organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o431-o432

Methyl (2Z)-2-[(2-formyl-3-methyl-1H-indol-1-yl)meth­yl]-3-(4-meth­­oxy­phen­yl)prop-2-enoate

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 067, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 7 March 2014; accepted 7 March 2014; online 15 March 2014)

In the title indole derivative, C22H21NO4, the dihedral angle between the benzene and pyrrole rings of indole moiety is 1.8 (1)°. The plane of the 4-meth­oxy­phenyl ring is oriented with a dihedral angle of 60.7 (1)° with respect to the plane of the indole moiety. The mol­ecular packing is stabilized by C—H⋯O hydrogen bonds which form a V-shaped chain arrangement along the bc plane of the unit cell. In addition to this, C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.8102 (11) and 3.8803(12) Å], which run along the b-axis direction, stabilize the mol­ecular packing.

Related literature

For general background to indole derivatives, see: Kaushik et al. (2013[Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620-6662.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173-176.]); Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Grinev et al. (1984[Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159-163.]); Rodriguez et al. (1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]). For a related structure, see: Selvanayagam et al. (2008[Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2008). Acta Cryst. E64, o1163.]). For the superposition of a related structure, see: Gans & Shalloway (2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.])

[Scheme 1]

Experimental

Crystal data
  • C22H21NO4

  • Mr = 363.40

  • Monoclinic, P 21 /n

  • a = 12.6009 (13) Å

  • b = 10.7458 (11) Å

  • c = 14.8937 (16) Å

  • β = 111.954 (2)°

  • V = 1870.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 21494 measured reflections

  • 4462 independent reflections

  • 3214 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.143

  • S = 1.01

  • 4462 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1 0.96 2.53 3.033 (3) 113
C14—H14⋯O2 0.93 2.41 2.789 (2) 104
C10—H10B⋯O2i 0.97 2.51 3.480 (2) 173
C22—H22⋯O2i 0.93 2.49 3.409 (3) 171
C17—H17⋯Cg1ii 0.93 2.76 3.573 (2) 146
C21—H21ACg2ii 0.96 2.84 3.635 (3) 140
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON.

Supporting information


Comment top

Indole is the parent substance of a large number of important compounds that occur in nature with significant biological activity (Kaushik et al., 2013). Indole derivatives exhibit antibacterial, antifungal (Singh et al., 2000), antitumour (Andreani et al., 2001), antidepressant (Grinev et al., 1984) and anti-inflammatory (Rodriguez et al., 1985) activities. In view of that importance, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of the indole ring system in the present structure is comparable with the related reported structure (Selvanayagam et al., 2008). Fig. 2 shows a superposition of the indole ring system of (I) with this related reported structure, using Qmol (Gans & Shalloway, 2001); the r.m.s. deviation is 0.016 Å.

The sum of the angles at N1 of the indole ring (360°) is in accordance with sp2 hybridization. The widening of the C14—C15—C20 and N1—C8—C22 bond angles [122.6 (2)° and 122.4 (2)°, respectively] are due to the short contacts H10A···H20 (2.2 Å) and H10B···H22 (2.1 Å).

The indole ring system is planar with a maximum deviation of 0.019 (1) Å for atom C3. The carbaldehyde group atoms (C22 and O1) and methyl atom (C9) deviate 0.111 (1), 0.088 (2) and 0.065 (1) Å, respectively from the best plane of the indole ring. The methoxy group atoms (O4 and C21) deviate -0.015 (1) and -0.040 (1) Å, respectively from the best plane of the methoxy phenyl ring. This ring makes a dihedral angle of 60.7 (1)° with indole ring.

In addition to the van der Waals interactions, the molecular structure is influenced by intramolecular C—H···O interactions (Table 1). In the molecular packing, two C—H···O hydrogen bonds form a V-shaped chain arrangement along 'bc' plane of the unit cell (Fig. 3). In addition to this weak C—H···π and π···π interactions stabilizes the molecular packing (Fig. 4 and Fig. 5).

Related literature top

For general background to indole derivatives, see: Kaushik et al. (2013); Singh et al. (2000); Andreani et al. (2001); Grinev et al. (1984); Rodriguez et al. (1985). For a related structure, see: Selvanayagam et al. (2008). For the superposition of a related structure, see: Gans & Shalloway (2001).

Experimental top

POCl3 (1 ml) was added drop wise with stirring to DMF (4.25 ml) at 10–20°C over 20 minutes. Then (E)-methyl 4-(3-methyl-1H-indol-1-yl)-3-(4-methoxy phenyl)but-2-enoate (1 g) in DMF (3 ml) was added slowly with stirring and the mixture was heated. Excess concentrated aqueous solution of NaOAc was added. The mixture was stirred for 30 minutes at 28°C and extracted with AcOEt (3x20ml). The dried (MgSO4) extract after removal of solvent furnished a pale yellow oil (1.10 g), which was chromatographed on a silica gel column. Elution with light petroleum-ether/ethyl acetate (3:1) afforded the product in 80% yield. Single crystals of (I) were obtained by slow evaporation of methanol solution of the title compound at room temperature.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and Uiso(H) = 1.5Ueq(methyl C) and Uiso(H) = 1.2Ueq for other C atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Superposition of (I) (yellow) with the similar reported structure Selvanayagam et al. (2008) (red).
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed down the c axis; H-bonds are shown as dashed lines·For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along the a axis; C—H···π interactions are shown as dashed lines·For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
[Figure 5] Fig. 5. Molecular packing of the title compound, showing π···π interactions. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
Methyl (2Z)-2-[(2-formyl-3-methyl-1H-indol-1-yl)methyl]-3-(4-methoxyphenyl)prop-2-enoate top
Crystal data top
C22H21NO4F(000) = 768
Mr = 363.40Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.6009 (13) ÅCell parameters from 13428 reflections
b = 10.7458 (11) Åθ = 2.2–27.7°
c = 14.8937 (16) ŵ = 0.09 mm1
β = 111.954 (2)°T = 292 K
V = 1870.5 (3) Å3Block, colourless
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 1.8°
ω scansh = 1616
21494 measured reflectionsk = 1414
4462 independent reflectionsl = 1919
3214 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.069P)2 + 0.3592P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4462 reflectionsΔρmax = 0.21 e Å3
247 parametersΔρmin = 0.15 e Å3
Crystal data top
C22H21NO4V = 1870.5 (3) Å3
Mr = 363.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6009 (13) ŵ = 0.09 mm1
b = 10.7458 (11) ÅT = 292 K
c = 14.8937 (16) Å0.20 × 0.18 × 0.16 mm
β = 111.954 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3214 reflections with I > 2σ(I)
21494 measured reflectionsRint = 0.030
4462 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
4462 reflectionsΔρmin = 0.15 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.09513 (15)0.60014 (19)0.38553 (11)0.1024 (6)
O20.73093 (13)0.23166 (15)0.23313 (11)0.0890 (5)
O30.83214 (11)0.40122 (13)0.29526 (9)0.0682 (4)
O40.44555 (12)0.52878 (12)0.32562 (9)0.0700 (4)
N10.93920 (10)0.46791 (12)0.15072 (9)0.0437 (3)
C10.97938 (13)0.39988 (13)0.09250 (12)0.0453 (4)
C20.92204 (16)0.35281 (16)0.00003 (13)0.0555 (4)
H20.84370.36400.03210.067*
C30.9859 (2)0.28912 (17)0.04190 (16)0.0710 (6)
H30.94990.25700.10390.085*
C41.1026 (2)0.27130 (18)0.00578 (19)0.0789 (7)
H41.14280.22670.02470.095*
C51.15958 (17)0.31737 (18)0.09595 (18)0.0709 (6)
H51.23790.30470.12700.085*
C61.09796 (14)0.38477 (15)0.14165 (13)0.0534 (4)
C71.12943 (14)0.44737 (16)0.23098 (13)0.0559 (4)
C81.03115 (13)0.49785 (15)0.23520 (12)0.0481 (4)
C91.24838 (17)0.4581 (3)0.30555 (18)0.0886 (7)
H9A1.25840.53880.33520.133*
H9B1.30280.44710.27510.133*
H9C1.26010.39520.35410.133*
C100.81868 (12)0.50076 (14)0.12346 (12)0.0450 (3)
H10A0.79000.53480.05840.054*
H10B0.81180.56460.16700.054*
C110.74697 (12)0.39005 (14)0.12710 (12)0.0469 (4)
C120.76846 (14)0.33019 (18)0.22202 (13)0.0571 (4)
C130.8478 (2)0.3602 (3)0.39105 (15)0.0955 (8)
H13A0.77490.35650.39760.143*
H13B0.89670.41760.43760.143*
H13C0.88220.27910.40200.143*
C140.66281 (13)0.34297 (16)0.05107 (12)0.0521 (4)
H140.63210.26850.06210.063*
C150.61153 (12)0.39180 (15)0.04761 (12)0.0483 (4)
C160.57841 (15)0.31163 (16)0.12596 (13)0.0573 (4)
H160.59270.22700.11500.069*
C170.52504 (16)0.35310 (17)0.21948 (13)0.0588 (4)
H170.50590.29730.27080.071*
C180.49998 (14)0.47814 (16)0.23680 (12)0.0514 (4)
C190.53108 (14)0.55973 (15)0.15976 (13)0.0530 (4)
H190.51470.64400.17080.064*
C200.58585 (13)0.51745 (15)0.06720 (12)0.0508 (4)
H200.60640.57390.01620.061*
C210.4105 (3)0.4468 (2)0.40614 (16)0.0957 (8)
H21A0.47600.40350.40860.144*
H21B0.37510.49370.46460.144*
H21C0.35670.38770.39960.144*
C221.01886 (18)0.57581 (18)0.30950 (14)0.0651 (5)
H220.94710.60980.29810.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0958 (12)0.1354 (16)0.0626 (9)0.0236 (11)0.0141 (8)0.0265 (9)
O20.0856 (10)0.0859 (10)0.0928 (11)0.0224 (8)0.0304 (8)0.0320 (8)
O30.0729 (8)0.0836 (9)0.0526 (7)0.0043 (7)0.0284 (6)0.0071 (6)
O40.0881 (9)0.0592 (8)0.0563 (8)0.0043 (7)0.0197 (7)0.0027 (6)
N10.0396 (6)0.0444 (7)0.0481 (7)0.0008 (5)0.0174 (6)0.0023 (5)
C10.0491 (8)0.0369 (7)0.0578 (9)0.0016 (6)0.0290 (7)0.0064 (7)
C20.0657 (10)0.0494 (9)0.0614 (10)0.0101 (8)0.0351 (9)0.0008 (8)
C30.0993 (16)0.0541 (11)0.0823 (13)0.0183 (10)0.0601 (12)0.0107 (9)
C40.1000 (17)0.0518 (11)0.1216 (19)0.0048 (10)0.0836 (16)0.0062 (12)
C50.0616 (11)0.0558 (11)0.1150 (17)0.0047 (9)0.0556 (12)0.0115 (11)
C60.0482 (9)0.0452 (9)0.0750 (12)0.0008 (7)0.0324 (8)0.0135 (8)
C70.0436 (8)0.0562 (10)0.0655 (11)0.0032 (7)0.0177 (8)0.0156 (8)
C80.0448 (8)0.0475 (8)0.0499 (9)0.0061 (6)0.0152 (7)0.0068 (7)
C90.0472 (11)0.1087 (18)0.0958 (17)0.0028 (11)0.0107 (10)0.0148 (14)
C100.0420 (8)0.0429 (8)0.0502 (8)0.0020 (6)0.0173 (7)0.0027 (7)
C110.0396 (8)0.0479 (9)0.0575 (10)0.0023 (6)0.0232 (7)0.0046 (7)
C120.0454 (9)0.0649 (11)0.0660 (11)0.0019 (8)0.0266 (8)0.0137 (9)
C130.0927 (16)0.144 (2)0.0604 (13)0.0094 (15)0.0402 (12)0.0229 (14)
C140.0445 (8)0.0483 (9)0.0676 (11)0.0025 (7)0.0255 (8)0.0015 (8)
C150.0373 (7)0.0489 (9)0.0602 (10)0.0023 (6)0.0201 (7)0.0044 (7)
C160.0573 (10)0.0437 (9)0.0696 (12)0.0010 (7)0.0221 (9)0.0051 (8)
C170.0648 (11)0.0505 (10)0.0601 (11)0.0014 (8)0.0220 (9)0.0133 (8)
C180.0484 (9)0.0522 (9)0.0554 (10)0.0004 (7)0.0215 (8)0.0047 (7)
C190.0497 (9)0.0432 (8)0.0661 (11)0.0039 (7)0.0216 (8)0.0042 (8)
C200.0442 (8)0.0478 (9)0.0598 (10)0.0007 (7)0.0186 (7)0.0122 (7)
C210.138 (2)0.0762 (15)0.0564 (12)0.0015 (14)0.0173 (13)0.0096 (11)
C220.0671 (11)0.0654 (11)0.0594 (11)0.0121 (9)0.0198 (9)0.0061 (9)
Geometric parameters (Å, º) top
O1—C221.209 (2)C9—H9C0.9600
O2—C121.196 (2)C10—C111.507 (2)
O3—C121.327 (2)C10—H10A0.9700
O3—C131.435 (2)C10—H10B0.9700
O4—C181.356 (2)C11—C141.328 (2)
O4—C211.419 (2)C11—C121.483 (2)
N1—C11.3678 (19)C13—H13A0.9600
N1—C81.3926 (19)C13—H13B0.9600
N1—C101.4610 (18)C13—H13C0.9600
C1—C21.390 (2)C14—C151.464 (2)
C1—C61.406 (2)C14—H140.9300
C2—C31.371 (3)C15—C161.383 (2)
C2—H20.9300C15—C201.394 (2)
C3—C41.387 (3)C16—C171.375 (2)
C3—H30.9300C16—H160.9300
C4—C51.358 (3)C17—C181.382 (2)
C4—H40.9300C17—H170.9300
C5—C61.409 (3)C18—C191.379 (2)
C5—H50.9300C19—C201.368 (2)
C6—C71.409 (3)C19—H190.9300
C7—C81.375 (2)C20—H200.9300
C7—C91.499 (3)C21—H21A0.9600
C8—C221.442 (3)C21—H21B0.9600
C9—H9A0.9600C21—H21C0.9600
C9—H9B0.9600C22—H220.9300
C12—O3—C13117.18 (17)C14—C11—C10124.63 (15)
C18—O4—C21117.36 (15)C12—C11—C10118.58 (14)
C1—N1—C8108.43 (13)O2—C12—O3122.96 (17)
C1—N1—C10123.07 (13)O2—C12—C11125.11 (18)
C8—N1—C10128.50 (13)O3—C12—C11111.89 (15)
N1—C1—C2130.12 (15)O3—C13—H13A109.5
N1—C1—C6107.75 (14)O3—C13—H13B109.5
C2—C1—C6122.11 (15)H13A—C13—H13B109.5
C3—C2—C1117.19 (18)O3—C13—H13C109.5
C3—C2—H2121.4H13A—C13—H13C109.5
C1—C2—H2121.4H13B—C13—H13C109.5
C2—C3—C4121.7 (2)C11—C14—C15129.15 (15)
C2—C3—H3119.1C11—C14—H14115.4
C4—C3—H3119.1C15—C14—H14115.4
C5—C4—C3121.58 (18)C16—C15—C20116.97 (16)
C5—C4—H4119.2C16—C15—C14120.29 (15)
C3—C4—H4119.2C20—C15—C14122.56 (15)
C4—C5—C6118.82 (19)C17—C16—C15122.12 (16)
C4—C5—H5120.6C17—C16—H16118.9
C6—C5—H5120.6C15—C16—H16118.9
C1—C6—C7107.79 (14)C16—C17—C18119.69 (16)
C1—C6—C5118.56 (18)C16—C17—H17120.2
C7—C6—C5133.63 (18)C18—C17—H17120.2
C8—C7—C6106.93 (14)O4—C18—C19116.06 (15)
C8—C7—C9127.16 (19)O4—C18—C17124.70 (15)
C6—C7—C9125.90 (18)C19—C18—C17119.24 (16)
C7—C8—N1109.09 (15)C20—C19—C18120.44 (16)
C7—C8—C22128.42 (16)C20—C19—H19119.8
N1—C8—C22122.41 (15)C18—C19—H19119.8
C7—C9—H9A109.5C19—C20—C15121.53 (15)
C7—C9—H9B109.5C19—C20—H20119.2
H9A—C9—H9B109.5C15—C20—H20119.2
C7—C9—H9C109.5O4—C21—H21A109.5
H9A—C9—H9C109.5O4—C21—H21B109.5
H9B—C9—H9C109.5H21A—C21—H21B109.5
N1—C10—C11111.97 (12)O4—C21—H21C109.5
N1—C10—H10A109.2H21A—C21—H21C109.5
C11—C10—H10A109.2H21B—C21—H21C109.5
N1—C10—H10B109.2O1—C22—C8124.7 (2)
C11—C10—H10B109.2O1—C22—H22117.7
H10A—C10—H10B107.9C8—C22—H22117.7
C14—C11—C12116.77 (15)
C8—N1—C1—C2177.30 (15)C8—N1—C10—C11108.02 (17)
C10—N1—C1—C22.3 (2)N1—C10—C11—C14117.11 (17)
C8—N1—C1—C61.06 (16)N1—C10—C11—C1264.62 (18)
C10—N1—C1—C6179.33 (12)C13—O3—C12—O25.0 (3)
N1—C1—C2—C3178.78 (15)C13—O3—C12—C11172.89 (16)
C6—C1—C2—C30.6 (2)C14—C11—C12—O213.9 (3)
C1—C2—C3—C40.4 (3)C10—C11—C12—O2167.73 (18)
C2—C3—C4—C50.8 (3)C14—C11—C12—O3163.96 (15)
C3—C4—C5—C60.0 (3)C10—C11—C12—O314.4 (2)
N1—C1—C6—C70.97 (17)C12—C11—C14—C15170.52 (15)
C2—C1—C6—C7177.54 (14)C10—C11—C14—C157.8 (3)
N1—C1—C6—C5179.87 (14)C11—C14—C15—C16142.41 (18)
C2—C1—C6—C51.4 (2)C11—C14—C15—C2042.6 (2)
C4—C5—C6—C11.0 (3)C20—C15—C16—C171.6 (2)
C4—C5—C6—C7177.55 (18)C14—C15—C16—C17176.85 (16)
C1—C6—C7—C80.51 (17)C15—C16—C17—C182.0 (3)
C5—C6—C7—C8179.17 (17)C21—O4—C18—C19178.81 (19)
C1—C6—C7—C9178.39 (17)C21—O4—C18—C171.0 (3)
C5—C6—C7—C90.3 (3)C16—C17—C18—O4178.54 (16)
C6—C7—C8—N10.14 (17)C16—C17—C18—C191.2 (3)
C9—C7—C8—N1179.02 (17)O4—C18—C19—C20179.64 (15)
C6—C7—C8—C22176.54 (16)C17—C18—C19—C200.2 (2)
C9—C7—C8—C222.3 (3)C18—C19—C20—C150.2 (2)
C1—N1—C8—C70.75 (17)C16—C15—C20—C190.4 (2)
C10—N1—C8—C7179.66 (13)C14—C15—C20—C19175.62 (14)
C1—N1—C8—C22176.17 (14)C7—C8—C22—O16.8 (3)
C10—N1—C8—C223.4 (2)N1—C8—C22—O1176.90 (19)
C1—N1—C10—C1172.45 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.962.533.033 (3)113
C14—H14···O20.932.412.789 (2)104
C10—H10B···O2i0.972.513.480 (2)173
C22—H22···O2i0.932.493.409 (3)171
C17—H17···Cg1ii0.932.763.573 (2)146
C21—H21A···Cg2ii0.962.843.635 (3)140
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.962.533.033 (3)113.0
C14—H14···O20.932.412.789 (2)104.1
C10—H10B···O2i0.972.513.480 (2)173.2
C22—H22···O2i0.932.493.409 (3)171.3
C17—H17···Cg1ii0.932.763.573 (2)146
C21—H21A···Cg2ii0.962.843.635 (3)140
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under DST–Fast Track Scheme. SS also thanks the Vice Chancellor and management of the Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159–163.  CAS Google Scholar
First citationKaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSelvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2008). Acta Cryst. E64, o1163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o431-o432
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds