organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o633-o634

Octyl (2E)-2-[2-(di­phenyl­phosphan­yl)benzyl­­idene]hydrazinecarbodi­thio­ate

aChemicalStudies, Faculty of Science, University of Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei, and bDepartment of Chemistry, Boswell Science Complex, Tennessee State University, Nashville, 3500 John A Merritt Blvd, Nashville, TN 37209, USA
*Correspondence e-mail: mkarim@tnstate.edu

(Received 14 March 2014; accepted 14 April 2014; online 3 May 2014)

The title compound, C28H33N2S2P, adopts the thione tautomeric form, as supported by the C—S distance [1.6744 (18) Å]. The Schiff base exhibits an E conformation about the C=N bond but a Z conformation about the C—N bond. The terminal chain is disordered over two sets of sites with an occupancy ratio of 0.732 (3):0.268 (3). In the crystal, pairs of N—N—H hydrogen bonds between the thione groups link neighbouring mol­ecules into centrosymmetric dimers.

Related literature

For Schiff bases derived from S-alk­yl/aryl esters of di­thio­carbazic acid, see: Akbar Ali et al. (2012[Akbar Ali, M., Mirza, A. H., Hamid, M. H. S. A., Aminath, N. & Bernhardt, P. V. (2012). Polyhedron, 47, 79-86.], 2013[Akbar Ali, M., Bernhardt, P. V., Jason, M. A. H. B., Farlow, A. J., Hanson, G. R., Yeng, L. L., Mirza, A. H. & Wieghardt, K. (2013). Inorg. Chem. 52, 1650-1657.]); Hamid et al. (2009[Hamid, M. H. S. A., Akbar Ali, M., Mirza, A. H., Bernhardt, P. V., Moubaraki, B. & Murray, K. S. (2009). Inorg. Chim. Acta, 362, 3648-3656.]); Akbar Ali et al. (2005[Akbar Ali, M., Mirza, A. H., Fereday, R. J., Butcher, R. J., Fuller, J. M., Drew, S. C., Gahan, L. R., Hanson, G. R., Moubaraki, B. & Murray, K. S. (2005). Inorg. Chim. Acta, 358, 3937-3948.]). For their chemotherapeutic properties, see: Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]); Akbar Ali & Livingstone (1974[Akbar Ali, M. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]); Akbar Ali et al. (2002[Akbar Ali, M., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]); Hossain et al. (1996[Hossain, M. E., Alam, M. N., Akbar Ali, M., Smith, F. E. & Hynes, R. C. (1996). Polyhedron, 15, 973-980.]). For related structures, see: Su et al. (1999[Su, C. Y., Yang, X. P., Kang, B. S., Yu, K. B., Tong Ye, X. & Mak, T. C. W. (1999). Bull. Chem. Soc. Jpn, 72, 2217-2222.]); Song et al. (2009[Song, L.-H., Zhang, X., Jiang, K. & Yang, S.-X. (2009). Acta Cryst. E65, o356.]); Shanmuga Sundara Raj et al. (2000[Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236-1237.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C28H33N2PS2

  • Mr = 492.65

  • Triclinic, [P \overline 1]

  • a = 11.2068 (12) Å

  • b = 11.4956 (12) Å

  • c = 11.7728 (13) Å

  • α = 86.623 (1)°

  • β = 70.538 (1)°

  • γ = 65.013 (1)°

  • V = 1290.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.60 × 0.60 × 0.38 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.846, Tmax = 0.899

  • 15526 measured reflections

  • 5343 independent reflections

  • 4954 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.04

  • 5343 reflections

  • 356 parameters

  • 209 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S2i 0.90 (2) 2.45 (2) 3.3337 (17) 168 (2)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, considerable attention has been focused on Schiff bases derived from S-alkyl/aryl esters of dithiocarbazic acid (M. Akbar Ali et al. 2013, M. Akbar Ali et al. 2012) as they belong to a promising class of potentially bioactive chelating agents containing mixed hard and soft donor atoms. These organic chelators could also lead to the formation of coordination compounds with useful chemotherapeutic properties (Tarafder et al., 2002; Akbar Ali et al., 2002; Akbar Ali et al., 1974; Hossain et al., 1996). In view of less crystallographic data available on Schiff bases containing mixed hard and soft donor atoms such as nitrogen, sulfur and phosphorus, the new Schiff base, C28H33N2S2P (I) was synthesized by the reaction of S-octyl dithiocarbazate with 2-(diphenylphosphino)benzaldehyde in ethanol. The crystal is triclinic, space group P-1. The asymmetric unit contains one molecule of the compound C28H33N2S2P. The terminal chain C11 to C16 is disordered into two positions with occupancy ratio = 73:27. Restraints in bond lengths and thermal parameters were applied to the disordered parts. H atom of N2 was located from different map and refined with restraints in bond length and thermal parameters. Final R values are R1 = 0.0429 and wR2 = 0.1084 for 2-theta up to 55°. Like most Schiff bases derived from S-alkyl/aryl esters of dithiocarbazic acid, the Schiff base, I also remains in its thione tautomeric form as supported by the C8-S2 distance [1.6744 (18) Å], which is typical of double bonds and are by far the shortest C-S distances observed so far among the Schiff bases derived from S-alkyl/aryl dithiocarbazates (Hamid et al. 2009, Akbar Ali et al. 2005). The Schiff base also remains in an E configuration about the C7-N1 bond but a Z configuration about the C8-N2 bond. The C7-N1 bond distance compares well with that of the C=N double bonds in other related compounds (Su et al. 1999, Song et al. 2009). The C8-N2 bond distance [1.337 (2) Å] indicates that the N2 nitrogen atom is sp2 hybridized and the bond is closer to a double than a single bond (Allen et al. 1987). The N1–N2 bond in the Schiff base is shorter than a single N-N bond. A comparison of the N1—N2 distance [1.378 (2) Å] with that in S-benzyl dithiocarbazate [1.406 (3) Å] (Shanmuga Sundara Raj et al. 2000) indicates that there is a significant π-charge delocalization along the C-N-N-C chain. There is intermolecular hydrogen bonding between the hydrazine nitrogen atom N(2) of one molecule and the thione sulfur atom S2 of another molecule ( Fig. 2) resulting in H-bonded centrosymmetric dimers. The H-bonding stabilizes the E and Z conformations about the C7-N1 and C8-N2 bonds, respectively.

Related literature top

For Schiff bases derived from S-alkyl/aryl esters of dithiocarbazic acid, see: Akbar Ali et al. (2012, 2013); Hamid et al. (2009); Akbar Ali et al. (2005). For their chemotherapeutic properties, see: Tarafder et al. (2002); Akbar Ali & Livingstone (1974); Akbar Ali et al. (2002); Hossain et al. (1996). For related structures, see: Su et al. (1999); Song et al. (2009); Shanmuga Sundara Raj et al. (2000). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A hot solution of S-n-octyldithiocarbazate (0.16 g, 0.7 mmol) in absolute ethanol (10 ml) was mixed with a solution of 2-di(phenylphosphino) benzaldehyde (0.21 g, 0.71 mmol) in the same solvent (5 ml). The resulting mixture was heated on a steam bath for 15 minutes and then left to cool. The yellow crystals that had formed were filtered off, recrystallized from an ethanol/chloroform mixture and dried in vacuo. Yield = 0.14 g (90%); m.p. = 114–116 °C; IR (cm-1): 3106 (N—H), 3068, 3048 (=CH, Ar), 1560 (C=N), 1024 (C—S), 1097 (C=S); UV-Vis: λmax/nm, (log ε (dm3 cm-1 mol-1): 374(5.369); 1H NMR (p.p.m., CDCl3): 10.23 (1H, s, –NH), 8.64 (1H, d, CH=N), 8.13 (1H, d, Ar), 7.66 – 7.22 (12H, m, Ar), 6.91 (1H, m, Ar), 3.25 (2H, t, CH2), 1.77 – 1.22 (12H, m, aliphatic protons), 0.88 (3H, t, CH3); 13 C NMR [p.p.m., CDCl3]: 199.6 (C=S), 143.7 – 126.7 (C=N, Ar—C), 34.7 (–CH2—C=S), 31.8, 29.2, 29.2, 29.1, 28.5, 22.7 (6xCH2), 14.1 (–CH3); Anal.calcd. for C28H33N2S2P: C 68.26, H 6.75, N 5.69; Found (%) C 69.35, H 6.15 N 5.68; MS/EI, m/z (I,%) for C28H33N2S2P (481.59 g/mol): 304.1 [M±C=SSOctyl] (17), 288.1 [M±NHC=SSOctyl] (100), 183.0 [PPh2] (22), 146.1 [SOctyl] (5).

The IR spectrum was recorded as KBr disc on a Perkin-Elmer 1600 F T IR spectrometer. The 1H NMR spectrum was run in CDCl3 on a Bruker Advance, 400 MHz spectrometer in the Department of Chemistry, Tennessee State University, USA. Elemental analysis for C, H and N was done by the Elemental Analysis Laboratory, Department of Chemistry, National University of Singapore. The EI mass spectrum was recorded on an Agilent Mass Spectrometer 5975 C MSD (with direct probe). The X-ray data were collected at the X-ray Diffraction Laboratory, Department of Chemistry, National University of Singapore using a Bruker-AXS Smart Apex CCD single-crystal diffractometer.

Refinement top

The terminal chain C11 to C16 was disordered into two positions with occupancy ratio = 73:27. Restraints in bond lengths and thermal parameters were applied to the disordered parts. H atom of N2 was located from different map and refined with restraints in bond length and thermal parameters. Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C). Final R values are R1 = 0.0429 and wR2 = 0.1089 for 2-theta up to 55°.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound only with the major part of the disordered terminal chain.
[Figure 2] Fig. 2. H-bonded centrosymmetric dimers of the title compound.
Octyl (2E)-2-[2-(diphenylphosphanyl)benzylidene] hydrazinecarbodithioate top
Crystal data top
C28H33N2PS2Z = 2
Mr = 492.65F(000) = 524
Triclinic, P1Dx = 1.268 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2068 (12) ÅCell parameters from 5343 reflections
b = 11.4956 (12) Åθ = 2.2–28.3°
c = 11.7728 (13) ŵ = 0.29 mm1
α = 86.623 (1)°T = 100 K
β = 70.538 (1)°Block, yellow
γ = 65.013 (1)°0.60 × 0.60 × 0.38 mm
V = 1290.2 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5343 independent reflections
Radiation source: fine-focus sealed tube4954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1414
Tmin = 0.846, Tmax = 0.899k = 1414
15526 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.3326P]
where P = (Fo2 + 2Fc2)/3
5343 reflections(Δ/σ)max = 0.001
356 parametersΔρmax = 1.30 e Å3
209 restraintsΔρmin = 0.51 e Å3
Crystal data top
C28H33N2PS2γ = 65.013 (1)°
Mr = 492.65V = 1290.2 (2) Å3
Triclinic, P1Z = 2
a = 11.2068 (12) ÅMo Kα radiation
b = 11.4956 (12) ŵ = 0.29 mm1
c = 11.7728 (13) ÅT = 100 K
α = 86.623 (1)°0.60 × 0.60 × 0.38 mm
β = 70.538 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5343 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4954 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.899Rint = 0.025
15526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043209 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.30 e Å3
5343 reflectionsΔρmin = 0.51 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.07934 (5)1.15477 (4)1.32348 (4)0.01927 (12)
S10.51929 (5)0.64877 (4)0.91914 (4)0.02410 (13)
S20.66997 (5)0.81091 (5)0.92999 (5)0.02737 (13)
N10.28051 (15)0.86048 (15)1.05097 (14)0.0193 (3)
N20.39950 (16)0.87988 (15)1.02654 (14)0.0207 (3)
C10.09012 (18)1.03671 (16)1.23193 (15)0.0172 (3)
C20.21642 (19)1.02936 (18)1.24981 (17)0.0219 (4)
H20.29961.08831.30890.026*
C30.2230 (2)0.93807 (19)1.18325 (17)0.0230 (4)
H30.31030.93581.19610.028*
C40.1020 (2)0.84996 (18)1.09786 (16)0.0214 (4)
H40.10600.78671.05260.026*
C50.02430 (19)0.85474 (17)1.07898 (16)0.0199 (4)
H50.10700.79421.02060.024*
C60.03213 (18)0.94745 (16)1.14455 (15)0.0165 (3)
C70.16737 (18)0.95264 (17)1.11708 (16)0.0187 (4)
H70.17101.02481.14850.022*
C80.52454 (19)0.78826 (17)0.96203 (16)0.0199 (4)
C1A0.13142 (18)1.30012 (17)1.24425 (15)0.0187 (4)
C2A0.0523 (2)1.37020 (19)1.22768 (17)0.0242 (4)
H2A0.02301.34211.25810.029*
C3A0.0827 (2)1.4809 (2)1.16693 (19)0.0289 (4)
H3A0.02811.52791.15610.035*
C4A0.1920 (2)1.52279 (19)1.12225 (18)0.0271 (4)
H4A0.21291.59851.08100.033*
C5A0.2713 (2)1.45323 (19)1.13810 (17)0.0249 (4)
H5A0.34651.48171.10750.030*
C6A0.24120 (19)1.34284 (18)1.19809 (16)0.0218 (4)
H6A0.29561.29571.20800.026*
C1B0.23181 (19)1.18714 (18)1.46050 (16)0.0208 (4)
C2B0.3553 (2)1.30064 (19)1.49289 (18)0.0265 (4)
H2B0.36691.36671.43960.032*
C3B0.4615 (2)1.3177 (2)1.60282 (19)0.0316 (5)
H3B0.54491.39571.62430.038*
C4B0.4468 (2)1.2223 (2)1.68103 (18)0.0303 (4)
H4B0.51991.23411.75570.036*
C5B0.3244 (2)1.1093 (2)1.64970 (18)0.0288 (4)
H5B0.31371.04301.70280.035*
C6B0.2177 (2)1.09262 (19)1.54106 (17)0.0244 (4)
H6B0.13351.01541.52120.029*
C90.6997 (2)0.5511 (2)0.82747 (19)0.0296 (4)
H9A0.73490.60200.76570.035*
H9B0.75920.52200.87890.035*
C100.7045 (2)0.4366 (2)0.7671 (2)0.0341 (5)
H10A0.64830.46750.71300.041*
H10B0.66070.39180.82990.041*
C110.8511 (3)0.3413 (3)0.6941 (3)0.0277 (5)0.732 (3)
H11A0.84690.26310.66840.033*0.732 (3)
H11B0.90890.31560.74700.033*0.732 (3)
C120.9238 (3)0.3919 (3)0.5817 (2)0.0290 (4)0.732 (3)
H12A0.86920.41330.52630.035*0.732 (3)
H12B0.92500.47210.60630.035*0.732 (3)
C131.0739 (3)0.2945 (3)0.5141 (3)0.0291 (4)0.732 (3)
H13A1.07470.20900.50590.035*0.732 (3)
H13B1.10490.32030.43160.035*0.732 (3)
C141.1788 (4)0.2821 (3)0.5752 (3)0.0300 (4)0.732 (3)
H14A1.13960.27240.66210.036*0.732 (3)
H14B1.19150.36270.56970.036*0.732 (3)
C151.3220 (3)0.1684 (3)0.5202 (3)0.0312 (4)0.732 (3)
H15A1.38150.16360.56800.037*0.732 (3)
H15B1.30940.08770.52670.037*0.732 (3)
C161.3971 (4)0.1766 (4)0.3891 (3)0.0338 (5)0.732 (3)
H16A1.49810.12460.36930.051*0.732 (3)
H16B1.37890.26660.37570.051*0.732 (3)
H16C1.36330.14400.33720.051*0.732 (3)
C11X0.8421 (8)0.3668 (9)0.6579 (8)0.0285 (6)0.268 (3)
H11C0.85660.27650.64650.034*0.268 (3)
H11D0.82730.40800.58450.034*0.268 (3)
C12X0.9771 (7)0.3637 (7)0.6639 (6)0.0290 (5)0.268 (3)
H12C0.97460.45070.65270.035*0.268 (3)
H12D0.98240.34240.74530.035*0.268 (3)
C13X1.1062 (8)0.2679 (8)0.5704 (7)0.0292 (5)0.268 (3)
H13C1.09970.28910.48930.035*0.268 (3)
H13D1.10810.18120.58220.035*0.268 (3)
C14X1.2442 (9)0.2622 (8)0.5726 (7)0.0304 (5)0.268 (3)
H14C1.24710.24980.65570.036*0.268 (3)
H14D1.24770.34560.55160.036*0.268 (3)
C15X1.3729 (10)0.1538 (9)0.4851 (8)0.0316 (5)0.268 (3)
H15C1.36580.07110.50200.038*0.268 (3)
H15D1.45770.14710.49920.038*0.268 (3)
C16X1.3887 (11)0.1750 (11)0.3520 (8)0.0325 (6)0.268 (3)
H16D1.48770.13100.30170.049*0.268 (3)
H16E1.35400.26760.34260.049*0.268 (3)
H16F1.33450.14010.32660.049*0.268 (3)
H2N0.391 (3)0.9588 (18)1.044 (2)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0189 (2)0.0175 (2)0.0191 (2)0.00565 (18)0.00590 (18)0.00221 (17)
S10.0163 (2)0.0228 (2)0.0291 (3)0.00693 (18)0.00338 (18)0.00559 (18)
S20.0158 (2)0.0252 (2)0.0388 (3)0.00881 (19)0.0055 (2)0.0017 (2)
N10.0158 (7)0.0212 (7)0.0198 (7)0.0079 (6)0.0047 (6)0.0030 (6)
N20.0159 (7)0.0207 (8)0.0233 (8)0.0081 (6)0.0032 (6)0.0009 (6)
C10.0182 (8)0.0156 (8)0.0168 (8)0.0061 (7)0.0061 (7)0.0019 (6)
C20.0170 (8)0.0236 (9)0.0210 (9)0.0061 (7)0.0044 (7)0.0019 (7)
C30.0205 (9)0.0280 (10)0.0236 (9)0.0127 (8)0.0084 (7)0.0029 (7)
C40.0267 (9)0.0211 (9)0.0195 (9)0.0114 (8)0.0097 (7)0.0014 (7)
C50.0200 (9)0.0187 (8)0.0165 (8)0.0053 (7)0.0043 (7)0.0001 (7)
C60.0171 (8)0.0152 (8)0.0156 (8)0.0058 (7)0.0055 (7)0.0035 (6)
C70.0188 (8)0.0183 (8)0.0174 (8)0.0070 (7)0.0051 (7)0.0009 (7)
C80.0181 (8)0.0218 (9)0.0188 (9)0.0079 (7)0.0056 (7)0.0017 (7)
C1A0.0177 (8)0.0166 (8)0.0160 (8)0.0046 (7)0.0018 (7)0.0031 (6)
C2A0.0192 (9)0.0255 (9)0.0254 (9)0.0089 (8)0.0049 (7)0.0014 (7)
C3A0.0280 (10)0.0274 (10)0.0306 (11)0.0161 (8)0.0035 (8)0.0022 (8)
C4A0.0275 (10)0.0222 (9)0.0232 (10)0.0081 (8)0.0019 (8)0.0027 (7)
C5A0.0223 (9)0.0249 (9)0.0214 (9)0.0051 (8)0.0062 (7)0.0011 (7)
C6A0.0210 (9)0.0208 (9)0.0213 (9)0.0080 (7)0.0047 (7)0.0025 (7)
C1B0.0233 (9)0.0217 (9)0.0180 (8)0.0093 (7)0.0075 (7)0.0026 (7)
C2B0.0295 (10)0.0206 (9)0.0223 (9)0.0068 (8)0.0050 (8)0.0003 (7)
C3B0.0292 (11)0.0275 (10)0.0268 (10)0.0067 (9)0.0017 (8)0.0050 (8)
C4B0.0330 (11)0.0373 (11)0.0194 (9)0.0182 (9)0.0023 (8)0.0029 (8)
C5B0.0404 (12)0.0321 (11)0.0205 (9)0.0194 (9)0.0136 (9)0.0050 (8)
C6B0.0278 (10)0.0227 (9)0.0239 (9)0.0092 (8)0.0119 (8)0.0003 (7)
C90.0179 (9)0.0297 (10)0.0315 (11)0.0047 (8)0.0017 (8)0.0103 (8)
C100.0303 (11)0.0306 (11)0.0379 (12)0.0156 (9)0.0027 (9)0.0054 (9)
C110.0291 (8)0.0263 (8)0.0242 (9)0.0103 (7)0.0065 (7)0.0001 (7)
C120.0290 (8)0.0285 (7)0.0249 (8)0.0094 (6)0.0069 (6)0.0004 (6)
C130.0285 (8)0.0301 (7)0.0248 (8)0.0096 (7)0.0077 (7)0.0009 (6)
C140.0287 (8)0.0320 (7)0.0256 (7)0.0103 (7)0.0079 (7)0.0006 (6)
C150.0282 (8)0.0351 (7)0.0265 (9)0.0106 (7)0.0082 (7)0.0002 (7)
C160.0282 (9)0.0390 (8)0.0280 (10)0.0099 (7)0.0074 (8)0.0006 (8)
C11X0.0290 (9)0.0283 (9)0.0249 (10)0.0101 (8)0.0073 (8)0.0015 (8)
C12X0.0288 (8)0.0294 (7)0.0250 (8)0.0100 (7)0.0073 (7)0.0008 (7)
C13X0.0284 (8)0.0305 (7)0.0251 (8)0.0100 (7)0.0077 (7)0.0006 (7)
C14X0.0283 (9)0.0332 (8)0.0260 (9)0.0104 (8)0.0078 (8)0.0001 (7)
C15X0.0284 (9)0.0352 (8)0.0265 (9)0.0103 (7)0.0077 (8)0.0000 (7)
C16X0.0285 (9)0.0370 (9)0.0268 (10)0.0104 (8)0.0076 (9)0.0000 (9)
Geometric parameters (Å, º) top
P1—C1B1.8322 (19)C9—C101.505 (3)
P1—C1A1.8325 (18)C9—H9A0.9900
P1—C11.8481 (18)C9—H9B0.9900
S1—C81.7391 (19)C10—C111.513 (4)
S1—C91.8120 (19)C10—C11X1.559 (8)
S2—C81.6744 (18)C10—H10A0.9900
N1—C71.281 (2)C10—H10B0.9900
N1—N21.378 (2)C11—C121.531 (4)
N2—C81.337 (2)C11—H11A0.9900
N2—H2N0.898 (17)C11—H11B0.9900
C1—C21.398 (3)C12—C131.529 (4)
C1—C61.409 (2)C12—H12A0.9900
C2—C31.386 (3)C12—H12B0.9900
C2—H20.9500C13—C141.526 (4)
C3—C41.388 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.382 (3)C14—C151.529 (4)
C4—H40.9500C14—H14A0.9900
C5—C61.400 (2)C14—H14B0.9900
C5—H50.9500C15—C161.511 (4)
C6—C71.467 (2)C15—H15A0.9900
C7—H70.9500C15—H15B0.9900
C1A—C2A1.394 (3)C16—H16A0.9800
C1A—C6A1.398 (3)C16—H16B0.9800
C2A—C3A1.391 (3)C16—H16C0.9800
C2A—H2A0.9500C11X—C12X1.524 (9)
C3A—C4A1.382 (3)C11X—H11C0.9900
C3A—H3A0.9500C11X—H11D0.9900
C4A—C5A1.391 (3)C12X—C13X1.501 (8)
C4A—H4A0.9500C12X—H12C0.9900
C5A—C6A1.384 (3)C12X—H12D0.9900
C5A—H5A0.9500C13X—C14X1.528 (9)
C6A—H6A0.9500C13X—H13C0.9900
C1B—C6B1.392 (3)C13X—H13D0.9900
C1B—C2B1.394 (3)C14X—C15X1.529 (9)
C2B—C3B1.392 (3)C14X—H14C0.9900
C2B—H2B0.9500C14X—H14D0.9900
C3B—C4B1.381 (3)C15X—C16X1.534 (10)
C3B—H3B0.9500C15X—H15C0.9900
C4B—C5B1.385 (3)C15X—H15D0.9900
C4B—H4B0.9500C16X—H16D0.9800
C5B—C6B1.385 (3)C16X—H16E0.9800
C5B—H5B0.9500C16X—H16F0.9800
C6B—H6B0.9500
C1B—P1—C1A104.27 (8)C11—C10—H10A108.8
C1B—P1—C1101.59 (8)C9—C10—H10B108.8
C1A—P1—C1102.39 (8)C11—C10—H10B108.8
C8—S1—C9102.85 (9)H10A—C10—H10B107.7
C7—N1—N2114.84 (15)C10—C11—C12114.6 (2)
C8—N2—N1120.21 (15)C10—C11—H11A108.6
C8—N2—H2N120.0 (17)C12—C11—H11A108.6
N1—N2—H2N119.0 (17)C10—C11—H11B108.6
C2—C1—C6118.18 (16)C12—C11—H11B108.6
C2—C1—P1121.83 (13)H11A—C11—H11B107.6
C6—C1—P1119.94 (13)C13—C12—C11112.7 (2)
C3—C2—C1121.53 (17)C13—C12—H12A109.1
C3—C2—H2119.2C11—C12—H12A109.1
C1—C2—H2119.2C13—C12—H12B109.1
C2—C3—C4119.95 (17)C11—C12—H12B109.1
C2—C3—H3120.0H12A—C12—H12B107.8
C4—C3—H3120.0C14—C13—C12114.3 (2)
C5—C4—C3119.64 (17)C14—C13—H13A108.7
C5—C4—H4120.2C12—C13—H13A108.7
C3—C4—H4120.2C14—C13—H13B108.7
C4—C5—C6120.99 (16)C12—C13—H13B108.7
C4—C5—H5119.5H13A—C13—H13B107.6
C6—C5—H5119.5C13—C14—C15113.8 (2)
C5—C6—C1119.71 (16)C13—C14—H14A108.8
C5—C6—C7118.94 (15)C15—C14—H14A108.8
C1—C6—C7121.30 (16)C13—C14—H14B108.8
N1—C7—C6120.42 (16)C15—C14—H14B108.8
N1—C7—H7119.8H14A—C14—H14B107.7
C6—C7—H7119.8C16—C15—C14113.9 (3)
N2—C8—S2120.86 (14)C16—C15—H15A108.8
N2—C8—S1114.09 (13)C14—C15—H15A108.8
S2—C8—S1125.05 (11)C16—C15—H15B108.8
C2A—C1A—C6A118.71 (17)C14—C15—H15B108.8
C2A—C1A—P1116.43 (14)H15A—C15—H15B107.7
C6A—C1A—P1124.85 (14)C15—C16—H16A109.5
C3A—C2A—C1A120.56 (18)C15—C16—H16B109.5
C3A—C2A—H2A119.7H16A—C16—H16B109.5
C1A—C2A—H2A119.7C15—C16—H16C109.5
C4A—C3A—C2A120.29 (19)H16A—C16—H16C109.5
C4A—C3A—H3A119.9H16B—C16—H16C109.5
C2A—C3A—H3A119.9C12X—C11X—C10118.2 (6)
C3A—C4A—C5A119.53 (18)C12X—C11X—H11C107.8
C3A—C4A—H4A120.2C10—C11X—H11C107.8
C5A—C4A—H4A120.2C12X—C11X—H11D107.8
C6A—C5A—C4A120.40 (18)C10—C11X—H11D107.8
C6A—C5A—H5A119.8H11C—C11X—H11D107.1
C4A—C5A—H5A119.8C13X—C12X—C11X113.2 (7)
C5A—C6A—C1A120.51 (18)C13X—C12X—H12C108.9
C5A—C6A—H6A119.7C11X—C12X—H12C108.9
C1A—C6A—H6A119.7C13X—C12X—H12D108.9
C6B—C1B—C2B118.33 (18)C11X—C12X—H12D108.9
C6B—C1B—P1116.22 (14)H12C—C12X—H12D107.7
C2B—C1B—P1125.33 (15)C12X—C13X—C14X115.0 (7)
C3B—C2B—C1B120.41 (19)C12X—C13X—H13C108.5
C3B—C2B—H2B119.8C14X—C13X—H13C108.5
C1B—C2B—H2B119.8C12X—C13X—H13D108.5
C4B—C3B—C2B120.60 (19)C14X—C13X—H13D108.5
C4B—C3B—H3B119.7H13C—C13X—H13D107.5
C2B—C3B—H3B119.7C13X—C14X—C15X113.0 (7)
C3B—C4B—C5B119.42 (19)C13X—C14X—H14C109.0
C3B—C4B—H4B120.3C15X—C14X—H14C109.0
C5B—C4B—H4B120.3C13X—C14X—H14D109.0
C4B—C5B—C6B120.14 (19)C15X—C14X—H14D109.0
C4B—C5B—H5B119.9H14C—C14X—H14D107.8
C6B—C5B—H5B119.9C14X—C15X—C16X112.8 (8)
C5B—C6B—C1B121.09 (18)C14X—C15X—H15C109.0
C5B—C6B—H6B119.5C16X—C15X—H15C109.0
C1B—C6B—H6B119.5C14X—C15X—H15D109.0
C10—C9—S1107.87 (14)C16X—C15X—H15D109.0
C10—C9—H9A110.1H15C—C15X—H15D107.8
S1—C9—H9A110.1C15X—C16X—H16D109.5
C10—C9—H9B110.1C15X—C16X—H16E109.5
S1—C9—H9B110.1H16D—C16X—H16E109.5
H9A—C9—H9B108.4C15X—C16X—H16F109.5
C9—C10—C11113.6 (2)H16D—C16X—H16F109.5
C9—C10—C11X113.2 (4)H16E—C16X—H16F109.5
C9—C10—H10A108.8
C7—N1—N2—C8177.59 (16)C3A—C4A—C5A—C6A0.0 (3)
C1B—P1—C1—C223.69 (17)C4A—C5A—C6A—C1A0.4 (3)
C1A—P1—C1—C283.93 (16)C2A—C1A—C6A—C5A0.6 (3)
C1B—P1—C1—C6153.73 (14)P1—C1A—C6A—C5A179.15 (14)
C1A—P1—C1—C698.65 (14)C1A—P1—C1B—C6B177.27 (14)
C6—C1—C2—C30.6 (3)C1—P1—C1B—C6B76.58 (15)
P1—C1—C2—C3178.08 (14)C1A—P1—C1B—C2B1.38 (19)
C1—C2—C3—C41.0 (3)C1—P1—C1B—C2B107.53 (17)
C2—C3—C4—C50.6 (3)C6B—C1B—C2B—C3B0.4 (3)
C3—C4—C5—C60.2 (3)P1—C1B—C2B—C3B176.25 (16)
C4—C5—C6—C10.6 (3)C1B—C2B—C3B—C4B0.5 (3)
C4—C5—C6—C7177.04 (16)C2B—C3B—C4B—C5B0.5 (3)
C2—C1—C6—C50.2 (2)C3B—C4B—C5B—C6B0.3 (3)
P1—C1—C6—C5177.34 (13)C4B—C5B—C6B—C1B1.3 (3)
C2—C1—C6—C7177.37 (16)C2B—C1B—C6B—C5B1.3 (3)
P1—C1—C6—C75.1 (2)P1—C1B—C6B—C5B177.49 (15)
N2—N1—C7—C6176.72 (15)C8—S1—C9—C10170.42 (15)
C5—C6—C7—N112.7 (3)S1—C9—C10—C11175.95 (19)
C1—C6—C7—N1169.78 (16)S1—C9—C10—C11X163.0 (4)
N1—N2—C8—S2179.22 (13)C9—C10—C11—C1267.3 (3)
N1—N2—C8—S11.6 (2)C11X—C10—C11—C1225.7 (11)
C9—S1—C8—N2176.61 (14)C10—C11—C12—C13177.4 (2)
C9—S1—C8—S24.25 (15)C11—C12—C13—C1475.4 (3)
C1B—P1—C1A—C2A117.75 (14)C12—C13—C14—C15169.6 (3)
C1—P1—C1A—C2A136.70 (14)C13—C14—C15—C1662.2 (4)
C1B—P1—C1A—C6A63.64 (17)C9—C10—C11X—C12X33.4 (8)
C1—P1—C1A—C6A41.91 (17)C11—C10—C11X—C12X62.1 (11)
C6A—C1A—C2A—C3A0.4 (3)C10—C11X—C12X—C13X165.7 (7)
P1—C1A—C2A—C3A179.05 (15)C11X—C12X—C13X—C14X179.6 (7)
C1A—C2A—C3A—C4A0.0 (3)C12X—C13X—C14X—C15X173.9 (7)
C2A—C3A—C4A—C5A0.2 (3)C13X—C14X—C15X—C16X66.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S2i0.90 (2)2.45 (2)3.3337 (17)168 (2)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S2i0.898 (17)2.450 (17)3.3337 (17)168 (2)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

IA, MHSAH, MAA and AHM thank University Brunei Darussalam for support. MRK acknowledges support from the Department of Chemistry at Tennessee State University.

References

First citationAkbar Ali, M., Bernhardt, P. V., Jason, M. A. H. B., Farlow, A. J., Hanson, G. R., Yeng, L. L., Mirza, A. H. & Wieghardt, K. (2013). Inorg. Chem. 52, 1650–1657.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAkbar Ali, M. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CrossRef Google Scholar
First citationAkbar Ali, M., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed CAS Google Scholar
First citationAkbar Ali, M., Mirza, A. H., Fereday, R. J., Butcher, R. J., Fuller, J. M., Drew, S. C., Gahan, L. R., Hanson, G. R., Moubaraki, B. & Murray, K. S. (2005). Inorg. Chim. Acta, 358, 3937–3948.  CSD CrossRef Google Scholar
First citationAkbar Ali, M., Mirza, A. H., Hamid, M. H. S. A., Aminath, N. & Bernhardt, P. V. (2012). Polyhedron, 47, 79–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamid, M. H. S. A., Akbar Ali, M., Mirza, A. H., Bernhardt, P. V., Moubaraki, B. & Murray, K. S. (2009). Inorg. Chim. Acta, 362, 3648–3656.  Web of Science CSD CrossRef CAS Google Scholar
First citationHossain, M. E., Alam, M. N., Akbar Ali, M., Smith, F. E. & Hynes, R. C. (1996). Polyhedron, 15, 973–980.  CSD CrossRef CAS Web of Science Google Scholar
First citationShanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-H., Zhang, X., Jiang, K. & Yang, S.-X. (2009). Acta Cryst. E65, o356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, C. Y., Yang, X. P., Kang, B. S., Yu, K. B., Tong Ye, X. & Mak, T. C. W. (1999). Bull. Chem. Soc. Jpn, 72, 2217–2222.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o633-o634
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds