organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1-(3-methyl­phenyl­sulfon­yl)naphtho­[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 27 February 2014; accepted 6 March 2014; online 12 March 2014)

In the title compound, C20H16O3S, the dihedral angle between the mean planes of the naphtho­furan and 3-methyl­phenyl fragments is 88.56 (2)°. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers. These dimers are linked by ππ inter­actions between the furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.701 (2) Å] into supra­molecular chains running along the a-axis direction.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o727.], 2012a[Choi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o1193.],b[Choi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o2324.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O3S

  • Mr = 336.39

  • Monoclinic, P 21 /n

  • a = 11.1667 (2) Å

  • b = 7.7400 (1) Å

  • c = 18.4736 (3) Å

  • β = 98.683 (1)°

  • V = 1578.38 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.51 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.697, Tmax = 0.746

  • 15253 measured reflections

  • 3946 independent reflections

  • 3390 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.05

  • 3946 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O2i 0.98 2.54 3.507 (2) 171
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 2-methylnaphtho[2,1-b]furan derivatives containing phenylsulfonyl (Choi et al., 2008), 4-methylphenylsulfonyl (Choi et al., 2012a) and 4-bromophenylsulfonyl (Choi et al., 2012b) substituents in 1-position, we report here the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.025 (1) Å from the least-squares plane defined by the thirteen constituent atoms. The 3-methylphenyl ring is essentially planar, with a mean deviation of 0.014 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the naphthofuran ring system and the 3-methylphenyl ring is 88.56 (2)°. In the crystal structure (Fig. 2), molecules are connected via pairs of C–H···O hydrogen bonds (Table 1), forming inversion dimers. These dimers are further packed by ππ interactions between the furan rings of neighbouring molecules, with a Cg1···Cg1ii distance of 3.701 (2) Å and an interplanar distance of 3.503 (2) Å resulting in a slippage of 1.194 (2) Å (Cg1 is the centroid of the C1/C2/C11/O1/C12 furan ring), forming supramolecular chains running along the a-axis direction.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2012a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 538 mg, 2.4 mmol) was added in small portions to a stirred solution of 2-methyl-1-(3-methylphenylsulfanyl)naphtho[2,1-b]furan (334 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 424-425 K; Rf = 0.52 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.95 Å for methyl H atoms. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y, - z + 1; (ii) - x, - y, - z + 1; (iii) x + 1, y, z.]
2-Methyl-1-(3-methylphenylsulfonyl)naphtho[2,1-b]furan top
Crystal data top
C20H16O3SF(000) = 704
Mr = 336.39Dx = 1.416 Mg m3
Monoclinic, P21/nMelting point = 424–425 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.1667 (2) ÅCell parameters from 5868 reflections
b = 7.7400 (1) Åθ = 2.2–28.3°
c = 18.4736 (3) ŵ = 0.22 mm1
β = 98.683 (1)°T = 173 K
V = 1578.38 (4) Å3Block, colourless
Z = 40.51 × 0.25 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3946 independent reflections
Radiation source: rotating anode3390 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 810
Tmin = 0.697, Tmax = 0.746l = 2418
15253 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.6579P]
where P = (Fo2 + 2Fc2)/3
3946 reflections(Δ/σ)max = 0.003
219 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C20H16O3SV = 1578.38 (4) Å3
Mr = 336.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1667 (2) ŵ = 0.22 mm1
b = 7.7400 (1) ÅT = 173 K
c = 18.4736 (3) Å0.51 × 0.25 × 0.21 mm
β = 98.683 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3946 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3390 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.746Rint = 0.026
15253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3946 reflectionsΔρmin = 0.52 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28214 (3)0.08312 (5)0.611416 (19)0.02882 (12)
O10.04251 (10)0.26951 (15)0.55227 (6)0.0352 (3)
O20.33118 (11)0.05146 (14)0.57127 (6)0.0358 (3)
O30.26812 (12)0.04900 (17)0.68617 (6)0.0421 (3)
C10.14243 (13)0.1526 (2)0.56462 (8)0.0277 (3)
C20.10413 (13)0.18600 (18)0.48678 (8)0.0262 (3)
C30.14969 (13)0.16201 (19)0.41891 (8)0.0265 (3)
C40.26063 (14)0.0823 (2)0.41147 (8)0.0314 (3)
H40.31180.04180.45380.038*
C50.29601 (17)0.0623 (2)0.34395 (9)0.0385 (4)
H50.37060.00650.34010.046*
C60.22342 (17)0.1234 (3)0.28055 (9)0.0416 (4)
H60.24930.11070.23420.050*
C70.11597 (16)0.2006 (2)0.28576 (9)0.0393 (4)
H70.06730.24170.24250.047*
C80.07448 (14)0.2216 (2)0.35393 (8)0.0311 (3)
C90.04140 (15)0.2957 (2)0.35690 (9)0.0375 (4)
H90.08930.33330.31280.045*
C100.08502 (14)0.3139 (2)0.42102 (10)0.0368 (4)
H100.16270.36200.42310.044*
C110.00957 (14)0.2578 (2)0.48414 (8)0.0303 (3)
C120.05076 (14)0.2062 (2)0.60067 (9)0.0331 (3)
C130.02986 (18)0.2145 (3)0.67799 (10)0.0458 (4)
H13A0.07650.31040.70280.069*
H13B0.05580.10580.70270.069*
H13C0.05660.23270.67950.069*
C140.37544 (13)0.26733 (19)0.61112 (7)0.0259 (3)
C150.48014 (13)0.25965 (19)0.57933 (8)0.0272 (3)
H150.49950.15730.55520.033*
C160.55711 (14)0.4026 (2)0.58282 (8)0.0298 (3)
C170.52185 (16)0.5523 (2)0.61525 (9)0.0343 (3)
H170.57170.65200.61650.041*
C180.41605 (16)0.5603 (2)0.64579 (8)0.0332 (3)
H180.39370.66520.66690.040*
C190.34312 (14)0.4162 (2)0.64559 (8)0.0301 (3)
H190.27250.41870.66850.036*
C200.67508 (15)0.3947 (2)0.55323 (10)0.0399 (4)
H20A0.69270.50800.53370.060*
H20B0.66930.30830.51410.060*
H20C0.74020.36250.59260.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0321 (2)0.0276 (2)0.02405 (19)0.00269 (14)0.00458 (14)0.00574 (13)
O10.0277 (5)0.0399 (6)0.0380 (6)0.0019 (4)0.0049 (5)0.0031 (5)
O20.0397 (6)0.0253 (5)0.0383 (6)0.0018 (4)0.0070 (5)0.0009 (4)
O30.0486 (7)0.0488 (7)0.0261 (6)0.0086 (6)0.0036 (5)0.0138 (5)
C10.0278 (7)0.0292 (7)0.0249 (7)0.0043 (6)0.0001 (5)0.0041 (6)
C20.0250 (6)0.0254 (7)0.0259 (7)0.0049 (5)0.0031 (5)0.0038 (5)
C30.0284 (7)0.0249 (7)0.0239 (7)0.0065 (5)0.0027 (5)0.0027 (5)
C40.0324 (8)0.0325 (8)0.0276 (7)0.0017 (6)0.0010 (6)0.0009 (6)
C50.0406 (9)0.0416 (9)0.0331 (8)0.0031 (7)0.0052 (7)0.0044 (7)
C60.0490 (10)0.0495 (10)0.0261 (7)0.0123 (8)0.0052 (7)0.0019 (7)
C70.0470 (10)0.0426 (9)0.0246 (7)0.0124 (8)0.0062 (7)0.0061 (7)
C80.0340 (8)0.0290 (7)0.0273 (7)0.0086 (6)0.0051 (6)0.0059 (6)
C90.0342 (8)0.0375 (9)0.0357 (8)0.0032 (7)0.0114 (6)0.0107 (7)
C100.0270 (7)0.0365 (9)0.0436 (9)0.0005 (6)0.0056 (6)0.0077 (7)
C110.0269 (7)0.0299 (8)0.0330 (8)0.0045 (6)0.0013 (6)0.0035 (6)
C120.0318 (8)0.0357 (8)0.0313 (8)0.0069 (6)0.0030 (6)0.0040 (6)
C130.0469 (10)0.0577 (12)0.0353 (9)0.0073 (9)0.0140 (8)0.0013 (8)
C140.0278 (7)0.0264 (7)0.0210 (6)0.0002 (5)0.0038 (5)0.0018 (5)
C150.0304 (7)0.0265 (7)0.0230 (6)0.0022 (6)0.0019 (5)0.0009 (5)
C160.0307 (7)0.0331 (8)0.0239 (7)0.0017 (6)0.0013 (6)0.0030 (6)
C170.0408 (9)0.0293 (8)0.0304 (7)0.0062 (6)0.0021 (6)0.0008 (6)
C180.0418 (9)0.0277 (8)0.0277 (7)0.0031 (6)0.0021 (6)0.0039 (6)
C190.0313 (7)0.0333 (8)0.0244 (7)0.0044 (6)0.0000 (6)0.0000 (6)
C200.0347 (8)0.0470 (10)0.0383 (9)0.0043 (7)0.0067 (7)0.0022 (7)
Geometric parameters (Å, º) top
S1—O21.4344 (12)C9—H90.9500
S1—O31.4375 (12)C10—C111.400 (2)
S1—C11.7504 (15)C10—H100.9500
S1—C141.7664 (15)C12—C131.483 (2)
O1—C121.3577 (19)C13—H13A0.9800
O1—C111.3665 (19)C13—H13B0.9800
C1—C121.367 (2)C13—H13C0.9800
C1—C21.4600 (19)C14—C151.387 (2)
C2—C111.380 (2)C14—C191.391 (2)
C2—C31.435 (2)C15—C161.397 (2)
C3—C41.409 (2)C15—H150.9500
C3—C81.4334 (19)C16—C171.388 (2)
C4—C51.373 (2)C16—C201.502 (2)
C4—H40.9500C17—C181.385 (2)
C5—C61.402 (2)C17—H170.9500
C5—H50.9500C18—C191.381 (2)
C6—C71.357 (3)C18—H180.9500
C6—H60.9500C19—H190.9500
C7—C81.415 (2)C20—H20A0.9800
C7—H70.9500C20—H20B0.9800
C8—C91.424 (2)C20—H20C0.9800
C9—C101.354 (2)
O2—S1—O3117.96 (8)O1—C11—C2111.60 (13)
O2—S1—C1110.44 (7)O1—C11—C10122.32 (14)
O3—S1—C1108.22 (7)C2—C11—C10126.08 (15)
O2—S1—C14108.25 (7)O1—C12—C1110.18 (13)
O3—S1—C14107.53 (7)O1—C12—C13113.71 (14)
C1—S1—C14103.44 (7)C1—C12—C13136.10 (15)
C12—O1—C11107.24 (12)C12—C13—H13A109.5
C12—C1—C2107.26 (13)C12—C13—H13B109.5
C12—C1—S1121.98 (12)H13A—C13—H13B109.5
C2—C1—S1130.36 (12)C12—C13—H13C109.5
C11—C2—C3117.84 (13)H13A—C13—H13C109.5
C11—C2—C1103.73 (13)H13B—C13—H13C109.5
C3—C2—C1138.43 (14)C15—C14—C19121.55 (14)
C4—C3—C8118.15 (14)C15—C14—S1120.14 (11)
C4—C3—C2125.10 (13)C19—C14—S1118.26 (12)
C8—C3—C2116.74 (14)C14—C15—C16119.92 (14)
C5—C4—C3121.06 (15)C14—C15—H15120.0
C5—C4—H4119.5C16—C15—H15120.0
C3—C4—H4119.5C17—C16—C15117.93 (14)
C4—C5—C6120.78 (17)C17—C16—C20120.87 (15)
C4—C5—H5119.6C15—C16—C20121.20 (15)
C6—C5—H5119.6C18—C17—C16121.89 (15)
C7—C6—C5119.68 (16)C18—C17—H17119.1
C7—C6—H6120.2C16—C17—H17119.1
C5—C6—H6120.2C19—C18—C17120.11 (15)
C6—C7—C8121.69 (15)C19—C18—H18119.9
C6—C7—H7119.2C17—C18—H18119.9
C8—C7—H7119.2C18—C19—C14118.48 (14)
C7—C8—C9120.12 (14)C18—C19—H19120.8
C7—C8—C3118.63 (15)C14—C19—H19120.8
C9—C8—C3121.22 (15)C16—C20—H20A109.5
C10—C9—C8121.62 (14)C16—C20—H20B109.5
C10—C9—H9119.2H20A—C20—H20B109.5
C8—C9—H9119.2C16—C20—H20C109.5
C9—C10—C11116.46 (15)H20A—C20—H20C109.5
C9—C10—H10121.8H20B—C20—H20C109.5
C11—C10—H10121.8
O2—S1—C1—C12146.07 (13)C12—O1—C11—C10179.39 (15)
O3—S1—C1—C1215.58 (16)C3—C2—C11—O1178.61 (12)
C14—S1—C1—C1298.29 (14)C1—C2—C11—O10.30 (16)
O2—S1—C1—C242.19 (16)C3—C2—C11—C101.4 (2)
O3—S1—C1—C2172.68 (14)C1—C2—C11—C10179.63 (15)
C14—S1—C1—C273.45 (15)C9—C10—C11—O1179.74 (14)
C12—C1—C2—C110.05 (17)C9—C10—C11—C20.2 (2)
S1—C1—C2—C11172.72 (12)C11—O1—C12—C10.58 (17)
C12—C1—C2—C3178.61 (17)C11—O1—C12—C13178.46 (14)
S1—C1—C2—C38.7 (3)C2—C1—C12—O10.39 (18)
C11—C2—C3—C4176.38 (14)S1—C1—C12—O1173.81 (10)
C1—C2—C3—C42.0 (3)C2—C1—C12—C13178.34 (19)
C11—C2—C3—C82.4 (2)S1—C1—C12—C134.9 (3)
C1—C2—C3—C8179.15 (16)O2—S1—C14—C153.80 (13)
C8—C3—C4—C50.1 (2)O3—S1—C14—C15124.65 (12)
C2—C3—C4—C5178.88 (14)C1—S1—C14—C15120.98 (12)
C3—C4—C5—C61.0 (3)O2—S1—C14—C19178.42 (11)
C4—C5—C6—C71.1 (3)O3—S1—C14—C1953.14 (13)
C5—C6—C7—C80.1 (3)C1—S1—C14—C1961.23 (12)
C6—C7—C8—C9176.92 (16)C19—C14—C15—C161.3 (2)
C6—C7—C8—C31.1 (2)S1—C14—C15—C16176.43 (10)
C4—C3—C8—C71.1 (2)C14—C15—C16—C173.3 (2)
C2—C3—C8—C7179.96 (13)C14—C15—C16—C20176.02 (14)
C4—C3—C8—C9176.90 (14)C15—C16—C17—C182.2 (2)
C2—C3—C8—C92.0 (2)C20—C16—C17—C18177.12 (15)
C7—C8—C9—C10178.41 (15)C16—C17—C18—C191.0 (2)
C3—C8—C9—C100.4 (2)C17—C18—C19—C143.1 (2)
C8—C9—C10—C110.7 (2)C15—C14—C19—C182.0 (2)
C12—O1—C11—C20.55 (17)S1—C14—C19—C18179.72 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O2i0.982.543.507 (2)171
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O2i0.982.543.507 (2)170.8
Symmetry code: (i) x+1, y, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o1193.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o2324.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds