organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o440-o441

6-Chloro-2-chloro­methyl-4-phenyl­quinazoline 3-oxide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cR. L. Fine Chem, Bengaluru, 560 064, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 2 March 2014; accepted 7 March 2014; online 15 March 2014)

In the title compound, C15H10Cl2N2O, the dihedral angle between the mean planes of the phenyl ring and the 10-membered quinazoline ring is 63.3 (4)°. In the crystal, pairs of weak C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, forming R22(10) graph-set ring motifs. In addition, weak ππ stacking inter­actions [minimum centroid–centroid separation = 3.6810 (8) Å] are observed, which contribute to the formation of a supramolecular assembly in the packing array.

Related literature

For general background and the pharmacological properties of quinazoline derivatives, see: Andries et al. (2005[Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, 307, 223-227.]); Al-Rashood et al. (2006[Al-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608-8621.]); Ghorab et al. (2010a[Ghorab, M. M., Ismail, Z. H. & Abdalla, M. (2010a). Arzneim. Forsch. Drug Res. 60, 87-95.],b[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010b). Eur. J. Med. Chem., 45, 3677-3684.],c[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2010c). Bioorg. Med. Chem. Lett., 20, 6316-6320.]); Harris & Thorarensen (2004[Harris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213-2243.]); Jantova et al. (2004[Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratislava), 59, 741-752.]); Rádl et al. (2000[Rádl, S., Hezky, P., Proska, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim), 333, 381-386.]); Klepser & Klepser (1997[Klepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40-73.]). For related structures, see: Brown & Gainsford (1979[Brown, K. L. & Gainsford, G. J. (1979). Acta Cryst. B35, 2276-2278.]); El-Brollosy et al. (2012[El-Brollosy, N. R., Dege, N., Demirtaş, G., Attia, M. I., El-Emam, A. A. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1866-o1867.]); Shi et al. (2004[Shi, D., Li, Z., Shi, C., Wang, X. & Zhang, Y. (2004). Acta Cryst. E60, o2011-o2013.]); Suguna et al. (1982[Suguna, K., Ramakumar, S. & Rajappa, S. (1982). Acta Cryst. B38, 1654-1656.]); Xie & Li (2006[Xie, C. & Li, H.-X. (2006). Acta Cryst. E62, o5632-o5633.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Cl2N2O

  • Mr = 305.15

  • Monoclinic, P 21 /n

  • a = 8.2030 (3) Å

  • b = 14.3203 (5) Å

  • c = 11.8477 (4) Å

  • β = 105.016 (4)°

  • V = 1344.22 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 173 K

  • 0.22 × 0.16 × 0.08 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.829, Tmax = 1.000

  • 17250 measured reflections

  • 4599 independent reflections

  • 3778 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.03

  • 4599 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1i 0.97 2.57 3.4199 (16) 146
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Quinazolines have been intensively studied for their interesting pharmacological properties such as anticancer activity (Ghorab et al., 2010a,b,c). A number of quinozolines have also been clinically used as antifungal, antibacterial and antiprotozoic drugs (Jantova et al., 2004; Harris & Thorarensen, 2004) and antituberculotic agents (Andries et al., 2005) and have pharmacological properties which include antitumor (Al-Rashood et al., 2006) and analgesic (Rádl et al., 2000) properties. Dihydropyrimidine derivatives (DHPMs) may also be applied as antimicrobial, anti-inflammatory and quinazoline analogs and have showed remarkable activity against the opportunistic infections of some microorganisms proved to be the prinicipal cause of death in patients with immunocompromised diseases such as acquired immune deficiency syndrome (Klepser & Klepser, 1997) and fused quinazoline systems, which are also important pharmacophores. The crystal structures of some related compounds, viz., 2-phenylquinazoline 1,3-dioxide (Brown & Gainsford, 1979), 1-{[(2,3-dihydro-1H-inden-2-yl)oxy]methyl}quinazoline-2,4(1H, 3H)-dione (El-Brollosy et al., 2012), 3-(4-chlorophenyl)-3,4-dihydroquinazolin-2(1H)-one (Shi et al., 2004), (4S)-2,4-dimethyl-1,2-dihydropyrazino[2,1-b]quinazoline-3(4H)- 6-dione (Suguna et al., 1982) and 2-diethylamino-3-phenylquinazolin- 4(3H)-one (Xie et al., 2006), have been reported. In view of the importance of the title compound, (I), C15H11Cl2N2O, this paper reports its crystal structure.

In the title compound the dihedral angle between the mean planes of the phenyl ring and the 10-membered quinazolin ring is 63.3 (4)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, a weak C15—H15A···O1 intermolecular interaction link the molecules into centrosymmetric dimers forming R22(10) graph set ring motifs (Fig. 2). In addition, weak Cg1—Cg3 and Cg2—Cg3 ππ stacking intermolecular interactions are observed which contribute to crystal packing stability (Cg1—Cg3 = 3.6810 (8)Å; x - 1/2,-y + 1/2, z - 1/2; Cg2—Cg3 = 3.8821 (8)Å; x + 1/2,-y + 1/2, z - 1/2; Cg1 = N(1)/C(1)/N(2)/C(2)/C(7)/C(8); Cg2 = C2–C7; Cg3 = C9–C14). No classical hydrogen bonds were found.

Related literature top

For general background and the pharmacological properties of quinazoline derivatives , see: Andries et al. (2005); Al-Rashood et al. (2006); Ghorab et al. (2010a,b,c); Harris & Thorarensen (2004); Jantova et al. (2004); Rádl et al. (2000); Klepser & Klepser (1997). For related structures, see: Brown & Gainsford (1979); El-Brollosy et al. (2012); Shi et al. (2004); Suguna et al. (1982); Xie et al. (2006). For standard bond lengths, see: Allen et al. (1987).

Experimental top

6-chloro-2-(chloromethyl)-3,4-dihydro-4-phenylquinazoline (10 g, 0.03434 mol) was dissolved in 40 ml of methanol and stirred for 5 mins at room temperature. To this mixture, 10 g of 50% H2O2 solution (5 g, 0.147 mol) was added dropwise over 30 mins, maintaining the temperature below 313 K, then stirred for 6 hrs in a RB flask, cooled, filtered and dried at 333 K (Fig. 3). The precipitate was dissolved in a (1:1) mixture of toluene and methylene dichloride at 313 K. After a few days, X-ray quality crystals appeared on slow evaporation.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H bond lengths of 0.93Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C15H11Cl2N2O) showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. : Synthesis scheme of (I).
6-Chloro-2-chloromethyl-4-phenylquinazoline 3-oxide top
Crystal data top
C15H10Cl2N2OF(000) = 624
Mr = 305.15Dx = 1.508 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2030 (3) ÅCell parameters from 5430 reflections
b = 14.3203 (5) Åθ = 3.1–32.8°
c = 11.8477 (4) ŵ = 0.48 mm1
β = 105.016 (4)°T = 173 K
V = 1344.22 (9) Å3Irregular, colourless
Z = 40.22 × 0.16 × 0.08 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4599 independent reflections
Radiation source: Enhance (Mo) X-ray Source3778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 2121
Tmin = 0.829, Tmax = 1.000l = 1717
17250 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.6066P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4599 reflectionsΔρmax = 0.44 e Å3
181 parametersΔρmin = 0.48 e Å3
0 restraints
Crystal data top
C15H10Cl2N2OV = 1344.22 (9) Å3
Mr = 305.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2030 (3) ŵ = 0.48 mm1
b = 14.3203 (5) ÅT = 173 K
c = 11.8477 (4) Å0.22 × 0.16 × 0.08 mm
β = 105.016 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4599 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3778 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1.000Rint = 0.033
17250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
4599 reflectionsΔρmin = 0.48 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80516 (4)0.57556 (2)0.41153 (3)0.02910 (9)
Cl21.25299 (5)0.02361 (3)0.52366 (4)0.03835 (10)
O10.70795 (12)0.42471 (7)0.59735 (8)0.0258 (2)
N10.77812 (13)0.37116 (7)0.53548 (8)0.01880 (19)
N20.80968 (14)0.34057 (8)0.34467 (9)0.0222 (2)
C10.75384 (16)0.39185 (9)0.41604 (10)0.0206 (2)
C20.90492 (15)0.26388 (9)0.38678 (10)0.0202 (2)
C30.97031 (17)0.20909 (10)0.31009 (11)0.0255 (3)
H30.94290.22340.23080.031*
C41.07367 (17)0.13503 (10)0.35109 (12)0.0269 (3)
H41.11580.09840.30030.032*
C51.11527 (16)0.11514 (9)0.47137 (12)0.0244 (2)
C61.05319 (16)0.16552 (9)0.54919 (11)0.0222 (2)
H61.08320.15070.62830.027*
C70.94247 (15)0.24056 (8)0.50668 (10)0.0188 (2)
C80.86931 (15)0.29543 (8)0.58051 (10)0.0181 (2)
C90.88618 (15)0.27188 (8)0.70445 (10)0.0193 (2)
C100.96680 (16)0.33233 (9)0.79356 (10)0.0229 (2)
H101.00800.38950.77580.027*
C110.98512 (17)0.30648 (10)0.90932 (11)0.0270 (3)
H111.04150.34580.96930.032*
C120.91999 (18)0.22262 (10)0.93578 (11)0.0282 (3)
H120.93160.20631.01340.034*
C130.83771 (18)0.16286 (10)0.84755 (12)0.0273 (3)
H130.79280.10690.86570.033*
C140.82261 (17)0.18705 (9)0.73159 (11)0.0233 (2)
H140.76990.14640.67200.028*
C150.66120 (17)0.47967 (9)0.37389 (11)0.0237 (2)
H15A0.56860.48760.40990.028*
H15B0.61510.47710.28980.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02893 (17)0.02459 (16)0.03348 (17)0.00319 (11)0.00757 (13)0.00339 (12)
Cl20.0404 (2)0.02622 (17)0.0529 (2)0.00878 (14)0.02027 (18)0.00153 (15)
O10.0310 (5)0.0258 (5)0.0227 (4)0.0072 (4)0.0109 (4)0.0010 (3)
N10.0198 (5)0.0202 (5)0.0164 (4)0.0000 (4)0.0047 (4)0.0005 (3)
N20.0224 (5)0.0271 (5)0.0160 (4)0.0036 (4)0.0032 (4)0.0006 (4)
C10.0204 (5)0.0232 (6)0.0167 (5)0.0026 (4)0.0021 (4)0.0017 (4)
C20.0196 (5)0.0242 (6)0.0165 (5)0.0044 (4)0.0041 (4)0.0027 (4)
C30.0258 (6)0.0326 (7)0.0188 (5)0.0067 (5)0.0071 (5)0.0074 (5)
C40.0255 (6)0.0295 (6)0.0283 (6)0.0066 (5)0.0116 (5)0.0119 (5)
C50.0222 (6)0.0205 (6)0.0323 (6)0.0023 (4)0.0102 (5)0.0048 (5)
C60.0237 (6)0.0212 (5)0.0229 (5)0.0011 (4)0.0084 (5)0.0002 (4)
C70.0194 (5)0.0205 (5)0.0170 (5)0.0033 (4)0.0055 (4)0.0018 (4)
C80.0195 (5)0.0196 (5)0.0151 (4)0.0020 (4)0.0044 (4)0.0003 (4)
C90.0203 (5)0.0223 (5)0.0162 (5)0.0030 (4)0.0062 (4)0.0011 (4)
C100.0226 (6)0.0269 (6)0.0190 (5)0.0001 (5)0.0052 (4)0.0005 (4)
C110.0247 (6)0.0378 (7)0.0176 (5)0.0051 (5)0.0042 (5)0.0021 (5)
C120.0284 (7)0.0389 (7)0.0189 (5)0.0116 (5)0.0089 (5)0.0077 (5)
C130.0317 (7)0.0270 (6)0.0264 (6)0.0066 (5)0.0135 (5)0.0081 (5)
C140.0266 (6)0.0228 (6)0.0218 (5)0.0010 (5)0.0087 (5)0.0011 (4)
C150.0232 (6)0.0238 (6)0.0214 (5)0.0008 (4)0.0011 (4)0.0038 (4)
Geometric parameters (Å, º) top
Cl1—C151.7905 (13)C6—C71.4128 (17)
Cl2—C51.7366 (14)C7—C81.4194 (16)
O1—N11.2943 (13)C8—C91.4778 (15)
N1—C11.4086 (15)C9—C101.3926 (17)
N1—C81.3467 (15)C9—C141.3921 (17)
N2—C11.2901 (16)C10—H100.9300
N2—C21.3651 (17)C10—C111.3906 (17)
C1—C151.4872 (17)C11—H110.9300
C2—C31.4076 (17)C11—C121.383 (2)
C2—C71.4134 (16)C12—H120.9300
C3—H30.9300C12—C131.384 (2)
C3—C41.366 (2)C13—H130.9300
C4—H40.9300C13—C141.3909 (17)
C4—C51.4058 (19)C14—H140.9300
C5—C61.3686 (17)C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
O1—N1—C1118.46 (10)N1—C8—C9118.47 (10)
O1—N1—C8122.39 (10)C7—C8—C9122.71 (10)
C8—N1—C1119.13 (10)C10—C9—C8121.01 (11)
C1—N2—C2119.02 (10)C14—C9—C8118.97 (11)
N1—C1—C15116.24 (11)C14—C9—C10120.01 (11)
N2—C1—N1123.84 (11)C9—C10—H10120.3
N2—C1—C15119.90 (11)C11—C10—C9119.40 (12)
N2—C2—C3119.36 (11)C11—C10—H10120.3
N2—C2—C7120.83 (11)C10—C11—H11119.8
C3—C2—C7119.79 (12)C12—C11—C10120.36 (13)
C2—C3—H3119.7C12—C11—H11119.8
C4—C3—C2120.56 (12)C11—C12—H12119.8
C4—C3—H3119.7C11—C12—C13120.47 (12)
C3—C4—H4120.6C13—C12—H12119.8
C3—C4—C5118.88 (12)C12—C13—H13120.2
C5—C4—H4120.6C12—C13—C14119.56 (13)
C4—C5—Cl2118.63 (10)C14—C13—H13120.2
C6—C5—Cl2118.60 (11)C9—C14—H14119.9
C6—C5—C4122.76 (12)C13—C14—C9120.18 (12)
C5—C6—H6120.7C13—C14—H14119.9
C5—C6—C7118.54 (12)Cl1—C15—H15A110.0
C7—C6—H6120.7Cl1—C15—H15B110.0
C2—C7—C8118.15 (11)C1—C15—Cl1108.56 (9)
C6—C7—C2119.38 (11)C1—C15—H15A110.0
C6—C7—C8122.46 (11)C1—C15—H15B110.0
N1—C8—C7118.80 (10)H15A—C15—H15B108.4
Cl2—C5—C6—C7179.38 (9)C3—C2—C7—C8177.77 (11)
O1—N1—C1—N2176.01 (11)C3—C4—C5—Cl2177.62 (10)
O1—N1—C1—C155.43 (16)C3—C4—C5—C61.7 (2)
O1—N1—C8—C7179.81 (11)C4—C5—C6—C70.10 (19)
O1—N1—C8—C91.37 (17)C5—C6—C7—C22.69 (18)
N1—C1—C15—Cl180.38 (12)C5—C6—C7—C8178.70 (11)
N1—C8—C9—C1063.17 (16)C6—C7—C8—N1173.70 (11)
N1—C8—C9—C14117.95 (13)C6—C7—C8—C97.54 (18)
N2—C1—C15—Cl198.24 (12)C7—C2—C3—C41.82 (18)
N2—C2—C3—C4176.35 (12)C7—C8—C9—C10118.06 (14)
N2—C2—C7—C6174.59 (11)C7—C8—C9—C1460.81 (16)
N2—C2—C7—C84.09 (17)C8—N1—C1—N22.29 (18)
C1—N1—C8—C71.96 (16)C8—N1—C1—C15176.27 (11)
C1—N1—C8—C9176.85 (11)C8—C9—C10—C11177.93 (12)
C1—N2—C2—C3178.21 (12)C8—C9—C14—C13179.60 (12)
C1—N2—C2—C70.05 (18)C9—C10—C11—C121.71 (19)
C2—N2—C1—N13.24 (18)C10—C9—C14—C130.71 (19)
C2—N2—C1—C15175.27 (11)C10—C11—C12—C130.8 (2)
C2—C3—C4—C50.76 (19)C11—C12—C13—C140.8 (2)
C2—C7—C8—N14.93 (17)C12—C13—C14—C91.6 (2)
C2—C7—C8—C9173.83 (11)C14—C9—C10—C110.93 (19)
C3—C2—C7—C63.56 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.972.573.4199 (16)146
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.972.573.4199 (16)146
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAl-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608-8621.  Web of Science PubMed CAS Google Scholar
First citationAndries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrown, K. L. & Gainsford, G. J. (1979). Acta Cryst. B35, 2276–2278.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Brollosy, N. R., Dege, N., Demirtaş, G., Attia, M. I., El-Emam, A. A. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1866–o1867.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhorab, M. M., Ismail, Z. H. & Abdalla, M. (2010a). Arzneim. Forsch. Drug Res. 60, 87–95.  CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010b). Eur. J. Med. Chem., 45, 3677–3684.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2010c). Bioorg. Med. Chem. Lett., 20, 6316–6320.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213–2243.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratislava), 59, 741–752.  CAS Google Scholar
First citationKlepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40–73.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRádl, S., Hezky, P., Proska, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim), 333, 381–386.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D., Li, Z., Shi, C., Wang, X. & Zhang, Y. (2004). Acta Cryst. E60, o2011–o2013.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuguna, K., Ramakumar, S. & Rajappa, S. (1982). Acta Cryst. B38, 1654–1656.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationXie, C. & Li, H.-X. (2006). Acta Cryst. E62, o5632–o5633.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o440-o441
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds