organic compounds
6-Chloro-2-chloromethyl-4-phenylquinazoline 3-oxide
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cR. L. Fine Chem, Bengaluru, 560 064, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C15H10Cl2N2O, the dihedral angle between the mean planes of the phenyl ring and the 10-membered quinazoline ring is 63.3 (4)°. In the crystal, pairs of weak C—H⋯O interactions link the molecules into centrosymmetric dimers, forming R22(10) graph-set ring motifs. In addition, weak π–π stacking interactions [minimum centroid–centroid separation = 3.6810 (8) Å] are observed, which contribute to the formation of a supramolecular assembly in the packing array.
CCDC reference: 990666
Related literature
For general background and the pharmacological properties of quinazoline derivatives, see: Andries et al. (2005); Al-Rashood et al. (2006); Ghorab et al. (2010a,b,c); Harris & Thorarensen (2004); Jantova et al. (2004); Rádl et al. (2000); Klepser & Klepser (1997). For related structures, see: Brown & Gainsford (1979); El-Brollosy et al. (2012); Shi et al. (2004); Suguna et al. (1982); Xie & Li (2006). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 990666
10.1107/S1600536814005303/zs2289sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814005303/zs2289Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814005303/zs2289Isup3.cml
6-chloro-2-(chloromethyl)-3,4-dihydro-4-phenylquinazoline (10 g, 0.03434 mol) was dissolved in 40 ml of methanol and stirred for 5 mins at room temperature. To this mixture, 10 g of 50% H2O2 solution (5 g, 0.147 mol) was added dropwise over 30 mins, maintaining the temperature below 313 K, then stirred for 6 hrs in a RB flask, cooled, filtered and dried at 333 K (Fig. 3). The precipitate was dissolved in a (1:1) mixture of toluene and methylene dichloride at 313 K. After a few days, X-ray quality crystals appeared on slow evaporation.
All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H bond lengths of 0.93Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C15H10Cl2N2O | F(000) = 624 |
Mr = 305.15 | Dx = 1.508 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2030 (3) Å | Cell parameters from 5430 reflections |
b = 14.3203 (5) Å | θ = 3.1–32.8° |
c = 11.8477 (4) Å | µ = 0.48 mm−1 |
β = 105.016 (4)° | T = 173 K |
V = 1344.22 (9) Å3 | Irregular, colourless |
Z = 4 | 0.22 × 0.16 × 0.08 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 4599 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3778 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 32.8°, θmin = 3.1° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | k = −21→21 |
Tmin = 0.829, Tmax = 1.000 | l = −17→17 |
17250 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0411P)2 + 0.6066P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4599 reflections | Δρmax = 0.44 e Å−3 |
181 parameters | Δρmin = −0.48 e Å−3 |
0 restraints |
C15H10Cl2N2O | V = 1344.22 (9) Å3 |
Mr = 305.15 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.2030 (3) Å | µ = 0.48 mm−1 |
b = 14.3203 (5) Å | T = 173 K |
c = 11.8477 (4) Å | 0.22 × 0.16 × 0.08 mm |
β = 105.016 (4)° |
Agilent Xcalibur (Eos, Gemini) diffractometer | 4599 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 3778 reflections with I > 2σ(I) |
Tmin = 0.829, Tmax = 1.000 | Rint = 0.033 |
17250 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.44 e Å−3 |
4599 reflections | Δρmin = −0.48 e Å−3 |
181 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.80516 (4) | 0.57556 (2) | 0.41153 (3) | 0.02910 (9) | |
Cl2 | 1.25299 (5) | 0.02361 (3) | 0.52366 (4) | 0.03835 (10) | |
O1 | 0.70795 (12) | 0.42471 (7) | 0.59735 (8) | 0.0258 (2) | |
N1 | 0.77812 (13) | 0.37116 (7) | 0.53548 (8) | 0.01880 (19) | |
N2 | 0.80968 (14) | 0.34057 (8) | 0.34467 (9) | 0.0222 (2) | |
C1 | 0.75384 (16) | 0.39185 (9) | 0.41604 (10) | 0.0206 (2) | |
C2 | 0.90492 (15) | 0.26388 (9) | 0.38678 (10) | 0.0202 (2) | |
C3 | 0.97031 (17) | 0.20909 (10) | 0.31009 (11) | 0.0255 (3) | |
H3 | 0.9429 | 0.2234 | 0.2308 | 0.031* | |
C4 | 1.07367 (17) | 0.13503 (10) | 0.35109 (12) | 0.0269 (3) | |
H4 | 1.1158 | 0.0984 | 0.3003 | 0.032* | |
C5 | 1.11527 (16) | 0.11514 (9) | 0.47137 (12) | 0.0244 (2) | |
C6 | 1.05319 (16) | 0.16552 (9) | 0.54919 (11) | 0.0222 (2) | |
H6 | 1.0832 | 0.1507 | 0.6283 | 0.027* | |
C7 | 0.94247 (15) | 0.24056 (8) | 0.50668 (10) | 0.0188 (2) | |
C8 | 0.86931 (15) | 0.29543 (8) | 0.58051 (10) | 0.0181 (2) | |
C9 | 0.88618 (15) | 0.27188 (8) | 0.70445 (10) | 0.0193 (2) | |
C10 | 0.96680 (16) | 0.33233 (9) | 0.79356 (10) | 0.0229 (2) | |
H10 | 1.0080 | 0.3895 | 0.7758 | 0.027* | |
C11 | 0.98512 (17) | 0.30648 (10) | 0.90932 (11) | 0.0270 (3) | |
H11 | 1.0415 | 0.3458 | 0.9693 | 0.032* | |
C12 | 0.91999 (18) | 0.22262 (10) | 0.93578 (11) | 0.0282 (3) | |
H12 | 0.9316 | 0.2063 | 1.0134 | 0.034* | |
C13 | 0.83771 (18) | 0.16286 (10) | 0.84755 (12) | 0.0273 (3) | |
H13 | 0.7928 | 0.1069 | 0.8657 | 0.033* | |
C14 | 0.82261 (17) | 0.18705 (9) | 0.73159 (11) | 0.0233 (2) | |
H14 | 0.7699 | 0.1464 | 0.6720 | 0.028* | |
C15 | 0.66120 (17) | 0.47967 (9) | 0.37389 (11) | 0.0237 (2) | |
H15A | 0.5686 | 0.4876 | 0.4099 | 0.028* | |
H15B | 0.6151 | 0.4771 | 0.2898 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02893 (17) | 0.02459 (16) | 0.03348 (17) | −0.00319 (11) | 0.00757 (13) | 0.00339 (12) |
Cl2 | 0.0404 (2) | 0.02622 (17) | 0.0529 (2) | 0.00878 (14) | 0.02027 (18) | 0.00153 (15) |
O1 | 0.0310 (5) | 0.0258 (5) | 0.0227 (4) | 0.0072 (4) | 0.0109 (4) | −0.0010 (3) |
N1 | 0.0198 (5) | 0.0202 (5) | 0.0164 (4) | 0.0000 (4) | 0.0047 (4) | −0.0005 (3) |
N2 | 0.0224 (5) | 0.0271 (5) | 0.0160 (4) | −0.0036 (4) | 0.0032 (4) | −0.0006 (4) |
C1 | 0.0204 (5) | 0.0232 (6) | 0.0167 (5) | −0.0026 (4) | 0.0021 (4) | 0.0017 (4) |
C2 | 0.0196 (5) | 0.0242 (6) | 0.0165 (5) | −0.0044 (4) | 0.0041 (4) | −0.0027 (4) |
C3 | 0.0258 (6) | 0.0326 (7) | 0.0188 (5) | −0.0067 (5) | 0.0071 (5) | −0.0074 (5) |
C4 | 0.0255 (6) | 0.0295 (6) | 0.0283 (6) | −0.0066 (5) | 0.0116 (5) | −0.0119 (5) |
C5 | 0.0222 (6) | 0.0205 (6) | 0.0323 (6) | −0.0023 (4) | 0.0102 (5) | −0.0048 (5) |
C6 | 0.0237 (6) | 0.0212 (5) | 0.0229 (5) | −0.0011 (4) | 0.0084 (5) | −0.0002 (4) |
C7 | 0.0194 (5) | 0.0205 (5) | 0.0170 (5) | −0.0033 (4) | 0.0055 (4) | −0.0018 (4) |
C8 | 0.0195 (5) | 0.0196 (5) | 0.0151 (4) | −0.0020 (4) | 0.0044 (4) | −0.0003 (4) |
C9 | 0.0203 (5) | 0.0223 (5) | 0.0162 (5) | 0.0030 (4) | 0.0062 (4) | 0.0011 (4) |
C10 | 0.0226 (6) | 0.0269 (6) | 0.0190 (5) | −0.0001 (5) | 0.0052 (4) | −0.0005 (4) |
C11 | 0.0247 (6) | 0.0378 (7) | 0.0176 (5) | 0.0051 (5) | 0.0042 (5) | −0.0021 (5) |
C12 | 0.0284 (7) | 0.0389 (7) | 0.0189 (5) | 0.0116 (5) | 0.0089 (5) | 0.0077 (5) |
C13 | 0.0317 (7) | 0.0270 (6) | 0.0264 (6) | 0.0066 (5) | 0.0135 (5) | 0.0081 (5) |
C14 | 0.0266 (6) | 0.0228 (6) | 0.0218 (5) | 0.0010 (5) | 0.0087 (5) | 0.0011 (4) |
C15 | 0.0232 (6) | 0.0238 (6) | 0.0214 (5) | −0.0008 (4) | 0.0011 (4) | 0.0038 (4) |
Cl1—C15 | 1.7905 (13) | C6—C7 | 1.4128 (17) |
Cl2—C5 | 1.7366 (14) | C7—C8 | 1.4194 (16) |
O1—N1 | 1.2943 (13) | C8—C9 | 1.4778 (15) |
N1—C1 | 1.4086 (15) | C9—C10 | 1.3926 (17) |
N1—C8 | 1.3467 (15) | C9—C14 | 1.3921 (17) |
N2—C1 | 1.2901 (16) | C10—H10 | 0.9300 |
N2—C2 | 1.3651 (17) | C10—C11 | 1.3906 (17) |
C1—C15 | 1.4872 (17) | C11—H11 | 0.9300 |
C2—C3 | 1.4076 (17) | C11—C12 | 1.383 (2) |
C2—C7 | 1.4134 (16) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.384 (2) |
C3—C4 | 1.366 (2) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C13—C14 | 1.3909 (17) |
C4—C5 | 1.4058 (19) | C14—H14 | 0.9300 |
C5—C6 | 1.3686 (17) | C15—H15A | 0.9700 |
C6—H6 | 0.9300 | C15—H15B | 0.9700 |
O1—N1—C1 | 118.46 (10) | N1—C8—C9 | 118.47 (10) |
O1—N1—C8 | 122.39 (10) | C7—C8—C9 | 122.71 (10) |
C8—N1—C1 | 119.13 (10) | C10—C9—C8 | 121.01 (11) |
C1—N2—C2 | 119.02 (10) | C14—C9—C8 | 118.97 (11) |
N1—C1—C15 | 116.24 (11) | C14—C9—C10 | 120.01 (11) |
N2—C1—N1 | 123.84 (11) | C9—C10—H10 | 120.3 |
N2—C1—C15 | 119.90 (11) | C11—C10—C9 | 119.40 (12) |
N2—C2—C3 | 119.36 (11) | C11—C10—H10 | 120.3 |
N2—C2—C7 | 120.83 (11) | C10—C11—H11 | 119.8 |
C3—C2—C7 | 119.79 (12) | C12—C11—C10 | 120.36 (13) |
C2—C3—H3 | 119.7 | C12—C11—H11 | 119.8 |
C4—C3—C2 | 120.56 (12) | C11—C12—H12 | 119.8 |
C4—C3—H3 | 119.7 | C11—C12—C13 | 120.47 (12) |
C3—C4—H4 | 120.6 | C13—C12—H12 | 119.8 |
C3—C4—C5 | 118.88 (12) | C12—C13—H13 | 120.2 |
C5—C4—H4 | 120.6 | C12—C13—C14 | 119.56 (13) |
C4—C5—Cl2 | 118.63 (10) | C14—C13—H13 | 120.2 |
C6—C5—Cl2 | 118.60 (11) | C9—C14—H14 | 119.9 |
C6—C5—C4 | 122.76 (12) | C13—C14—C9 | 120.18 (12) |
C5—C6—H6 | 120.7 | C13—C14—H14 | 119.9 |
C5—C6—C7 | 118.54 (12) | Cl1—C15—H15A | 110.0 |
C7—C6—H6 | 120.7 | Cl1—C15—H15B | 110.0 |
C2—C7—C8 | 118.15 (11) | C1—C15—Cl1 | 108.56 (9) |
C6—C7—C2 | 119.38 (11) | C1—C15—H15A | 110.0 |
C6—C7—C8 | 122.46 (11) | C1—C15—H15B | 110.0 |
N1—C8—C7 | 118.80 (10) | H15A—C15—H15B | 108.4 |
Cl2—C5—C6—C7 | 179.38 (9) | C3—C2—C7—C8 | −177.77 (11) |
O1—N1—C1—N2 | −176.01 (11) | C3—C4—C5—Cl2 | −177.62 (10) |
O1—N1—C1—C15 | 5.43 (16) | C3—C4—C5—C6 | 1.7 (2) |
O1—N1—C8—C7 | −179.81 (11) | C4—C5—C6—C7 | 0.10 (19) |
O1—N1—C8—C9 | 1.37 (17) | C5—C6—C7—C2 | −2.69 (18) |
N1—C1—C15—Cl1 | 80.38 (12) | C5—C6—C7—C8 | 178.70 (11) |
N1—C8—C9—C10 | −63.17 (16) | C6—C7—C8—N1 | 173.70 (11) |
N1—C8—C9—C14 | 117.95 (13) | C6—C7—C8—C9 | −7.54 (18) |
N2—C1—C15—Cl1 | −98.24 (12) | C7—C2—C3—C4 | −1.82 (18) |
N2—C2—C3—C4 | 176.35 (12) | C7—C8—C9—C10 | 118.06 (14) |
N2—C2—C7—C6 | −174.59 (11) | C7—C8—C9—C14 | −60.81 (16) |
N2—C2—C7—C8 | 4.09 (17) | C8—N1—C1—N2 | 2.29 (18) |
C1—N1—C8—C7 | 1.96 (16) | C8—N1—C1—C15 | −176.27 (11) |
C1—N1—C8—C9 | −176.85 (11) | C8—C9—C10—C11 | −177.93 (12) |
C1—N2—C2—C3 | −178.21 (12) | C8—C9—C14—C13 | 179.60 (12) |
C1—N2—C2—C7 | −0.05 (18) | C9—C10—C11—C12 | −1.71 (19) |
C2—N2—C1—N1 | −3.24 (18) | C10—C9—C14—C13 | 0.71 (19) |
C2—N2—C1—C15 | 175.27 (11) | C10—C11—C12—C13 | 0.8 (2) |
C2—C3—C4—C5 | −0.76 (19) | C11—C12—C13—C14 | 0.8 (2) |
C2—C7—C8—N1 | −4.93 (17) | C12—C13—C14—C9 | −1.6 (2) |
C2—C7—C8—C9 | 173.83 (11) | C14—C9—C10—C11 | 0.93 (19) |
C3—C2—C7—C6 | 3.56 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O1i | 0.97 | 2.57 | 3.4199 (16) | 146 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O1i | 0.97 | 2.57 | 3.4199 (16) | 146 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
TSY thanks the University of Mysore for research facilities and also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Al-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608-8621. Web of Science PubMed CAS Google Scholar
Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, 307, 223–227. Web of Science CrossRef PubMed CAS Google Scholar
Brown, K. L. & Gainsford, G. J. (1979). Acta Cryst. B35, 2276–2278. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El-Brollosy, N. R., Dege, N., Demirtaş, G., Attia, M. I., El-Emam, A. A. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1866–o1867. CSD CrossRef CAS IUCr Journals Google Scholar
Ghorab, M. M., Ismail, Z. H. & Abdalla, M. (2010a). Arzneim. Forsch. Drug Res. 60, 87–95. CAS Google Scholar
Ghorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010b). Eur. J. Med. Chem., 45, 3677–3684. Web of Science CrossRef CAS PubMed Google Scholar
Ghorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2010c). Bioorg. Med. Chem. Lett., 20, 6316–6320. Web of Science CrossRef CAS PubMed Google Scholar
Harris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213–2243. Web of Science CrossRef PubMed CAS Google Scholar
Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratislava), 59, 741–752. CAS Google Scholar
Klepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40–73. CrossRef CAS PubMed Web of Science Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rádl, S., Hezky, P., Proska, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim), 333, 381–386. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, D., Li, Z., Shi, C., Wang, X. & Zhang, Y. (2004). Acta Cryst. E60, o2011–o2013. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Suguna, K., Ramakumar, S. & Rajappa, S. (1982). Acta Cryst. B38, 1654–1656. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Xie, C. & Li, H.-X. (2006). Acta Cryst. E62, o5632–o5633. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinazolines have been intensively studied for their interesting pharmacological properties such as anticancer activity (Ghorab et al., 2010a,b,c). A number of quinozolines have also been clinically used as antifungal, antibacterial and antiprotozoic drugs (Jantova et al., 2004; Harris & Thorarensen, 2004) and antituberculotic agents (Andries et al., 2005) and have pharmacological properties which include antitumor (Al-Rashood et al., 2006) and analgesic (Rádl et al., 2000) properties. Dihydropyrimidine derivatives (DHPMs) may also be applied as antimicrobial, anti-inflammatory and quinazoline analogs and have showed remarkable activity against the opportunistic infections of some microorganisms proved to be the prinicipal cause of death in patients with immunocompromised diseases such as acquired immune deficiency syndrome (Klepser & Klepser, 1997) and fused quinazoline systems, which are also important pharmacophores. The crystal structures of some related compounds, viz., 2-phenylquinazoline 1,3-dioxide (Brown & Gainsford, 1979), 1-{[(2,3-dihydro-1H-inden-2-yl)oxy]methyl}quinazoline-2,4(1H, 3H)-dione (El-Brollosy et al., 2012), 3-(4-chlorophenyl)-3,4-dihydroquinazolin-2(1H)-one (Shi et al., 2004), (4S)-2,4-dimethyl-1,2-dihydropyrazino[2,1-b]quinazoline-3(4H)- 6-dione (Suguna et al., 1982) and 2-diethylamino-3-phenylquinazolin- 4(3H)-one (Xie et al., 2006), have been reported. In view of the importance of the title compound, (I), C15H11Cl2N2O, this paper reports its crystal structure.
In the title compound the dihedral angle between the mean planes of the phenyl ring and the 10-membered quinazolin ring is 63.3 (4)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, a weak C15—H15A···O1 intermolecular interaction link the molecules into centrosymmetric dimers forming R22(10) graph set ring motifs (Fig. 2). In addition, weak Cg1—Cg3 and Cg2—Cg3 π—π stacking intermolecular interactions are observed which contribute to crystal packing stability (Cg1—Cg3 = 3.6810 (8)Å; x - 1/2,-y + 1/2, z - 1/2; Cg2—Cg3 = 3.8821 (8)Å; x + 1/2,-y + 1/2, z - 1/2; Cg1 = N(1)/C(1)/N(2)/C(2)/C(7)/C(8); Cg2 = C2–C7; Cg3 = C9–C14). No classical hydrogen bonds were found.