed (Zambon et al., 2008; Franklin et al., 2008; Karegoudar et al., 2008) with the most widely used method being the Hantzsch's synthesis utilizing thioamides and α–halocarbonyl compounds as the starting materials (Ochiai et al., 2003). 1,3–Thiazole scaffold compounds are present in many pharmacologically active substances (Masquelin & Obrecht, 2001). They have found to possess strong anti–inflammatory (Hirai et al., 1980), antimicrobial (Ali & El–Kazak, 2010), antitumor (Andreani et al., 2008) and selective cardiodepressant activities (Budriesi et al., 2008). Other compounds containing the thiazole ring have been reported as being histamine H3 antagonists (Walczynski et al., 2005) and herbicidals (Andreani et al., 1996). In view of these findings and as part of our efforts (Mague et al., 2014; Mohamed et al., 2013a,b) to identify new candidates that may be of value in designing new and potent antimicrobial agents we report the synthesis and crystal structure of the title compound.

In the title compound (I, Fig. 1), the dihedral angle between the S1/N1C1–C3 thiazolylidene and N4/C18–C22 pyridinium rings is 14.73 (13)° while that between the phenyl groups C4–C9 and C10–C15 and the mean plane of the thiazolylidene ring are, respectively, 34.69 (13) and 64.27 (13)°. The N1–C3–N2–N3, C3–N2–N3–C16, N2–N3–C16–C17, N2–N3–C16–C18 and N3–C16–C18–C19 torsion angles are 174.4 (2), -172.8 (2), 5.7 (4), -174.3 (2) and 170.7 (3) °, respectively. The bond lengths and bond angles in (I) are normal and comparable to those previously reported for similar structures (Mague et al., 2014; Mohamed et al., 2013a,b).

In the crystal, zigzag chains of alternating bromide ions and water molecules associated through O—H···Br interactions run in channels approximately parallel to the b axis. These chains help form parallel chains of cations through N—H···O, C—H···N and C—H···Br hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For the synthesis of thiazoles see: Zambon et al. (2008); Franklin et al. (2008); Karegoudar et al. (2008); Ochiai et al. (2003). For the biological significance of thiazole scaffold compounds, see: Masquelin & Obrecht (2001); Hirai et al. (1980); Ali & El–Kazak (2010); Andreani et al. (1996, 2008); Budriesi et al. (2008); Walczynski et al. (2005). For similar structures, see: Mague et al. (2014); Mohamed et al. (2013a,b).

Experimental top

The title compound has been prepared according to our reported method (Mohamed et al., 2013b). Orange crystals suitable for X-ray diffraction (m.p.: 507 K) have been obtained by crystallization of the crude product (I) from ethanol.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.89 and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit showing one of the O—H···Br interactions as a dotted line. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing viewed down the b axis showing the interionic interactions as dotted lines (O—H···Br, orange; N—H···O, blue; C—H···Br, green; C—H···N, grey.
2-((1E)-1-{2-[(2Z)-3,4-Diphenyl-2,3-dihydro-1,3-thiazol-2-ylidene]hydrazin-1-ylidene}ethyl)pyridin-1-ium bromide monohydrate top
Crystal data top
C22H19N4S+·Br·H2OF(000) = 960
Mr = 469.40Dx = 1.487 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9578 reflections
a = 21.8890 (17) Åθ = 2.2–28.6°
b = 5.7384 (4) ŵ = 2.08 mm1
c = 16.6941 (13) ÅT = 150 K
V = 2096.9 (3) Å3Column, orange
Z = 40.19 × 0.08 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5394 independent reflections
Radiation source: fine-focus sealed tube4943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.3660 pixels mm-1θmax = 28.9°, θmin = 1.9°
ϕ and ω scansh = 2929
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 77
Tmin = 0.69, Tmax = 0.89l = 2221
35645 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0251P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.60 e Å3
5394 reflectionsΔρmin = 0.18 e Å3
263 parametersAbsolute structure: Flack parameter determined using 2220 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
71 restraintsAbsolute structure parameter: 0.011 (4)
Crystal data top
C22H19N4S+·Br·H2OV = 2096.9 (3) Å3
Mr = 469.40Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.8890 (17) ŵ = 2.08 mm1
b = 5.7384 (4) ÅT = 150 K
c = 16.6941 (13) Å0.19 × 0.08 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5394 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
4943 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.89Rint = 0.046
35645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.60 e Å3
S = 1.05Δρmin = 0.18 e Å3
5394 reflectionsAbsolute structure: Flack parameter determined using 2220 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
263 parametersAbsolute structure parameter: 0.011 (4)
71 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61850 (3)0.09593 (11)0.85092 (4)0.0229 (2)
N10.51800 (10)0.2131 (3)0.78160 (14)0.0192 (6)
N20.57004 (10)0.0860 (4)0.71385 (14)0.0217 (6)
N30.61924 (10)0.2324 (4)0.72594 (15)0.0205 (6)
N40.71202 (10)0.5216 (4)0.75415 (13)0.0213 (6)
C10.57446 (12)0.3189 (4)0.89084 (17)0.0230 (8)
C20.52293 (11)0.3602 (4)0.84921 (17)0.0206 (7)
C30.56577 (11)0.0597 (4)0.77396 (16)0.0194 (7)
C40.47512 (11)0.5271 (4)0.87249 (16)0.0205 (7)
C50.49212 (15)0.7326 (4)0.91199 (19)0.0265 (8)
C60.44860 (15)0.8887 (5)0.93869 (18)0.0310 (9)
C70.38714 (15)0.8462 (5)0.92659 (19)0.0314 (9)
C80.36944 (14)0.6413 (5)0.88887 (18)0.0281 (8)
C90.41249 (12)0.4834 (5)0.86216 (16)0.0236 (8)
C100.47325 (11)0.2338 (4)0.71884 (18)0.0194 (7)
C110.43411 (12)0.0479 (5)0.70314 (18)0.0259 (8)
C120.39293 (13)0.0661 (5)0.6403 (2)0.0337 (10)
C130.39056 (15)0.2685 (6)0.5947 (2)0.0362 (10)
C140.42835 (15)0.4519 (6)0.61191 (18)0.0351 (10)
C150.47038 (12)0.4360 (5)0.67431 (16)0.0247 (8)
C160.63290 (12)0.3691 (5)0.66705 (16)0.0208 (7)
C170.60418 (15)0.3685 (6)0.58542 (18)0.0324 (9)
C180.68144 (11)0.5385 (4)0.68431 (15)0.0195 (7)
C190.69676 (14)0.7211 (5)0.63304 (17)0.0252 (8)
C200.74126 (14)0.8816 (5)0.65600 (18)0.0290 (9)
C210.77059 (14)0.8562 (6)0.7283 (2)0.0302 (9)
C220.75536 (14)0.6732 (5)0.77747 (19)0.0265 (9)
Br10.72775 (2)0.20153 (4)0.99633 (2)0.0276 (1)
O10.71716 (11)0.6961 (3)0.89932 (15)0.0354 (7)
H10.585600.403600.937500.0280*
H40.703000.405700.787500.0260*
H50.534200.765100.920500.0320*
H60.461001.026600.965600.0370*
H70.357400.955700.943900.0380*
H80.327200.609300.881400.0340*
H90.399600.344000.836500.0280*
H110.435600.089200.735000.0310*
H120.366300.059900.628400.0400*
H130.362600.279600.551400.0430*
H140.425900.590800.581100.0420*
H150.496800.562900.686100.0300*
H17A0.576800.234200.580600.0490*
H17B0.580800.512600.577900.0490*
H17C0.636200.358300.544500.0490*
H190.677000.736100.582700.0300*
H200.751301.008200.621800.0350*
H210.801100.964400.744200.0360*
H220.775300.653800.827600.0320*
H1A0.722700.578800.928500.0420*
H1B0.717700.819800.926200.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0172 (3)0.0289 (3)0.0225 (3)0.0002 (3)0.0039 (3)0.0032 (3)
N10.0174 (11)0.0204 (9)0.0197 (12)0.0007 (8)0.0022 (8)0.0024 (8)
N20.0199 (11)0.0255 (11)0.0198 (11)0.0030 (9)0.0001 (9)0.0031 (9)
N30.0171 (11)0.0236 (10)0.0207 (12)0.0002 (9)0.0010 (9)0.0009 (9)
N40.0211 (10)0.0234 (10)0.0193 (12)0.0016 (9)0.0014 (9)0.0043 (9)
C10.0231 (13)0.0260 (12)0.0198 (14)0.0024 (10)0.0016 (11)0.0049 (10)
C20.0211 (12)0.0227 (11)0.0180 (13)0.0039 (9)0.0015 (11)0.0014 (10)
C30.0163 (12)0.0234 (12)0.0186 (13)0.0019 (10)0.0011 (10)0.0005 (10)
C40.0255 (13)0.0203 (11)0.0157 (13)0.0004 (10)0.0031 (10)0.0003 (9)
C50.0332 (15)0.0244 (12)0.0218 (15)0.0043 (12)0.0038 (12)0.0016 (10)
C60.0455 (18)0.0220 (13)0.0254 (16)0.0022 (12)0.0086 (14)0.0026 (11)
C70.0420 (18)0.0276 (14)0.0247 (16)0.0114 (13)0.0082 (14)0.0017 (11)
C80.0266 (14)0.0366 (14)0.0210 (14)0.0056 (12)0.0026 (12)0.0015 (12)
C90.0255 (13)0.0264 (12)0.0190 (14)0.0004 (11)0.0011 (11)0.0012 (11)
C100.0175 (12)0.0245 (12)0.0162 (13)0.0034 (10)0.0018 (10)0.0051 (10)
C110.0204 (13)0.0226 (12)0.0348 (17)0.0012 (11)0.0028 (11)0.0047 (11)
C120.0239 (14)0.0354 (16)0.0417 (19)0.0039 (13)0.0080 (13)0.0144 (14)
C130.0323 (16)0.0530 (19)0.0234 (16)0.0137 (15)0.0102 (13)0.0095 (14)
C140.0458 (19)0.0388 (17)0.0206 (15)0.0114 (15)0.0038 (13)0.0031 (12)
C150.0284 (14)0.0272 (13)0.0186 (14)0.0025 (11)0.0008 (11)0.0033 (10)
C160.0191 (12)0.0255 (12)0.0178 (13)0.0011 (10)0.0011 (10)0.0002 (10)
C170.0326 (16)0.0433 (16)0.0212 (16)0.0109 (14)0.0024 (12)0.0033 (13)
C180.0188 (12)0.0229 (11)0.0167 (12)0.0027 (10)0.0036 (10)0.0001 (10)
C190.0259 (14)0.0322 (14)0.0175 (14)0.0014 (11)0.0009 (11)0.0057 (11)
C200.0333 (16)0.0281 (14)0.0256 (16)0.0050 (12)0.0066 (12)0.0080 (12)
C210.0289 (16)0.0307 (14)0.0310 (17)0.0088 (12)0.0025 (12)0.0009 (13)
C220.0240 (14)0.0310 (15)0.0245 (16)0.0035 (12)0.0009 (12)0.0034 (11)
Br10.0380 (2)0.0227 (1)0.0221 (1)0.0011 (1)0.0049 (1)0.0042 (1)
O10.0582 (15)0.0222 (10)0.0257 (12)0.0051 (9)0.0093 (10)0.0045 (8)
Geometric parameters (Å, º) top
S1—C11.735 (3)C14—C151.393 (4)
S1—C31.740 (3)C16—C181.469 (4)
O1—H1A0.8400C16—C171.501 (4)
O1—H1B0.8400C18—C191.394 (4)
N1—C21.414 (3)C19—C201.394 (4)
N1—C101.439 (4)C20—C211.375 (4)
N1—C31.373 (3)C21—C221.374 (5)
N2—C31.310 (3)C1—H10.9500
N2—N31.381 (3)C5—H50.9500
N3—C161.293 (4)C6—H60.9500
N4—C181.348 (3)C7—H70.9500
N4—C221.345 (4)C8—H80.9500
N4—H40.8900C9—H90.9500
C1—C21.346 (4)C11—H110.9500
C2—C41.471 (3)C12—H120.9500
C4—C91.404 (4)C13—H130.9500
C4—C51.401 (4)C14—H140.9500
C5—C61.382 (4)C15—H150.9500
C6—C71.382 (5)C17—H17C0.9800
C7—C81.389 (4)C17—H17A0.9800
C8—C91.381 (4)C17—H17B0.9800
C10—C111.393 (4)C19—H190.9500
C10—C151.379 (4)C20—H200.9500
C11—C121.387 (4)C21—H210.9500
C12—C131.390 (5)C22—H220.9500
C13—C141.369 (5)
C1—S1—C390.18 (12)C19—C20—C21119.8 (3)
H1A—O1—H1B111.00C20—C21—C22119.5 (3)
C2—N1—C10125.7 (2)N4—C22—C21119.5 (3)
C3—N1—C10120.3 (2)S1—C1—H1123.00
C2—N1—C3113.5 (2)C2—C1—H1123.00
N3—N2—C3109.4 (2)C6—C5—H5120.00
N2—N3—C16116.0 (2)C4—C5—H5120.00
C18—N4—C22123.7 (2)C5—C6—H6120.00
C22—N4—H4117.00C7—C6—H6120.00
C18—N4—H4119.00C8—C7—H7120.00
S1—C1—C2113.4 (2)C6—C7—H7120.00
C1—C2—C4125.1 (2)C9—C8—H8120.00
N1—C2—C1111.8 (2)C7—C8—H8120.00
N1—C2—C4123.1 (2)C4—C9—H9120.00
N1—C3—N2122.3 (2)C8—C9—H9120.00
S1—C3—N1111.11 (18)C10—C11—H11121.00
S1—C3—N2126.51 (19)C12—C11—H11121.00
C2—C4—C5118.9 (2)C13—C12—H12120.00
C2—C4—C9123.1 (2)C11—C12—H12120.00
C5—C4—C9117.9 (2)C12—C13—H13120.00
C4—C5—C6121.0 (3)C14—C13—H13120.00
C5—C6—C7120.6 (3)C15—C14—H14120.00
C6—C7—C8119.2 (3)C13—C14—H14120.00
C7—C8—C9120.8 (3)C10—C15—H15120.00
C4—C9—C8120.6 (3)C14—C15—H15120.00
C11—C10—C15121.0 (3)C16—C17—H17B109.00
N1—C10—C11119.5 (2)C16—C17—H17C109.00
N1—C10—C15119.5 (2)H17A—C17—H17B109.00
C10—C11—C12119.0 (3)H17A—C17—H17C109.00
C11—C12—C13120.1 (3)H17B—C17—H17C110.00
C12—C13—C14120.3 (3)C16—C17—H17A109.00
C13—C14—C15120.4 (3)C18—C19—H19120.00
C10—C15—C14119.2 (3)C20—C19—H19120.00
N3—C16—C17126.3 (3)C21—C20—H20120.00
N3—C16—C18114.8 (2)C19—C20—H20120.00
C17—C16—C18118.9 (2)C20—C21—H21120.00
C16—C18—C19123.5 (2)C22—C21—H21120.00
N4—C18—C19117.8 (2)N4—C22—H22120.00
N4—C18—C16118.8 (2)C21—C22—H22120.00
C18—C19—C20119.7 (3)
C3—S1—C1—C20.9 (2)C1—C2—C4—C533.9 (4)
C1—S1—C3—N10.31 (19)C1—C2—C4—C9141.5 (3)
C1—S1—C3—N2177.4 (2)C2—C4—C5—C6176.6 (3)
C3—N1—C2—C11.0 (3)C9—C4—C5—C61.0 (4)
C3—N1—C2—C4175.7 (2)C2—C4—C9—C8176.7 (3)
C10—N1—C2—C1170.8 (2)C5—C4—C9—C81.3 (4)
C10—N1—C2—C412.5 (4)C4—C5—C6—C70.4 (5)
C2—N1—C3—S10.3 (3)C5—C6—C7—C81.6 (5)
C2—N1—C3—N2178.1 (2)C6—C7—C8—C91.3 (5)
C10—N1—C3—S1171.96 (17)C7—C8—C9—C40.1 (4)
C10—N1—C3—N25.8 (4)N1—C10—C11—C12177.3 (3)
C2—N1—C10—C11121.3 (3)C15—C10—C11—C121.7 (4)
C2—N1—C10—C1559.7 (4)N1—C10—C15—C14177.9 (3)
C3—N1—C10—C1167.5 (3)C11—C10—C15—C141.1 (4)
C3—N1—C10—C15111.5 (3)C10—C11—C12—C130.8 (4)
C3—N2—N3—C16172.8 (2)C11—C12—C13—C140.6 (5)
N3—N2—C3—S18.2 (3)C12—C13—C14—C151.2 (5)
N3—N2—C3—N1174.4 (2)C13—C14—C15—C100.4 (4)
N2—N3—C16—C175.7 (4)N3—C16—C18—N47.6 (4)
N2—N3—C16—C18174.3 (2)N3—C16—C18—C19170.7 (3)
C22—N4—C18—C16177.0 (3)C17—C16—C18—N4172.4 (2)
C22—N4—C18—C191.4 (4)C17—C16—C18—C199.3 (4)
C18—N4—C22—C210.5 (4)N4—C18—C19—C201.7 (4)
S1—C1—C2—N11.2 (3)C16—C18—C19—C20176.6 (3)
S1—C1—C2—C4175.4 (2)C18—C19—C20—C211.3 (4)
N1—C2—C4—C5149.9 (3)C19—C20—C21—C220.4 (5)
N1—C2—C4—C934.8 (4)C20—C21—C22—N40.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br10.842.453.276 (2)170
O1—H1B···Br1i0.842.493.330 (2)174
N4—H4···O1ii0.891.982.729 (3)141
C15—H15···N2i0.952.623.566 (4)178
C20—H20···Br1iii0.952.723.645 (3)166
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+3/2, y3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br10.842.453.276 (2)170
O1—H1B···Br1i0.842.493.330 (2)174
N4—H4···O1ii0.891.982.729 (3)141
C15—H15···N2i0.952.623.566 (4)178
C20—H20···Br1iii0.952.723.645 (3)166
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+3/2, y3/2, z1/2.
 

Acknowledgements

We gratefully acknowledge Manchester Metropolitan University, Tulane University and Erciyes University for supporting this study.

References

First citationAli, T. E. & El–Kazak, A. M. (2010). Eur. J. Med. Chem. 1, 6–11.  CrossRef CAS Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809–816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAndreani, A., Rambaldi, M., Leoni, A., Locatelli, A., Andreani, F. & Gehret, J. C. (1996). Pharm. Acta Helv. 71, 247–252.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudriesi, R., Ioan, P., Locatelli, A., Cosconati, S., Leoni, A., Ugenti, M. P., Andreani, A., Di Toro, R., Bedini, A., Spampinato, S., Marinelli, L., Novellino, E. & Chiarini, A. (2008). J. Med. Chem. 51, 1592–1600.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFranklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129–134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHirai, K., Sugimoto, H. & Ishiba, T. (1980). J. Org. Chem. 45, 253–260.  CrossRef CAS Web of Science Google Scholar
First citationKaregoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328–o329.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasquelin, T. & Obrecht, D. (2001). Tetrahedron, 6, 153–156.  Web of Science CrossRef Google Scholar
First citationMohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013a). Acta Cryst. E69, o1563–o1564.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013b). Acta Cryst. E69, o1324.  CSD CrossRef IUCr Journals Google Scholar
First citationOchiai, M., Nishi, Y., Hashimoto, S., Tsuchimoto, Y. & Chen, D. W. (2003). J. Org. Chem. 68, 7887–7888.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalczynski, K., Zuiderveld, O. P. & Timmerman, H. (2005). Eur. J. Med. Chem. 40, 15–23.  Web of Science PubMed CAS Google Scholar
First citationZambon, A., Borsato, G., Brussolo, S., Frascella, P. & Lucchini, V. (2008). Tetrahedron Lett. 49, 66–69.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o478-o479
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds