organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di-tert-butyl-6-({[2-(di­methyl­amino)­eth­yl](2-hy­dr­oxy­benz­yl)amino}­meth­yl)phenol

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 5 May 2014; accepted 6 May 2014; online 17 May 2014)

The title compound, C26H40N2O2, has both its N atoms in trigonal-pyramidal geometries. The mol­ecular structure is stabilized by O—H⋯N and C—H⋯O hydrogen bonds. In the crystal, C—H⋯π inter­actions lead to the formation of a supramolecular helical chain along the b-axis direction.

Related literature

For general background to the use of di­amine­bis­(aryl­oxido) compounds as tetra­dentate ligands, see: Hirotsu et al. (1997[Hirotsu, M., Kojima, M. & Yoshikawa, Y. (1997). Bull. Chem. Soc. Jpn, 70, 649-657.], 1998[Hirotsu, M., Kojima, M., Mori, W. & Yoshikawa, Y. (1998). Bull. Chem. Soc. Jpn, 71, 2873-2884.]); Dutta et al. (2011[Dutta, G., Debnath, R. K., Kalita, A., Kumar, P., Sarma, M., Shankar, R. B. & Mondal, B. (2011). Polyhedron, 30, 293-298.]). For related structures, see: Abrahams et al. (2009[Abrahams, A., Gerber, T., Hosten, E. & Mayer, P. (2009). Turk. J. Chem. 33, 569-577.]); Maity et al. (2006[Maity, D., Ray, A., Sheldrick, W. S., Figge, H. M., Bandyopadhyay, B. & Ali, M. (2006). Inorg. Chim. Acta, 359, 3197-3204.]); Janas et al. (2012[Janas, Z., Nerkowski, T., Kober, E., Jerzykiewicz, L. B. & Lis, T. (2012). Dalton Trans. 41, 442-447.]).

[Scheme 1]

Experimental

Crystal data
  • C26H40N2O2

  • Mr = 412.60

  • Monoclinic, P 21 /c

  • a = 12.3002 (7) Å

  • b = 13.3758 (7) Å

  • c = 15.5662 (9) Å

  • β = 96.377 (5)°

  • V = 2545.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.40 × 0.37 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • 17015 measured reflections

  • 4964 independent reflections

  • 2292 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.099

  • S = 0.78

  • 4964 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.96 (2) 2.59 (2) 3.1610 (19) 118.5 (16)
O1—H1A⋯N2 0.96 (2) 1.89 (2) 2.824 (2) 162.4 (19)
O2—H2A⋯N1 0.88 (2) 1.95 (2) 2.7563 (18) 152.1 (18)
C3—H3A⋯O2 0.96 2.64 3.411 (3) 137
C9—H9ACgi 0.93 2.77 3.593 (2) 148
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Diamine bis(phenolate) compounds and its derivatives represent the dominant class of compounds that are used as tripodal tetradentate ligands with an N2O2 donor set (Hirotsu et al., 1997, 1998). The steric factors of substituents in the tetradentate ligands are especially important in complexation of agents for polymerization reactions.

The molecular structure of the title compound and the atom-numbering scheme are shown in Figure 1. The crystal structure shows trigonal pyramidal geometries around N1 [sum of C—N—C angles = 332.05 (18)° and N2 [sum of C—N—C angles = 330.37 (13)°], and is comparable with related structures (Abrahams et al., 2009; Maity et al., 2006; Janas et al., 2012). The aromatic ring which is substituted with tert-butyl groups is slightly more distorted in comparison to unsubstituted one due to the steric hindrance. The molecular structure is stabilized by three hydrogen bonds between hydroxyl groups and amine nitrogen atoms (Figure 1) and one of a C—H···O type. This pattern of interactions influences the dihedral angle between aromatic moieties which amounts 73.88 (57)°. Such stabilization is also observed for structures when both aromatic rings are substituted (Maity et al., 2006; Janas et al., 2012), in contrast to the unsubstituted molecule (Abrahams et al., 2009). All remaining bond distances and angles are normal and in good agreement with the geometries of other diamine bis(phenolates) (Abrahams et al., 2009; Maity et al., 2006; Janas et al., 2012). Strong intermolecular interactions were not found in the crystal. The structure is stabilized by weak C—H···π interactions.

Related literature top

For general background to the use of diaminebis(aryloxido) compounds as tetradentate ligands, see: Hirotsu et al. (1998, 1997); Dutta et al. (2011). For related structures, see: Abrahams et al. (2009); Maity et al. (2006); Janas et al. (2012).

Experimental top

The compound was prepared according to literature procedure (Dutta et al., 2011). Crystals suitable for X-ray crystal structure analysis were grown from methanol.

Refinement top

H atoms bonded to C were positioned geometrically and treated as riding on their parent atoms with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.5Ueq (C-methyl) or = 1.2U eq(C) for other H atoms. The coordinates of the H atoms bonded to O were refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A packing diagram of the title compound.
2,4-Di-tert-butyl-6-({[2-(dimethylamino)ethyl](2-hydroxybenzyl)amino}methyl)phenol top
Crystal data top
C26H40N2O2F(000) = 904
Mr = 412.60Dx = 1.077 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.3002 (7) ÅCell parameters from 17015 reflections
b = 13.3758 (7) Åθ = 3.0–26.0°
c = 15.5662 (9) ŵ = 0.07 mm1
β = 96.377 (5)°T = 150 K
V = 2545.2 (2) Å3Cubic, colourless
Z = 40.4 × 0.37 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2292 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.047
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
Detector resolution: 10.4508 pixels mm-1h = 1515
ω–scank = 169
17015 measured reflectionsl = 1919
4964 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0474P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max < 0.001
4964 reflectionsΔρmax = 0.22 e Å3
277 parametersΔρmin = 0.18 e Å3
Crystal data top
C26H40N2O2V = 2545.2 (2) Å3
Mr = 412.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3002 (7) ŵ = 0.07 mm1
b = 13.3758 (7) ÅT = 150 K
c = 15.5662 (9) Å0.4 × 0.37 × 0.35 mm
β = 96.377 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2292 reflections with I > 2σ(I)
17015 measured reflectionsRint = 0.047
4964 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.78Δρmax = 0.22 e Å3
4964 reflectionsΔρmin = 0.18 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47272 (11)0.82096 (10)0.29297 (9)0.0297 (4)
N20.35360 (14)0.71832 (12)0.15196 (11)0.0516 (5)
O10.27532 (12)0.91451 (11)0.17200 (8)0.0573 (4)
H1A0.3077 (17)0.8489 (17)0.1774 (13)0.086*
O20.56148 (11)0.93511 (9)0.17087 (8)0.0449 (4)
H2A0.5129 (16)0.9043 (14)0.1990 (13)0.067*
C10.49556 (15)0.71454 (12)0.27880 (12)0.0409 (5)
H1B0.50970.68160.33440.049*
H1C0.56130.70920.25000.049*
C20.40348 (16)0.66064 (14)0.22545 (13)0.0501 (6)
H2B0.43140.59850.20440.060*
H2C0.34750.64390.26230.060*
C30.4308 (2)0.72638 (16)0.08655 (14)0.0735 (7)
H3A0.49740.75700.11190.110*
H3B0.39900.76660.03920.110*
H3C0.44640.66090.06590.110*
C40.2528 (2)0.67198 (19)0.11449 (18)0.0988 (9)
H4A0.20460.72230.08800.148*
H4B0.21830.63880.15900.148*
H4C0.26870.62410.07170.148*
C50.37250 (14)0.83566 (13)0.33576 (11)0.0344 (5)
H5A0.38830.82120.39690.041*
H5B0.31670.78920.31170.041*
C60.32984 (14)0.94016 (13)0.32456 (12)0.0331 (4)
C70.28295 (15)0.97286 (14)0.24381 (13)0.0405 (5)
C80.23990 (16)1.06898 (15)0.23475 (14)0.0508 (5)
H8A0.20851.09060.18080.061*
C90.24319 (17)1.13236 (15)0.30464 (16)0.0551 (6)
H9A0.21421.19640.29770.066*
C100.28917 (17)1.10118 (16)0.38444 (15)0.0547 (6)
H10A0.29141.14370.43190.066*
C110.33222 (15)1.00577 (14)0.39350 (12)0.0443 (5)
H11A0.36380.98500.44760.053*
C120.56595 (14)0.86832 (13)0.34509 (11)0.0351 (5)
H12A0.58350.82980.39760.042*
H12B0.54440.93470.36170.042*
C130.66716 (14)0.87681 (12)0.29899 (11)0.0320 (4)
C140.66188 (15)0.91250 (12)0.21458 (11)0.0336 (4)
C150.75646 (16)0.92661 (12)0.17339 (12)0.0377 (5)
C160.85514 (16)0.90452 (13)0.22224 (13)0.0457 (5)
H16A0.91920.91500.19690.055*
C170.86462 (15)0.86777 (14)0.30655 (14)0.0453 (5)
C180.76839 (15)0.85408 (13)0.34324 (12)0.0398 (5)
H18A0.77160.82890.39920.048*
C190.75220 (17)0.96199 (14)0.07887 (12)0.0477 (5)
C200.6966 (2)1.06485 (15)0.06686 (14)0.0759 (7)
H20A0.62361.06080.08300.114*
H20B0.69371.08480.00740.114*
H20C0.73761.11320.10270.114*
C210.69022 (19)0.88603 (16)0.01895 (13)0.0700 (7)
H21A0.61770.87770.03510.105*
H21B0.72790.82310.02370.105*
H21C0.68610.90950.03960.105*
C220.86723 (18)0.97404 (17)0.04988 (15)0.0780 (8)
H22A0.86090.99610.00910.117*
H22B0.90470.91100.05480.117*
H22C0.90771.02250.08600.117*
C230.97742 (17)0.84687 (19)0.35613 (16)0.0669 (7)
C240.9681 (2)0.7884 (2)0.43981 (19)0.1249 (13)
H24A0.92480.82580.47620.187*
H24B1.03980.77780.46950.187*
H24C0.93390.72500.42610.187*
C251.0477 (2)0.7853 (2)0.3005 (2)0.1166 (11)
H25A1.05620.82110.24820.175*
H25B1.01280.72230.28650.175*
H25C1.11830.77390.33190.175*
C261.0338 (2)0.9463 (2)0.37872 (19)0.1113 (10)
H26A1.04130.98280.32660.167*
H26B1.10480.93430.40910.167*
H26C0.99070.98450.41470.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0285 (9)0.0291 (8)0.0319 (9)0.0003 (7)0.0056 (7)0.0007 (7)
N20.0611 (12)0.0471 (10)0.0436 (11)0.0080 (10)0.0073 (9)0.0106 (9)
O10.0767 (11)0.0558 (9)0.0378 (8)0.0229 (8)0.0003 (7)0.0001 (8)
O20.0436 (9)0.0540 (9)0.0377 (8)0.0040 (7)0.0079 (6)0.0137 (7)
C10.0445 (12)0.0346 (11)0.0439 (12)0.0056 (10)0.0068 (10)0.0058 (9)
C20.0594 (15)0.0370 (12)0.0540 (14)0.0013 (11)0.0073 (11)0.0051 (11)
C30.112 (2)0.0638 (15)0.0458 (14)0.0141 (15)0.0120 (14)0.0037 (12)
C40.0679 (19)0.097 (2)0.122 (2)0.0002 (16)0.0302 (17)0.0425 (18)
C50.0319 (11)0.0385 (11)0.0336 (11)0.0021 (9)0.0074 (9)0.0053 (9)
C60.0273 (10)0.0359 (11)0.0378 (11)0.0006 (9)0.0109 (8)0.0010 (10)
C70.0424 (13)0.0417 (12)0.0394 (12)0.0049 (10)0.0133 (10)0.0010 (10)
C80.0541 (14)0.0483 (13)0.0519 (14)0.0123 (11)0.0143 (11)0.0161 (12)
C90.0554 (15)0.0361 (12)0.0785 (18)0.0055 (11)0.0285 (13)0.0044 (13)
C100.0543 (15)0.0457 (14)0.0667 (17)0.0022 (11)0.0182 (12)0.0141 (12)
C110.0410 (13)0.0488 (13)0.0442 (13)0.0008 (10)0.0091 (10)0.0020 (11)
C120.0358 (12)0.0401 (11)0.0297 (11)0.0012 (9)0.0061 (9)0.0030 (9)
C130.0319 (12)0.0312 (10)0.0334 (11)0.0018 (9)0.0064 (9)0.0001 (9)
C140.0366 (12)0.0285 (10)0.0362 (11)0.0013 (9)0.0062 (9)0.0012 (9)
C150.0451 (13)0.0280 (10)0.0428 (12)0.0041 (9)0.0169 (10)0.0001 (9)
C160.0397 (13)0.0431 (12)0.0580 (14)0.0096 (10)0.0220 (11)0.0009 (11)
C170.0313 (13)0.0474 (12)0.0576 (14)0.0058 (10)0.0066 (11)0.0001 (11)
C180.0379 (13)0.0438 (12)0.0376 (12)0.0071 (10)0.0038 (10)0.0032 (9)
C190.0650 (15)0.0387 (12)0.0440 (12)0.0021 (11)0.0267 (11)0.0042 (10)
C200.121 (2)0.0540 (14)0.0595 (15)0.0186 (14)0.0394 (14)0.0210 (12)
C210.098 (2)0.0701 (16)0.0453 (14)0.0130 (14)0.0229 (13)0.0015 (12)
C220.0887 (19)0.0829 (17)0.0714 (16)0.0115 (15)0.0486 (14)0.0091 (14)
C230.0317 (14)0.0890 (19)0.0786 (18)0.0103 (13)0.0003 (12)0.0107 (15)
C240.0437 (16)0.203 (4)0.121 (2)0.0086 (19)0.0222 (16)0.078 (2)
C250.0521 (17)0.152 (3)0.144 (3)0.0380 (18)0.0031 (18)0.006 (2)
C260.0636 (19)0.146 (3)0.121 (2)0.0468 (18)0.0043 (17)0.016 (2)
Geometric parameters (Å, º) top
N1—C121.472 (2)C12—H12B0.9700
N1—C11.472 (2)C13—C181.388 (2)
N1—C51.478 (2)C13—C141.393 (2)
N2—C41.450 (2)C14—C151.402 (2)
N2—C21.457 (2)C15—C161.391 (2)
N2—C31.471 (2)C15—C191.541 (2)
O1—C71.358 (2)C16—C171.394 (2)
O1—H1A0.96 (2)C16—H16A0.9300
O2—C141.376 (2)C17—C181.382 (2)
O2—H2A0.88 (2)C17—C231.537 (3)
C1—C21.511 (2)C18—H18A0.9300
C1—H1B0.9700C19—C211.525 (3)
C1—H1C0.9700C19—C201.539 (3)
C2—H2B0.9700C19—C221.541 (3)
C2—H2C0.9700C20—H20A0.9600
C3—H3A0.9600C20—H20B0.9600
C3—H3B0.9600C20—H20C0.9600
C3—H3C0.9600C21—H21A0.9600
C4—H4A0.9600C21—H21B0.9600
C4—H4B0.9600C21—H21C0.9600
C4—H4C0.9600C22—H22A0.9600
C5—C61.496 (2)C22—H22B0.9600
C5—H5A0.9700C22—H22C0.9600
C5—H5B0.9700C23—C261.523 (3)
C6—C111.384 (2)C23—C251.530 (3)
C6—C71.394 (2)C23—C241.535 (3)
C7—C81.392 (2)C24—H24A0.9600
C8—C91.376 (3)C24—H24B0.9600
C8—H8A0.9300C24—H24C0.9600
C9—C101.371 (3)C25—H25A0.9600
C9—H9A0.9300C25—H25B0.9600
C10—C111.383 (3)C25—H25C0.9600
C10—H10A0.9300C26—H26A0.9600
C11—H11A0.9300C26—H26B0.9600
C12—C131.509 (2)C26—H26C0.9600
C12—H12A0.9700
C12—N1—C1110.41 (13)C14—C13—C12121.34 (16)
C12—N1—C5109.39 (13)O2—C14—C13119.15 (16)
C1—N1—C5112.25 (13)O2—C14—C15119.28 (16)
C4—N2—C2110.86 (18)C13—C14—C15121.57 (17)
C4—N2—C3109.99 (18)C16—C15—C14116.07 (17)
C2—N2—C3109.52 (17)C16—C15—C19121.50 (17)
C7—O1—H1A117.5 (13)C14—C15—C19122.41 (18)
C14—O2—H2A105.8 (13)C15—C16—C17124.50 (17)
N1—C1—C2113.57 (14)C15—C16—H16A117.8
N1—C1—H1B108.9C17—C16—H16A117.8
C2—C1—H1B108.9C18—C17—C16116.72 (18)
N1—C1—H1C108.9C18—C17—C23122.4 (2)
C2—C1—H1C108.9C16—C17—C23120.89 (18)
H1B—C1—H1C107.7C17—C18—C13121.88 (18)
N2—C2—C1113.78 (15)C17—C18—H18A119.1
N2—C2—H2B108.8C13—C18—H18A119.1
C1—C2—H2B108.8C21—C19—C20109.63 (19)
N2—C2—H2C108.8C21—C19—C22107.67 (17)
C1—C2—H2C108.8C20—C19—C22106.35 (16)
H2B—C2—H2C107.7C21—C19—C15109.94 (15)
N2—C3—H3A109.5C20—C19—C15110.98 (15)
N2—C3—H3B109.5C22—C19—C15112.14 (18)
H3A—C3—H3B109.5C19—C20—H20A109.5
N2—C3—H3C109.5C19—C20—H20B109.5
H3A—C3—H3C109.5H20A—C20—H20B109.5
H3B—C3—H3C109.5C19—C20—H20C109.5
N2—C4—H4A109.5H20A—C20—H20C109.5
N2—C4—H4B109.5H20B—C20—H20C109.5
H4A—C4—H4B109.5C19—C21—H21A109.5
N2—C4—H4C109.5C19—C21—H21B109.5
H4A—C4—H4C109.5H21A—C21—H21B109.5
H4B—C4—H4C109.5C19—C21—H21C109.5
N1—C5—C6111.78 (13)H21A—C21—H21C109.5
N1—C5—H5A109.3H21B—C21—H21C109.5
C6—C5—H5A109.3C19—C22—H22A109.5
N1—C5—H5B109.3C19—C22—H22B109.5
C6—C5—H5B109.3H22A—C22—H22B109.5
H5A—C5—H5B107.9C19—C22—H22C109.5
C11—C6—C7118.12 (17)H22A—C22—H22C109.5
C11—C6—C5121.66 (17)H22B—C22—H22C109.5
C7—C6—C5120.18 (16)C26—C23—C25109.2 (2)
O1—C7—C8117.18 (18)C26—C23—C24108.9 (2)
O1—C7—C6123.08 (16)C25—C23—C24107.8 (2)
C8—C7—C6119.73 (18)C26—C23—C17108.6 (2)
C9—C8—C7120.8 (2)C25—C23—C17110.4 (2)
C9—C8—H8A119.6C24—C23—C17111.77 (18)
C7—C8—H8A119.6C23—C24—H24A109.5
C10—C9—C8120.11 (19)C23—C24—H24B109.5
C10—C9—H9A119.9H24A—C24—H24B109.5
C8—C9—H9A119.9C23—C24—H24C109.5
C9—C10—C11119.2 (2)H24A—C24—H24C109.5
C9—C10—H10A120.4H24B—C24—H24C109.5
C11—C10—H10A120.4C23—C25—H25A109.5
C10—C11—C6122.08 (19)C23—C25—H25B109.5
C10—C11—H11A119.0H25A—C25—H25B109.5
C6—C11—H11A119.0C23—C25—H25C109.5
N1—C12—C13113.81 (14)H25A—C25—H25C109.5
N1—C12—H12A108.8H25B—C25—H25C109.5
C13—C12—H12A108.8C23—C26—H26A109.5
N1—C12—H12B108.8C23—C26—H26B109.5
C13—C12—H12B108.8H26A—C26—H26B109.5
H12A—C12—H12B107.7C23—C26—H26C109.5
C18—C13—C14119.23 (16)H26A—C26—H26C109.5
C18—C13—C12119.32 (16)H26B—C26—H26C109.5
C12—N1—C1—C2179.85 (14)C18—C13—C14—C150.4 (2)
C5—N1—C1—C257.8 (2)C12—C13—C14—C15175.84 (16)
C4—N2—C2—C1168.19 (17)O2—C14—C15—C16178.47 (15)
C3—N2—C2—C170.3 (2)C13—C14—C15—C161.1 (2)
N1—C1—C2—N241.7 (2)O2—C14—C15—C193.0 (2)
C12—N1—C5—C675.50 (18)C13—C14—C15—C19177.50 (16)
C1—N1—C5—C6161.58 (14)C14—C15—C16—C171.7 (3)
N1—C5—C6—C11111.69 (18)C19—C15—C16—C17176.85 (17)
N1—C5—C6—C770.4 (2)C15—C16—C17—C180.8 (3)
C11—C6—C7—O1179.36 (16)C15—C16—C17—C23179.12 (18)
C5—C6—C7—O11.4 (3)C16—C17—C18—C130.7 (3)
C11—C6—C7—C80.3 (3)C23—C17—C18—C13177.50 (18)
C5—C6—C7—C8177.65 (16)C14—C13—C18—C171.3 (3)
O1—C7—C8—C9179.21 (17)C12—C13—C18—C17174.96 (16)
C6—C7—C8—C90.1 (3)C16—C15—C19—C21116.8 (2)
C7—C8—C9—C100.0 (3)C14—C15—C19—C2161.7 (2)
C8—C9—C10—C110.2 (3)C16—C15—C19—C20121.7 (2)
C9—C10—C11—C60.4 (3)C14—C15—C19—C2059.8 (2)
C7—C6—C11—C100.5 (3)C16—C15—C19—C222.9 (2)
C5—C6—C11—C10177.45 (16)C14—C15—C19—C22178.58 (17)
C1—N1—C12—C1368.05 (18)C18—C17—C23—C26107.3 (2)
C5—N1—C12—C13167.94 (13)C16—C17—C23—C2670.9 (3)
N1—C12—C13—C18136.89 (16)C18—C17—C23—C25132.9 (2)
N1—C12—C13—C1446.9 (2)C16—C17—C23—C2548.9 (3)
C18—C13—C14—O2179.92 (15)C18—C17—C23—C2412.9 (3)
C12—C13—C14—O23.7 (2)C16—C17—C23—C24168.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.96 (2)2.59 (2)3.1610 (19)118.5 (16)
O1—H1A···N20.96 (2)1.89 (2)2.824 (2)162.4 (19)
O2—H2A···N10.88 (2)1.95 (2)2.7563 (18)152.1 (18)
C3—H3A···O20.962.643.411 (3)137
C9—H9A···Cgi0.932.773.593 (2)148
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.96 (2)2.59 (2)3.1610 (19)118.5 (16)
O1—H1A···N20.96 (2)1.89 (2)2.824 (2)162.4 (19)
O2—H2A···N10.88 (2)1.95 (2)2.7563 (18)152.1 (18)
C3—H3A···O20.962.643.411 (3)137.3
C9—H9A···Cgi0.932.773.593 (2)148
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a research grant (grant No. N N209 140840 within 2011–2014) from the Polish National Science Centre. EB is a recipient of a PhD fellowship from a project funded by the European Social Fund.

References

First citationAbrahams, A., Gerber, T., Hosten, E. & Mayer, P. (2009). Turk. J. Chem. 33, 569–577.  CAS Google Scholar
First citationDutta, G., Debnath, R. K., Kalita, A., Kumar, P., Sarma, M., Shankar, R. B. & Mondal, B. (2011). Polyhedron, 30, 293–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationHirotsu, M., Kojima, M., Mori, W. & Yoshikawa, Y. (1998). Bull. Chem. Soc. Jpn, 71, 2873–2884.  Web of Science CrossRef CAS Google Scholar
First citationHirotsu, M., Kojima, M. & Yoshikawa, Y. (1997). Bull. Chem. Soc. Jpn, 70, 649–657.  CrossRef CAS Web of Science Google Scholar
First citationJanas, Z., Nerkowski, T., Kober, E., Jerzykiewicz, L. B. & Lis, T. (2012). Dalton Trans. 41, 442–447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMaity, D., Ray, A., Sheldrick, W. S., Figge, H. M., Bandyopadhyay, B. & Ali, M. (2006). Inorg. Chim. Acta, 359, 3197–3204.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds