organic compounds
trans-2,5-Dimethylpiperazine-1,4-diium dinitrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and cLaboratoire des Matériaux Utiles, Institut National de Recherche et d'Analyse Physico-chimique, Pole Technologique de Sidi-Thabet, 2020 Tunis, Tunisia
*Correspondence e-mail: dhaouadihassouna@yahoo.fr
In the structure of the title salt, C6H16N22+·2NO3−, the cations are connected to the anions through bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds, generating corrugated layers parallel to the (100) plane. The organic cation is centrosymmetric and the diprotonated piperazine ring adopts a chair conformation, with the methyl groups occupying equatorial positions.
CCDC reference: 1005191
Related literature
For pharmacological properties of piperazine, see: Conrado et al. (2008). For related structures, see: Gatfaoui et al. (2013, 2014a,b); Marouani et al. (2012); Kefi et al. (2013). For a complex of the title cation, see: Rother et al. (1997). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).
Supporting information
CCDC reference: 1005191
10.1107/S1600536814012100/bg2529sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814012100/bg2529Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814012100/bg2529Isup3.cml
An aqueous solution containing 2 mmol of HNO3 in 10 ml of water was added to 1 mmol of trans-2,5-dimethylpiperazine in 20 ml of water. The obtained solution was stirred for 1 h, filtered and then left to stand at room temperature. Colorless single crystals of the title compound were obtained after some days.
All H atoms were located in a difference map. Nevertheless, they were geometrically placed and refined using a riding model, with C—H = 0.97 Å (methylene), or 0.96 Å (methyl), or 0.98 Å (methine), N—H = 0.90 Å (NH2) with Uiso(H) = 1.2Ueq(C or N).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. Symmetry code: i: -x, -y, -z. | |
Fig. 2. Projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted. |
C6H16N22+·2NO3− | F(000) = 256 |
Mr = 240.23 | Dx = 1.516 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2153 reflections |
a = 7.0357 (8) Å | θ = 3.4–27.4° |
b = 10.0277 (10) Å | µ = 0.13 mm−1 |
c = 8.3112 (8) Å | T = 150 K |
β = 116.149 (8)° | Prism, colourless |
V = 526.36 (9) Å3 | 0.58 × 0.46 × 0.23 mm |
Z = 2 |
Bruker APEXII diffractometer | 1059 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −8→9 |
Tmin = 0.827, Tmax = 0.970 | k = −9→12 |
4126 measured reflections | l = −10→10 |
1195 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.1423P] where P = (Fo2 + 2Fc2)/3 |
1195 reflections | (Δ/σ)max < 0.001 |
74 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C6H16N22+·2NO3− | V = 526.36 (9) Å3 |
Mr = 240.23 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.0357 (8) Å | µ = 0.13 mm−1 |
b = 10.0277 (10) Å | T = 150 K |
c = 8.3112 (8) Å | 0.58 × 0.46 × 0.23 mm |
β = 116.149 (8)° |
Bruker APEXII diffractometer | 1195 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 1059 reflections with I > 2σ(I) |
Tmin = 0.827, Tmax = 0.970 | Rint = 0.022 |
4126 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.30 e Å−3 |
1195 reflections | Δρmin = −0.23 e Å−3 |
74 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.20352 (15) | −0.09103 (10) | −0.37280 (12) | 0.0173 (2) | |
O1 | 0.12714 (14) | −0.13760 (9) | −0.27150 (11) | 0.0218 (2) | |
O2 | 0.24377 (15) | −0.16754 (10) | −0.47090 (11) | 0.0255 (2) | |
O3 | 0.23709 (16) | 0.03059 (9) | −0.36962 (13) | 0.0312 (3) | |
N2 | −0.02504 (15) | 0.08866 (10) | −0.14298 (12) | 0.0169 (2) | |
H2A | −0.0683 | 0.1671 | −0.2001 | 0.020* | |
H2B | 0.0282 | 0.0397 | −0.2044 | 0.020* | |
C1 | 0.14685 (18) | 0.11399 (12) | 0.04232 (15) | 0.0165 (3) | |
H1 | 0.0915 | 0.1730 | 0.1057 | 0.020* | |
C2 | 0.21154 (17) | −0.01747 (12) | 0.14274 (15) | 0.0176 (3) | |
H2C | 0.2778 | −0.0736 | 0.0869 | 0.021* | |
H2D | 0.3146 | −0.0007 | 0.2653 | 0.021* | |
C3 | 0.33291 (19) | 0.18189 (13) | 0.03060 (17) | 0.0224 (3) | |
H3A | 0.3930 | 0.1230 | −0.0257 | 0.034* | |
H3B | 0.4381 | 0.2036 | 0.1490 | 0.034* | |
H3C | 0.2854 | 0.2621 | −0.0389 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0184 (5) | 0.0158 (5) | 0.0155 (5) | 0.0005 (4) | 0.0054 (4) | 0.0005 (4) |
O1 | 0.0288 (5) | 0.0212 (5) | 0.0202 (4) | −0.0019 (3) | 0.0153 (4) | −0.0007 (3) |
O2 | 0.0331 (5) | 0.0274 (5) | 0.0203 (4) | 0.0033 (4) | 0.0158 (4) | −0.0025 (4) |
O3 | 0.0356 (5) | 0.0134 (5) | 0.0400 (6) | −0.0040 (4) | 0.0125 (4) | 0.0023 (4) |
N2 | 0.0199 (5) | 0.0162 (5) | 0.0150 (5) | 0.0030 (4) | 0.0081 (4) | 0.0023 (4) |
C1 | 0.0185 (5) | 0.0144 (6) | 0.0161 (5) | 0.0018 (4) | 0.0071 (4) | −0.0010 (4) |
C2 | 0.0166 (5) | 0.0168 (6) | 0.0178 (5) | 0.0020 (4) | 0.0062 (4) | 0.0016 (4) |
C3 | 0.0207 (6) | 0.0178 (6) | 0.0287 (6) | 0.0003 (5) | 0.0112 (5) | 0.0009 (5) |
N1—O2 | 1.2398 (13) | C1—C2 | 1.5188 (17) |
N1—O3 | 1.2403 (14) | C1—H1 | 0.9800 |
N1—O1 | 1.2706 (13) | C2—N2i | 1.4945 (15) |
N2—C2i | 1.4945 (15) | C2—H2C | 0.9700 |
N2—C1 | 1.5024 (14) | C2—H2D | 0.9700 |
N2—H2A | 0.9000 | C3—H3A | 0.9600 |
N2—H2B | 0.9000 | C3—H3B | 0.9600 |
C1—C3 | 1.5163 (17) | C3—H3C | 0.9600 |
O2—N1—O3 | 121.73 (10) | C2—C1—H1 | 108.8 |
O2—N1—O1 | 119.62 (10) | N2i—C2—C1 | 111.39 (9) |
O3—N1—O1 | 118.65 (10) | N2i—C2—H2C | 109.4 |
C2i—N2—C1 | 112.95 (9) | C1—C2—H2C | 109.4 |
C2i—N2—H2A | 109.0 | N2i—C2—H2D | 109.4 |
C1—N2—H2A | 109.0 | C1—C2—H2D | 109.4 |
C2i—N2—H2B | 109.0 | H2C—C2—H2D | 108.0 |
C1—N2—H2B | 109.0 | C1—C3—H3A | 109.5 |
H2A—N2—H2B | 107.8 | C1—C3—H3B | 109.5 |
N2—C1—C3 | 109.74 (9) | H3A—C3—H3B | 109.5 |
N2—C1—C2 | 109.11 (9) | C1—C3—H3C | 109.5 |
C3—C1—C2 | 111.53 (10) | H3A—C3—H3C | 109.5 |
N2—C1—H1 | 108.8 | H3B—C3—H3C | 109.5 |
C3—C1—H1 | 108.8 |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1ii | 0.90 | 1.99 | 2.8471 (14) | 158 |
N2—H2A···O2iii | 0.90 | 2.45 | 2.9899 (13) | 119 |
N2—H2B···O1 | 0.90 | 2.07 | 2.9057 (13) | 153 |
N2—H2B···O3 | 0.90 | 2.42 | 3.2172 (14) | 149 |
C1—H1···O1i | 0.98 | 2.50 | 3.2614 (14) | 134 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z−1/2; (iii) −x, −y, −z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.90 | 1.99 | 2.8471 (14) | 157.7 |
N2—H2A···O2ii | 0.90 | 2.45 | 2.9899 (13) | 118.5 |
N2—H2B···O1 | 0.90 | 2.07 | 2.9057 (13) | 153.2 |
N2—H2B···O3 | 0.90 | 2.42 | 3.2172 (14) | 148.5 |
C1—H1···O1iii | 0.98 | 2.50 | 3.2614 (14) | 134.2 |
Symmetry codes: (i) −x, y+1/2, −z−1/2; (ii) −x, −y, −z−1; (iii) −x, −y, −z. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M. & Marouani, H. (2014a). Acta Cryst. E70, o398–o399. CSD CrossRef CAS IUCr Journals Google Scholar
Gatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453. CSD CrossRef IUCr Journals Google Scholar
Gatfaoui, S., Rzaigui, M. & Marouani, H. (2014b). Acta Cryst. E70, o198. CSD CrossRef IUCr Journals Google Scholar
Kefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475. CSD CrossRef IUCr Journals Google Scholar
Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772–779. CrossRef CAS Google Scholar
Rother, G., Worzala, H. & Bentrup, U. (1997). Z. Kristallogr. New Cryst. Struct. 212, 199. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperazine and its derivatives are widely used due to their interesting biological and pharmacology proprieties (Conrado et al., 2008). In this work, we report the preparation and the structural investigation of a new organic nitrate, C6H16N2·(NO3)2 (I). The asymmetric unit of (I) is composed of a half trans-2,5-dimeyhylpipeazine-1,4-dium cations and one nitrate anion (Figure 1). In the structure, the cations are connected to the anions through bifurcated N—H···O(O) and weak C—H···O hydrogen bonds, generating a corrugated layers parallel to the (001) plane (Fig. 2).
Interatomic bond lengths and angles of the nitrate anions spread respectively within the ranges [1.2398 (13)–1.2706 (13) Å] and [118.65 (10)–121.73 (10)°]. These geometrical features have also been noticed in other crystal structures (Marouani et al., 2012; Kefi et al., 2013; Gatfaoui et al., 2013, 2014a,b). It is worth noting that the distance N1—O1 is significantly longer than the N1—O2 and N1—O3 distances because O1 is applied in three hydrogen bonds (table1) while O2 and O3 are applied in only one hydrogen bond. Inside such a structure, the complete organic entity is generated by inversion symmetry located at (0, 0, 0) and (0, 1/2, 1/2). So it is built up by only the half of the cation. Examination of the organic cations shows that the bond distances and angles show no significant difference from those obtained in other complex involving the same organic groups (Rother et al., 1997). The diprotonated piperazine ring adopts a chair conformation, with the methyl groups occupying an equatorial position, with puckering parameters: Q = 0.6083 Å, θ = 90 ° and ϕ = 166 ° (Cremer & Pople, 1975).
The established H-bonds of types N—H···O(O) and C—H···O involve oxygen atoms of the nitrate anions as acceptors, and protonated nitrogen atoms and methine groups of the trans-2,5-dimethylpiperazine-1,4-diium as donors.