organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-2,5-Di­methyl­piperazine-1,4-diium dinitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and cLaboratoire des Matériaux Utiles, Institut National de Recherche et d'Analyse Physico-chimique, Pole Technologique de Sidi-Thabet, 2020 Tunis, Tunisia
*Correspondence e-mail: dhaouadihassouna@yahoo.fr

(Received 9 May 2014; accepted 25 May 2014; online 31 May 2014)

In the structure of the title salt, C6H16N22+·2NO3, the cations are connected to the anions through bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds, generating corrugated layers parallel to the (100) plane. The organic cation is centrosymmetric and the diprotonated piperazine ring adopts a chair conformation, with the methyl groups occupying equatorial positions.

Related literature

For pharmacological properties of piperazine, see: Conrado et al. (2008[Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699-707.]). For related structures, see: Gatfaoui et al. (2013[Gatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.], 2014a[Gatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M. & Marouani, H. (2014a). Acta Cryst. E70, o398-o399.],b[Gatfaoui, S., Rzaigui, M. & Marouani, H. (2014b). Acta Cryst. E70, o198.]); Marouani et al. (2012[Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772-779.]); Kefi et al. (2013[Kefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.]). For a complex of the title cation, see: Rother et al. (1997[Rother, G., Worzala, H. & Bentrup, U. (1997). Z. Kristallogr. New Cryst. Struct. 212, 199.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N22+·2NO3

  • Mr = 240.23

  • Monoclinic, P 21 /c

  • a = 7.0357 (8) Å

  • b = 10.0277 (10) Å

  • c = 8.3112 (8) Å

  • β = 116.149 (8)°

  • V = 526.36 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.58 × 0.46 × 0.23 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.827, Tmax = 0.970

  • 4126 measured reflections

  • 1195 independent reflections

  • 1059 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.11

  • 1195 reflections

  • 74 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.90 1.99 2.8471 (14) 158
N2—H2A⋯O2ii 0.90 2.45 2.9899 (13) 119
N2—H2B⋯O1 0.90 2.07 2.9057 (13) 153
N2—H2B⋯O3 0.90 2.42 3.2172 (14) 149
C1—H1⋯O1iii 0.98 2.50 3.2614 (14) 134
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x, -y, -z-1; (iii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Piperazine and its derivatives are widely used due to their interesting biological and pharmacology proprieties (Conrado et al., 2008). In this work, we report the preparation and the structural investigation of a new organic nitrate, C6H16N2·(NO3)2 (I). The asymmetric unit of (I) is composed of a half trans-2,5-dimeyhylpipeazine-1,4-dium cations and one nitrate anion (Figure 1). In the structure, the cations are connected to the anions through bifurcated N—H···O(O) and weak C—H···O hydrogen bonds, generating a corrugated layers parallel to the (001) plane (Fig. 2).

Interatomic bond lengths and angles of the nitrate anions spread respectively within the ranges [1.2398 (13)–1.2706 (13) Å] and [118.65 (10)–121.73 (10)°]. These geometrical features have also been noticed in other crystal structures (Marouani et al., 2012; Kefi et al., 2013; Gatfaoui et al., 2013, 2014a,b). It is worth noting that the distance N1—O1 is significantly longer than the N1—O2 and N1—O3 distances because O1 is applied in three hydrogen bonds (table1) while O2 and O3 are applied in only one hydrogen bond. Inside such a structure, the complete organic entity is generated by inversion symmetry located at (0, 0, 0) and (0, 1/2, 1/2). So it is built up by only the half of the cation. Examination of the organic cations shows that the bond distances and angles show no significant difference from those obtained in other complex involving the same organic groups (Rother et al., 1997). The diprotonated piperazine ring adopts a chair conformation, with the methyl groups occupying an equatorial position, with puckering parameters: Q = 0.6083 Å, θ = 90 ° and ϕ = 166 ° (Cremer & Pople, 1975).

The established H-bonds of types N—H···O(O) and C—H···O involve oxygen atoms of the nitrate anions as acceptors, and protonated nitrogen atoms and methine groups of the trans-2,5-dimethylpiperazine-1,4-diium as donors.

Related literature top

For pharmacological properties of piperazine, see: Conrado et al. (2008). For related structures, see: Gatfaoui et al. (2013, 2014a,b); Marouani et al. (2012); Kefi et al. (2013). For a complex of the title cation, see: Rother et al. (1997). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

An aqueous solution containing 2 mmol of HNO3 in 10 ml of water was added to 1 mmol of trans-2,5-dimethylpiperazine in 20 ml of water. The obtained solution was stirred for 1 h, filtered and then left to stand at room temperature. Colorless single crystals of the title compound were obtained after some days.

Refinement top

All H atoms were located in a difference map. Nevertheless, they were geometrically placed and refined using a riding model, with C—H = 0.97 Å (methylene), or 0.96 Å (methyl), or 0.98 Å (methine), N—H = 0.90 Å (NH2) with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. Symmetry code: i: -x, -y, -z.
[Figure 2] Fig. 2. Projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted.
trans-2,5-Dimethylpiperazine-1,4-diium dinitrate top
Crystal data top
C6H16N22+·2NO3F(000) = 256
Mr = 240.23Dx = 1.516 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2153 reflections
a = 7.0357 (8) Åθ = 3.4–27.4°
b = 10.0277 (10) ŵ = 0.13 mm1
c = 8.3112 (8) ÅT = 150 K
β = 116.149 (8)°Prism, colourless
V = 526.36 (9) Å30.58 × 0.46 × 0.23 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
1059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 89
Tmin = 0.827, Tmax = 0.970k = 912
4126 measured reflectionsl = 1010
1195 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.1423P]
where P = (Fo2 + 2Fc2)/3
1195 reflections(Δ/σ)max < 0.001
74 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H16N22+·2NO3V = 526.36 (9) Å3
Mr = 240.23Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.0357 (8) ŵ = 0.13 mm1
b = 10.0277 (10) ÅT = 150 K
c = 8.3112 (8) Å0.58 × 0.46 × 0.23 mm
β = 116.149 (8)°
Data collection top
Bruker APEXII
diffractometer
1195 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1059 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.970Rint = 0.022
4126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.11Δρmax = 0.30 e Å3
1195 reflectionsΔρmin = 0.23 e Å3
74 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20352 (15)0.09103 (10)0.37280 (12)0.0173 (2)
O10.12714 (14)0.13760 (9)0.27150 (11)0.0218 (2)
O20.24377 (15)0.16754 (10)0.47090 (11)0.0255 (2)
O30.23709 (16)0.03059 (9)0.36962 (13)0.0312 (3)
N20.02504 (15)0.08866 (10)0.14298 (12)0.0169 (2)
H2A0.06830.16710.20010.020*
H2B0.02820.03970.20440.020*
C10.14685 (18)0.11399 (12)0.04232 (15)0.0165 (3)
H10.09150.17300.10570.020*
C20.21154 (17)0.01747 (12)0.14274 (15)0.0176 (3)
H2C0.27780.07360.08690.021*
H2D0.31460.00070.26530.021*
C30.33291 (19)0.18189 (13)0.03060 (17)0.0224 (3)
H3A0.39300.12300.02570.034*
H3B0.43810.20360.14900.034*
H3C0.28540.26210.03890.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0184 (5)0.0158 (5)0.0155 (5)0.0005 (4)0.0054 (4)0.0005 (4)
O10.0288 (5)0.0212 (5)0.0202 (4)0.0019 (3)0.0153 (4)0.0007 (3)
O20.0331 (5)0.0274 (5)0.0203 (4)0.0033 (4)0.0158 (4)0.0025 (4)
O30.0356 (5)0.0134 (5)0.0400 (6)0.0040 (4)0.0125 (4)0.0023 (4)
N20.0199 (5)0.0162 (5)0.0150 (5)0.0030 (4)0.0081 (4)0.0023 (4)
C10.0185 (5)0.0144 (6)0.0161 (5)0.0018 (4)0.0071 (4)0.0010 (4)
C20.0166 (5)0.0168 (6)0.0178 (5)0.0020 (4)0.0062 (4)0.0016 (4)
C30.0207 (6)0.0178 (6)0.0287 (6)0.0003 (5)0.0112 (5)0.0009 (5)
Geometric parameters (Å, º) top
N1—O21.2398 (13)C1—C21.5188 (17)
N1—O31.2403 (14)C1—H10.9800
N1—O11.2706 (13)C2—N2i1.4945 (15)
N2—C2i1.4945 (15)C2—H2C0.9700
N2—C11.5024 (14)C2—H2D0.9700
N2—H2A0.9000C3—H3A0.9600
N2—H2B0.9000C3—H3B0.9600
C1—C31.5163 (17)C3—H3C0.9600
O2—N1—O3121.73 (10)C2—C1—H1108.8
O2—N1—O1119.62 (10)N2i—C2—C1111.39 (9)
O3—N1—O1118.65 (10)N2i—C2—H2C109.4
C2i—N2—C1112.95 (9)C1—C2—H2C109.4
C2i—N2—H2A109.0N2i—C2—H2D109.4
C1—N2—H2A109.0C1—C2—H2D109.4
C2i—N2—H2B109.0H2C—C2—H2D108.0
C1—N2—H2B109.0C1—C3—H3A109.5
H2A—N2—H2B107.8C1—C3—H3B109.5
N2—C1—C3109.74 (9)H3A—C3—H3B109.5
N2—C1—C2109.11 (9)C1—C3—H3C109.5
C3—C1—C2111.53 (10)H3A—C3—H3C109.5
N2—C1—H1108.8H3B—C3—H3C109.5
C3—C1—H1108.8
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.901.992.8471 (14)158
N2—H2A···O2iii0.902.452.9899 (13)119
N2—H2B···O10.902.072.9057 (13)153
N2—H2B···O30.902.423.2172 (14)149
C1—H1···O1i0.982.503.2614 (14)134
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.901.992.8471 (14)157.7
N2—H2A···O2ii0.902.452.9899 (13)118.5
N2—H2B···O10.902.072.9057 (13)153.2
N2—H2B···O30.902.423.2172 (14)148.5
C1—H1···O1iii0.982.503.2614 (14)134.2
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z1; (iii) x, y, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M. & Marouani, H. (2014a). Acta Cryst. E70, o398–o399.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.  CSD CrossRef IUCr Journals Google Scholar
First citationGatfaoui, S., Rzaigui, M. & Marouani, H. (2014b). Acta Cryst. E70, o198.  CSD CrossRef IUCr Journals Google Scholar
First citationKefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.  CSD CrossRef IUCr Journals Google Scholar
First citationMarouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772–779.  CrossRef CAS Google Scholar
First citationRother, G., Worzala, H. & Bentrup, U. (1997). Z. Kristallogr. New Cryst. Struct. 212, 199.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds