organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1-Allyl-3-chloro-4-eth­­oxy-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_bouissane@yahoo.fr

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 1 May 2014; accepted 6 May 2014; online 10 May 2014)

In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8).

Related literature

For the biological activity of sulfonamides, see: El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Leonce, S., Pfeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2014[Chicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20ClN3O3S

  • Mr = 405.89

  • Triclinic, [P \overline 1]

  • a = 10.0345 (2) Å

  • b = 10.5208 (2) Å

  • c = 10.7237 (2) Å

  • α = 71.561 (1)°

  • β = 69.601 (1)°

  • γ = 83.039 (1)°

  • V = 1006.56 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.42 × 0.35 × 0.30 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 21411 measured reflections

  • 4792 independent reflections

  • 3967 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.126

  • S = 1.04

  • 4792 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O3i 0.89 2.22 3.0588 (17) 156
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (El-Sayed, et al., 2011; Mustafa, et al., 2012; Scozzafava, et al., 2003; Bouissane, et al., 2006). Previously, we identified a series of indazoles bearing a sulfonamide moiety with good antiproliferative activities. Recently, some N-[7(6)-indazolyl]arylsulfonamides prepared by our research group showed important antiproliferative activity against some human and murine cell lines (Abbassi, et al., 2012; Abbassi, et al., 2013; Chicha, et al., 2014).

The molecule of the title compound is built up from two fused five- and six-membered rings (N1 N2 C1 to C7) almost coplanar, with a maximum deviation of -0.036 (2) Å for C5 atom (Fig.1). The indazol system forms a dihedral angle of 51.23 (8)° with the plane through the benzene ring and it is nearly perpendicular to the allyl group as indicated by the torsion angle C18B–C17–N2–N1 of 95.4 (5)°.

The cohesion of the crystal structure is ensured by N3–H3N···O3 hydrogen bonds between molecules forming a dimers, arranged in columns parallel to the [0 1 1] direction as shown in Fig.2 and Table 1.

Related literature top

For the biological activity of sulfonamides, see: El-Sayed et al. (2011); Mustafa et al. (2012); Scozzafava et al. (2003); Bouissane et al. (2006). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2014).

Experimental top

A mixture of 1-allyl-3-chloro-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 2:8). The title compound was recrystallized from ethanol (yield = 40%, m.p. = 373 K).

Refinement top

The reflections (100), (010), (001) and (011) are removed from the refinement because they are affected by the beam stop. The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.97 Å, C–H = 0.93 Å, and N–H = 0.89 Å for methyl, methylene, aromatic CH, and NH, respectively. All hydrogen with Uiso(H) = 1.2 Ueq (aromatic, methylene, NH)and Uiso(H) = 1.5 Ueq for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Projection of the crystal structure along a axix, showing molecules linked by hydrogen bonds and forming a dimers columns parallel to the [0 1 1] direction.
N-(1-Allyl-3-chloro-4-ethoxy-1H-indazol-5-yl)-4-methylbenzenesulfonamide top
Crystal data top
C19H20ClN3O3SZ = 2
Mr = 405.89F(000) = 424
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Melting point: 373 K
a = 10.0345 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5208 (2) ÅCell parameters from 4792 reflections
c = 10.7237 (2) Åθ = 2.5–27.9°
α = 71.561 (1)°µ = 0.32 mm1
β = 69.601 (1)°T = 296 K
γ = 83.039 (1)°Block, colourless
V = 1006.56 (3) Å30.42 × 0.35 × 0.30 mm
Data collection top
Bruker X8 APEX
diffractometer
4792 independent reflections
Radiation source: fine-focus sealed tube3967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.693, Tmax = 0.747k = 1313
21411 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.2408P]
where P = (Fo2 + 2Fc2)/3
4792 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H20ClN3O3Sγ = 83.039 (1)°
Mr = 405.89V = 1006.56 (3) Å3
Triclinic, P1Z = 2
a = 10.0345 (2) ÅMo Kα radiation
b = 10.5208 (2) ŵ = 0.32 mm1
c = 10.7237 (2) ÅT = 296 K
α = 71.561 (1)°0.42 × 0.35 × 0.30 mm
β = 69.601 (1)°
Data collection top
Bruker X8 APEX
diffractometer
4792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3967 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.027
21411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
4792 reflectionsΔρmin = 0.35 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8128 (2)0.5118 (2)0.42585 (19)0.0628 (5)
C20.69725 (19)0.46383 (17)0.55054 (17)0.0484 (4)
C30.6105 (2)0.57806 (17)0.55830 (18)0.0526 (4)
C40.4795 (2)0.57522 (17)0.6626 (2)0.0544 (4)
H40.42300.65190.66530.065*
C50.43792 (18)0.45479 (17)0.76086 (18)0.0481 (4)
H50.34950.44880.82990.058*
C60.52561 (16)0.33930 (15)0.76030 (16)0.0393 (3)
C70.65446 (17)0.34152 (16)0.65574 (16)0.0415 (3)
C80.8599 (2)0.2160 (2)0.6873 (2)0.0608 (5)
H8A0.83690.21870.78210.073*
H8B0.92130.29070.62520.073*
C90.9321 (3)0.0880 (3)0.6722 (4)0.0976 (9)
H9A0.95460.08660.57800.146*
H9B0.87050.01490.73430.146*
H9C1.01810.07960.69450.146*
C100.62203 (17)0.22040 (15)1.03861 (15)0.0404 (3)
C110.7030 (2)0.10747 (17)1.0730 (2)0.0542 (4)
H110.66640.02261.09730.065*
C120.8389 (2)0.1218 (2)1.0708 (2)0.0618 (5)
H120.89320.04571.09490.074*
C130.8960 (2)0.2475 (2)1.0333 (2)0.0570 (4)
C140.8130 (2)0.35895 (19)0.9984 (2)0.0586 (5)
H140.85020.44380.97240.070*
C150.67618 (19)0.34768 (16)1.00100 (19)0.0510 (4)
H150.62140.42370.97810.061*
C161.0466 (2)0.2623 (3)1.0261 (3)0.0839 (7)
H16A1.08770.17521.05430.126*
H16B1.04600.31251.08700.126*
H16C1.10170.30860.93230.126*
C170.6318 (3)0.8191 (2)0.4084 (3)0.0869 (8)
H17A0.53220.82510.41620.104*0.376 (8)
H17B0.68700.86530.31330.104*0.376 (8)
H17C0.67370.85650.30840.104*0.624 (8)
H17D0.52950.82090.42970.104*0.624 (8)
C18A0.657 (2)0.8881 (16)0.5179 (15)0.082 (4)0.376 (8)
H18A0.64230.83830.61030.099*0.376 (8)
C19A0.6994 (8)1.0147 (9)0.4734 (11)0.105 (4)0.376 (8)
H19A0.71441.06450.38100.126*0.376 (8)
H19B0.71361.05330.53460.126*0.376 (8)
C18B0.6631 (11)0.9034 (11)0.4701 (8)0.076 (2)0.624 (8)
H18B0.65120.99510.43350.091*0.624 (8)
C19B0.7085 (7)0.8617 (7)0.5769 (6)0.109 (2)0.624 (8)
H19C0.72140.77050.61560.131*0.624 (8)
H19D0.72790.92320.61410.131*0.624 (8)
N10.8009 (2)0.6396 (2)0.36458 (18)0.0738 (5)
N20.6767 (2)0.68077 (16)0.44501 (18)0.0663 (5)
N30.47799 (13)0.21562 (12)0.86652 (13)0.0403 (3)
H3N0.52660.14370.84730.048*
O10.73089 (12)0.22498 (12)0.65275 (13)0.0491 (3)
O20.36643 (13)0.31502 (12)1.06165 (13)0.0531 (3)
O30.40499 (13)0.07043 (11)1.10772 (12)0.0510 (3)
S10.45343 (4)0.20409 (3)1.03010 (4)0.04001 (12)
Cl10.95478 (8)0.42370 (8)0.34929 (7)0.1012 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0652 (12)0.0749 (13)0.0401 (9)0.0231 (10)0.0109 (8)0.0048 (8)
C20.0515 (9)0.0554 (9)0.0379 (8)0.0137 (7)0.0157 (7)0.0071 (7)
C30.0673 (11)0.0476 (9)0.0439 (9)0.0139 (8)0.0265 (8)0.0008 (7)
C40.0632 (11)0.0446 (9)0.0567 (10)0.0020 (8)0.0281 (9)0.0083 (7)
C50.0456 (8)0.0487 (9)0.0488 (9)0.0008 (7)0.0168 (7)0.0110 (7)
C60.0407 (7)0.0400 (7)0.0384 (7)0.0078 (6)0.0157 (6)0.0073 (6)
C70.0425 (8)0.0457 (8)0.0391 (8)0.0063 (6)0.0154 (6)0.0119 (6)
C80.0471 (9)0.0792 (13)0.0574 (11)0.0035 (9)0.0184 (8)0.0219 (10)
C90.0637 (14)0.0928 (19)0.130 (3)0.0210 (13)0.0312 (15)0.0325 (17)
C100.0447 (8)0.0391 (7)0.0360 (7)0.0108 (6)0.0111 (6)0.0079 (6)
C110.0628 (11)0.0399 (8)0.0589 (10)0.0141 (7)0.0297 (9)0.0024 (7)
C120.0617 (11)0.0572 (10)0.0675 (12)0.0071 (9)0.0349 (10)0.0020 (9)
C130.0535 (10)0.0704 (12)0.0509 (10)0.0184 (9)0.0165 (8)0.0172 (9)
C140.0591 (10)0.0522 (10)0.0657 (12)0.0222 (8)0.0117 (9)0.0211 (8)
C150.0527 (9)0.0395 (8)0.0596 (10)0.0088 (7)0.0118 (8)0.0176 (7)
C160.0610 (13)0.1033 (18)0.0955 (18)0.0223 (12)0.0326 (13)0.0248 (15)
C170.120 (2)0.0525 (11)0.0877 (17)0.0236 (12)0.0575 (16)0.0148 (11)
C18A0.134 (10)0.060 (6)0.078 (9)0.010 (5)0.065 (9)0.018 (6)
C19A0.084 (5)0.107 (7)0.159 (9)0.003 (4)0.044 (5)0.083 (6)
C18B0.081 (3)0.071 (3)0.067 (4)0.021 (2)0.022 (3)0.004 (3)
C19B0.121 (4)0.136 (5)0.081 (4)0.061 (4)0.011 (3)0.048 (3)
N10.0861 (13)0.0787 (12)0.0463 (9)0.0342 (10)0.0185 (9)0.0039 (8)
N20.0899 (13)0.0540 (9)0.0496 (9)0.0224 (8)0.0283 (9)0.0058 (7)
N30.0415 (7)0.0359 (6)0.0420 (7)0.0079 (5)0.0112 (5)0.0095 (5)
O10.0445 (6)0.0508 (6)0.0524 (7)0.0024 (5)0.0131 (5)0.0185 (5)
O20.0518 (7)0.0486 (6)0.0524 (7)0.0007 (5)0.0070 (5)0.0173 (5)
O30.0513 (7)0.0411 (6)0.0489 (7)0.0169 (5)0.0053 (5)0.0039 (5)
S10.0401 (2)0.0354 (2)0.0385 (2)0.00946 (14)0.00577 (15)0.00744 (14)
Cl10.0849 (4)0.1221 (6)0.0606 (4)0.0129 (4)0.0153 (3)0.0182 (4)
Geometric parameters (Å, º) top
C1—N11.308 (3)C13—C141.383 (3)
C1—C21.422 (3)C13—C161.510 (3)
C1—Cl11.705 (2)C14—C151.382 (3)
C2—C31.403 (3)C14—H140.9300
C2—C71.411 (2)C15—H150.9300
C3—N21.366 (2)C16—H16A0.9600
C3—C41.394 (3)C16—H16B0.9600
C4—C51.366 (2)C16—H16C0.9600
C4—H40.9300C17—C18B1.380 (11)
C5—C61.412 (2)C17—N21.442 (3)
C5—H50.9300C17—C18A1.663 (15)
C6—C71.382 (2)C17—H17A0.9700
C6—N31.4327 (18)C17—H17B0.9700
C7—O11.3683 (19)C17—H17C0.9700
C8—O11.450 (2)C17—H17D0.9700
C8—C91.478 (3)C18A—C19A1.331 (19)
C8—H8A0.9700C18A—H18A0.9300
C8—H8B0.9700C19A—H19A0.9300
C9—H9A0.9600C19A—H19B0.9300
C9—H9B0.9600C18B—C19B1.307 (10)
C9—H9C0.9600C18B—H18B0.9300
C10—C111.380 (2)C19B—H19C0.9300
C10—C151.390 (2)C19B—H19D0.9300
C10—S11.7572 (16)N1—N21.357 (3)
C11—C121.382 (3)N3—S11.6504 (13)
C11—H110.9300N3—H3N0.8896
C12—C131.388 (3)O2—S11.4267 (12)
C12—H120.9300O3—S11.4317 (11)
N1—C1—C2112.7 (2)C13—C16—H16B109.5
N1—C1—Cl1118.98 (16)H16A—C16—H16B109.5
C2—C1—Cl1128.32 (17)C13—C16—H16C109.5
C3—C2—C7119.20 (16)H16A—C16—H16C109.5
C3—C2—C1103.15 (16)H16B—C16—H16C109.5
C7—C2—C1137.65 (18)C18B—C17—N2118.3 (5)
N2—C3—C4130.22 (18)C18B—C17—C18A14.3 (7)
N2—C3—C2106.89 (17)N2—C17—C18A107.4 (6)
C4—C3—C2122.81 (15)C18B—C17—H17A111.6
C5—C4—C3117.00 (16)N2—C17—H17A110.2
C5—C4—H4121.5C18A—C17—H17A110.2
C3—C4—H4121.5C18B—C17—H17B96.9
C4—C5—C6121.71 (16)N2—C17—H17B110.2
C4—C5—H5119.1C18A—C17—H17B110.2
C6—C5—H5119.1H17A—C17—H17B108.5
C7—C6—C5121.27 (14)C18B—C17—H17C107.7
C7—C6—N3119.03 (14)N2—C17—H17C107.7
C5—C6—N3119.65 (14)C18A—C17—H17C121.4
O1—C7—C6119.44 (14)H17A—C17—H17C99.4
O1—C7—C2122.54 (14)H17B—C17—H17C11.9
C6—C7—C2117.89 (15)C18B—C17—H17D107.7
O1—C8—C9107.74 (18)N2—C17—H17D107.7
O1—C8—H8A110.2C18A—C17—H17D104.8
C9—C8—H8A110.2H17A—C17—H17D7.7
O1—C8—H8B110.2H17B—C17—H17D116.0
C9—C8—H8B110.2H17C—C17—H17D107.1
H8A—C8—H8B108.5C19A—C18A—C17120.0 (9)
C8—C9—H9A109.5C19A—C18A—H18A120.0
C8—C9—H9B109.5C17—C18A—H18A120.0
H9A—C9—H9B109.5C18A—C19A—H19A120.0
C8—C9—H9C109.5C18A—C19A—H19B120.0
H9A—C9—H9C109.5H19A—C19A—H19B120.0
H9B—C9—H9C109.5C19B—C18B—C17123.8 (9)
C11—C10—C15120.75 (15)C19B—C18B—H18B118.1
C11—C10—S1119.82 (11)C17—C18B—H18B118.1
C15—C10—S1119.27 (13)C18B—C19B—H19C120.0
C10—C11—C12119.32 (15)C18B—C19B—H19D120.0
C10—C11—H11120.3H19C—C19B—H19D120.0
C12—C11—H11120.3C1—N1—N2105.77 (17)
C11—C12—C13121.25 (18)N1—N2—C3111.52 (17)
C11—C12—H12119.4N1—N2—C17120.35 (19)
C13—C12—H12119.4C3—N2—C17128.1 (2)
C14—C13—C12118.22 (17)C6—N3—S1119.49 (10)
C14—C13—C16120.82 (18)C6—N3—H3N114.3
C12—C13—C16120.9 (2)S1—N3—H3N108.7
C15—C14—C13121.79 (16)C7—O1—C8114.94 (13)
C15—C14—H14119.1O2—S1—O3119.60 (7)
C13—C14—H14119.1O2—S1—N3107.72 (7)
C14—C15—C10118.65 (16)O3—S1—N3105.18 (7)
C14—C15—H15120.7O2—S1—C10108.63 (7)
C10—C15—H15120.7O3—S1—C10108.69 (7)
C13—C16—H16A109.5N3—S1—C10106.23 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.892.223.0588 (17)156
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.892.223.0588 (17)156.0
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Leonce, S., Pfeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds