organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o426-o427

Redetermination of 2-methyl-4-nitro­pyridine N-oxide

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

(Received 22 January 2014; accepted 26 February 2014; online 12 March 2014)

An improved crystal structure of the title compound, C6H6N2O3, is reported. The structure, previously solved [Li et al. (1987[Li, S., Liu, S. & Wu, W. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 20-24.]). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 20–24] in the ortho­rhom­bic space group Pca21 and refined to R = 0.067, has been solved in the ortho­rhom­bic space group Pbcm with data of enhanced quality, giving an improved structure (R = 0.0485). The mol­ecule adopts a planar conformation with all atoms lying on a mirror plane. The crystal structure is composed of mol­ecular sheets extending parallel to the ab plane and connected via C—H⋯O contacts involving ring H atoms and O atoms of the N-oxide and nitro groups, while van der Waals forces consolidate the stacking of the layers.

Related literature

For the synthesis and preparative aspects of pyridine-N-oxides, see: Fontenas et al. (1995[Fontenas, C., Bejan, E., Ait Haddou, H. & Balavoine, G. G. A. (1995). Synth. Commun. 25, 629-633.]); Katritzky & Lagowski (1971[Katritzky, A. R. & Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N-Oxides. New York: Academic Press.]); Kilenyi (2001[Kilenyi, S. N. (2001). In Encyclopedia of Reagents for Organic Synthesis, edited by L. A. Paquette. New York: Wiley.]); Mosher et al. (1963[Mosher, H. S., Turner, L. & Carlsmith, A. (1963). Org. Synth., Coll. Vol. 4, 828-830.]). For the preparation of the title compound, see: Ashimori et al. (1990[Ashimori, A., Ono, T., Uchida, T., Ohtaki, Y., Fukaja, C., Watanabe, M. & Yokoyama, K. (1990). Chem. Pharm. Bull. 38, 2446-2458.]) and for potential applications, see: Elemans et al. (2009[Elemans, J. A. A. W., Lei, S. & De Feyter, S. (2009). Angew. Chem. Int. Ed. 48, 7298-7332.]); Weber & Vögtle (1976[Weber, E. & Vögtle, F. (1976). Chem. Ber. 109, 1803-1831.]); Winter et al. (2004[Winter, S., Seichter, W. & Weber, E. (2004). J. Coord. Chem. 57, 991-1014.]). For the previous report of its crystal structure, see: Li et al. (1987[Li, S., Liu, S. & Wu, W. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 20-24.]). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, ch. 2. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O3

  • Mr = 154.13

  • Orthorhombic, P b c m

  • a = 8.6775 (7) Å

  • b = 12.4069 (10) Å

  • c = 6.1995 (5) Å

  • V = 667.44 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 153 K

  • 0.57 × 0.30 × 0.23 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.972

  • 19832 measured reflections

  • 1100 independent reflections

  • 973 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.10

  • 1100 reflections

  • 74 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.95 2.29 3.225 (2) 169
C5—H5⋯O2ii 0.95 2.36 3.301 (2) 173
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2008[Bruker (2008). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine N-oxides are readily formed by oxidation of corresponding pyridines (Kilenyi, 2001; Mosher et al., 1963). In contrast to the simple pyridines they facilitate an electrophilic substitution reaction in the ring position-4, hence being important intermediates in the synthesis of pyridine derivatives featuring a complex substitution pattern (Katritzky & Lagowski, 1971). Moreover, when 2-methylpyridine N-oxides are treated with trifluoroacetic anhydride, the Boekelheide reaction occurs to give 2-(hydroxymethyl)pyridines (Fontenas et al., 1995) which are of relevance to make available chelating (Winter et al., 2004), macrocyclic (Weber & Vögtle, 1976) and linker-type (Elemans et al., 2009) ligands. In the course of a respective synthesis of the latter kind, the title compound was prepared and its structure redetermined. The previous crystal structure of the compound (reported in 1987 by Li et al.) has been solved in the orthorhombic space group Pca21 and refined to an R-value of 6.7%. The repeated analysis of the crystal structure with data of enhanced quality yields a crystal structure of space group Pbcm with nearly identical cell dimensions. The centrosymmetry of the crystal structure is sustained by the statistical analysis of E-values. The molecule is located on the crystallographic symmetry plane and thus adopts perfect planarity (Fig. 1). According to this, two-dimensional supramolecular aggregates extending parallel to the crystallographic ab-plane and with the molecules connected via C—H···O hydrogen bonding (Desiraju & Steiner, 1999) that involves ring H atoms and both O atoms of the N-oxide (C—H···ON-oxide 2.29 Å, 169 °) and nitro groups (CH···Onitro 2.36 Å, 173 °) represent the basic entities of the crystal structure (Fig. 2). As no other type of intermolecular interactions are observed, the crystal structure is stabilized by van der Waals forces in direction of the stacking axes of the molecular sheets.

Related literature top

For the synthesis and preparative aspects of pyridine-N-oxides, see: Fontenas et al. (1995); Katritzky & Lagowski (1971); Kilenyi (2001); Mosher et al. (1963). For the preparation of the title compound, see: Ashimori et al. (1990) and for potential applications, see: Elemans et al. (2009); Weber & Vögtle (1976); Winter et al. (2004). For the previous report of its crystal structure, see: Li et al. (1987). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999).

Experimental top

The title compound was synthesized via nitration of 2-methylpyridine N-oxide following a described procedure (Ashimori et al., 1990). Crystallization from toluene/chloroform (1/1) yielded yellow needles which were used for X-ray single-crystal structure analysis.

Refinement top

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and Uiso = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-NT (Bruker, 2008); data reduction: SAINT-NT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title compound including the atom numbering. Anisotropic displacement parameters for non-hydrogen atoms are drawn at a 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the c-axis. Hydrogen bonds are displayed as broken lines.
2-Methyl-4-nitropyridine N-oxide top
Crystal data top
C6H6N2O3F(000) = 320
Mr = 154.13Dx = 1.534 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 6590 reflections
a = 8.6775 (7) Åθ = 2.4–35.0°
b = 12.4069 (10) ŵ = 0.13 mm1
c = 6.1995 (5) ÅT = 153 K
V = 667.44 (9) Å3Column, yellow
Z = 40.57 × 0.30 × 0.23 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1100 independent reflections
Radiation source: fine-focus sealed tube973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 30.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.932, Tmax = 0.972k = 1717
19832 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0871P)2 + 0.2298P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1100 reflectionsΔρmax = 0.36 e Å3
74 parametersΔρmin = 0.34 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H6N2O3V = 667.44 (9) Å3
Mr = 154.13Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 8.6775 (7) ŵ = 0.13 mm1
b = 12.4069 (10) ÅT = 153 K
c = 6.1995 (5) Å0.57 × 0.30 × 0.23 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1100 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
973 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.972Rint = 0.028
19832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04974 parameters
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.36 e Å3
1100 reflectionsΔρmin = 0.34 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The C—H bonds of the methyl group were restrained to a target value of 0.89 (1) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52895 (16)0.30510 (10)0.25000.0309 (3)
O21.05609 (15)0.02519 (12)0.25000.0355 (4)
O30.85937 (17)0.13544 (11)0.25000.0441 (4)
N10.61843 (17)0.22205 (10)0.25000.0223 (3)
N20.91523 (17)0.04406 (12)0.25000.0276 (3)
C10.55535 (18)0.12002 (13)0.25000.0216 (3)
C20.65356 (17)0.03153 (12)0.25000.0203 (3)
H2A0.61280.03950.25000.024*
C30.81182 (18)0.04811 (12)0.25000.0214 (3)
C40.87504 (19)0.15129 (13)0.25000.0249 (3)
H40.98340.16210.25000.030*
C50.77482 (19)0.23649 (13)0.25000.0247 (3)
H50.81500.30770.25000.030*
C60.38480 (19)0.11425 (16)0.25000.0283 (4)
H6A0.3468 (19)0.1469 (13)0.133 (2)0.040 (5)*
H6B0.358 (3)0.0444 (9)0.25000.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (7)0.0217 (6)0.0322 (7)0.0136 (5)0.0000.000
O20.0209 (6)0.0365 (7)0.0492 (8)0.0072 (5)0.0000.000
O30.0376 (8)0.0197 (6)0.0750 (12)0.0050 (5)0.0000.000
N10.0277 (7)0.0182 (6)0.0210 (6)0.0033 (5)0.0000.000
N20.0254 (6)0.0243 (7)0.0329 (7)0.0049 (5)0.0000.000
C10.0232 (6)0.0210 (7)0.0206 (7)0.0009 (5)0.0000.000
C20.0211 (7)0.0170 (6)0.0228 (7)0.0018 (5)0.0000.000
C30.0214 (7)0.0182 (6)0.0247 (7)0.0023 (5)0.0000.000
C40.0272 (7)0.0215 (7)0.0259 (7)0.0047 (6)0.0000.000
C50.0286 (7)0.0211 (7)0.0244 (7)0.0050 (6)0.0000.000
C60.0202 (7)0.0350 (9)0.0296 (8)0.0013 (6)0.0000.000
Geometric parameters (Å, º) top
O1—N11.2902 (17)C2—C31.389 (2)
O2—N21.244 (2)C2—H2A0.9500
O3—N21.233 (2)C3—C41.393 (2)
N1—C51.369 (2)C4—C51.369 (2)
N1—C11.379 (2)C4—H40.9500
N2—C31.454 (2)C5—H50.9500
C1—C21.390 (2)C6—H6A0.892 (9)
C1—C61.482 (2)C6—H6B0.898 (10)
O1—N1—C5119.48 (14)C2—C3—C4121.72 (14)
O1—N1—C1119.61 (14)C2—C3—N2119.61 (14)
C5—N1—C1120.91 (13)C4—C3—N2118.68 (14)
O3—N2—O2123.99 (15)C5—C4—C3117.36 (15)
O3—N2—C3118.73 (14)C5—C4—H4121.3
O2—N2—C3117.28 (14)C3—C4—H4121.3
N1—C1—C2118.79 (14)N1—C5—C4121.92 (14)
N1—C1—C6116.16 (14)N1—C5—H5119.0
C2—C1—C6125.05 (15)C4—C5—H5119.0
C3—C2—C1119.30 (14)C1—C6—H6A110.3 (11)
C3—C2—H2A120.3C1—C6—H6B108.0 (16)
C1—C2—H2A120.3H6A—C6—H6B109.9 (14)
O1—N1—C1—C2180.0O2—N2—C3—C2180.0
C5—N1—C1—C20.0O3—N2—C3—C4180.0
O1—N1—C1—C60.0O2—N2—C3—C40.0
C5—N1—C1—C6180.0C2—C3—C4—C50.0
N1—C1—C2—C30.0N2—C3—C4—C5180.0
C6—C1—C2—C3180.0O1—N1—C5—C4180.0
C1—C2—C3—C40.0C1—N1—C5—C40.0
C1—C2—C3—N2180.0C3—C4—C5—N10.0
O3—N2—C3—C20.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.952.293.225 (2)169
C5—H5···O2ii0.952.363.301 (2)173
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.952.293.225 (2)169
C5—H5···O2ii0.952.363.301 (2)173
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the German Research Foundation within the priority programme Porous Metal-Organic Frameworks (SPP 1362, MOFs).

References

First citationAshimori, A., Ono, T., Uchida, T., Ohtaki, Y., Fukaja, C., Watanabe, M. & Yokoyama, K. (1990). Chem. Pharm. Bull. 38, 2446–2458.  CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, ch. 2. Oxford University Press.  Google Scholar
First citationElemans, J. A. A. W., Lei, S. & De Feyter, S. (2009). Angew. Chem. Int. Ed. 48, 7298–7332.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFontenas, C., Bejan, E., Ait Haddou, H. & Balavoine, G. G. A. (1995). Synth. Commun. 25, 629–633.  CrossRef CAS Web of Science Google Scholar
First citationKatritzky, A. R. & Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N-Oxides. New York: Academic Press.  Google Scholar
First citationKilenyi, S. N. (2001). In Encyclopedia of Reagents for Organic Synthesis, edited by L. A. Paquette. New York: Wiley.  Google Scholar
First citationLi, S., Liu, S. & Wu, W. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 20–24.  Google Scholar
First citationMosher, H. S., Turner, L. & Carlsmith, A. (1963). Org. Synth., Coll. Vol. 4, 828–830.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, E. & Vögtle, F. (1976). Chem. Ber. 109, 1803–1831.  CrossRef CAS Web of Science Google Scholar
First citationWinter, S., Seichter, W. & Weber, E. (2004). J. Coord. Chem. 57, 991–1014.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o426-o427
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds