organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Propane-1,3-di­yl)dibenzo­thio­amide

aDepartment of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan, and bCenter for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
*Correspondence e-mail: sasanuma@faculty.chiba-u.jp

Edited by R. J. Butcher, Howard University, USA (Received 5 April 2014; accepted 30 April 2014; online 3 May 2014)

The title compound, C17H18N2S2, exhibits a transtranstransgauche+ (tttg+) conformation with regard to the NH–CH2–CH2–CH2–NH bond sequence. In the crystal, mol­ecules are connected by N—H⋯S=C and C—H⋯S=C hydrogen bonds, forming a herringbone arrangement along the c-axis direction. The two thioamide groups make dihedral angles of 43.0 (2) and 33.1 (2)° with the adjacent phenyl rings.

Related literature

For the crystal structures and conformations of related compounds, see: for example, Palmer & Brisse (1980[Palmer, A. & Brisse, F. (1980). Acta Cryst. B36, 1447-1452.]); Brisson & Brisse (1986[Brisson, J. & Brisse, F. (1986). Macromolecules, 19, 2632-2639.]); Deguire & Brisse (1988[Deguire, S. & Brisse, F. (1988). Can. J. Chem. 66, 341-347.]); Nagasawa et al. (2014[Nagasawa, M., Sasanuma, Y. & Masu, H. (2014). Acta Cryst. E70, o586.]). For the synthesis, see: Hart & Brewbaker (1969[Hart, H. & Brewbaker, J. L. (1969). J. Am. Chem. Soc. 91, 706-711.]); Cave & Levinson (1985[Cave, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061-5087.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2S2

  • Mr = 314.45

  • Orthorhombic, P b c a

  • a = 8.36521 (9) Å

  • b = 14.13395 (14) Å

  • c = 26.9223 (3) Å

  • V = 3183.12 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.97 mm−1

  • T = 223 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII Ultra CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.47, Tmax = 0.76

  • 12276 measured reflections

  • 2882 independent reflections

  • 2736 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.05

  • 2882 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.87 2.59 3.4412 (14) 168
N2—H2⋯S1ii 0.87 2.69 3.5135 (12) 157
C17—H17⋯S1iii 0.94 2.85 3.7665 (17) 166
Symmetry codes: (i) -x, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

In a previous paper (Nagasawa et al., 2014), we reported the crystal structure of N, N'-(ethane-1,2-diyl)dibenzothioamide. In this study, we have determined the crystal structure of its homologue, N,N'-(propane-1,3-diyl)dibenzothioamide (referred to here as PDBTA), a monomeric model compound of poly(trimethylene terephthalthioamide), [–(C=S)–C6H4–(C=S)–NH–(CH2)3–NH–]n. Figure 1 shows the molecular structure of PDBTA, whose NH–CH2–CH2–CH2–NH bond sequence adopts the tttg+ conformation. On the other hand, our molecular orbital (MO) calculations at the B3LYP/6–311+G(2 d,p)//B3LYP/6–311+G(2 d,p) level including the solvent effect of dimethyl sulfoxide have predicted that the all-trans form is the most stable of its possible conformations; the crystal conformation, tttg+, was suggested to have a free energy higher than tttt by as much as 1.19 kcal mol-1.

Figure 2 shows the molecular packing of the PDBTA crystal, in which two kinds of intermolecular hydrogen bonds, C=S···H–N and C=S···H–C, seem to be formed (not shown in the figure). For details, see Table 1. The intermolecular attractions may fully compensate the cost of conformational energy of 1.19 kcal mol-1. The PDBTA molecules form a herringbone arrangement along the c-axis direction.

Brisson & Brisse (1986) determined the crystal structure of N,N'-(propane-1,3-diyl)dibenzamide (PDBA), a model compound of poly(trimethylene terephthalamide). The crystalline PDBA molecule lies in the ttg+g+ conformation and forms intermolecular C=O···H—N hydrogen bonds with the neighbors. According to our MO calculations, its most stable conformer is tttg+ (–0.54 kcal mol-1 relative to that of the all-trans state), and the crystal conformation, ttg+g+, has a somewhat higher free energy (+0.32 kcal mol-1).

Related literature top

For the crystal structures and conformations of related compounds, see: for example, Palmer & Brisse (1980); Brisson & Brisse (1986); Deguire & Brisse (1988); Nagasawa et al. (2014). For the synthesis, see: Hart & Brewbaker (1969); Cave & Levinson (1985).

Experimental top

Benzoyl chloride (12.0 ml, 103 mmol) was added dropwise to an aqueous solution of 1,3-diaminopropane (3.4 ml, 41 mmol) and sodium hydroxide (61.5 ml, 0.100 mol l-1) stirred by a mechanical stirrer in a three-necked flask equipped with a dropping funnel and a calcium-chloride drying tube, with the flask being bathed in water kept at 10 °C. The mixture was stirred at 10 °C for 1 h, diluted with water (100 ml), and stirred again at room temperature overnight to yield white precipitate. The precipitate was collected by suction filtration, washed with water, and dried. The crude product was recrystallized from a mixture of ethanol and toluene (1:1 in volume) and dried at 40 °C under reduced pressure to yield PDBA (yield 28%). In principle, this synthesis is based on the procedure of Hart & Brewbaker (1969).

PDBA (1.0 g, 3.6 mmol) and Lawesson's reagent (1.7 g, 4.2 mmol) (Cave & Levinson, 1985) were dissolved in toluene (20 ml) stirred in a three-necked flask equipped with a reflux condenser connected to a calcium-chloride drying tube. The mixture was refluxed under dry nitrogen at ca 110 °C for 8 h, and the completion of the reaction was confirmed by thin-layer chromatography. After toluene was removed under reduced pressure, the residual was subjected to column chromatography on silica gel with chloroform, and yellowish solution (retention factor Rf = 0.3) was collected and condensed to yield yellow slurry, which was recrystallized twice from a mixture of ethyl acetate and diethyl ether (1:1 in volume) and dried under reduced pressure to yield PDBTA (yield 48%).

A small quantity of PDBTA was dissolved in chloroform in a glass tube, whose top was sealed with a thin Teflon film. The tube was placed in a vial container including a small amount of n-hexane, and the container was capped and left to stand still in a dark place. After a day, crystals were found to be formed suitable for X-ray diffraction.

Refinement top

All C—H hydrogen atoms were geometrically positioned with C—H = 0.95 and 0.99 Å for the aromatic and methylene groups respectively, and refined as riding by Uiso(H) = 1.2 Ueq(C). The N—H hydrogen atoms were located and fixed with N—H = 0.87 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of N, N'-(propane-1,2-diyl)dibenzothioamide (PDBTA). Displacement ellipsoids are drawn at the 50% probability level. Isotropic H-atom thermal parameters are represented by spheres of arbitrary size. The labels of hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of PDBTA, viewed down the (a) a, (b) b, and (c) c axes.
N,N'-(Propane-1,3-diyl)dibenzothioamide top
Crystal data top
C17H18N2S2F(000) = 1328
Mr = 314.45Dx = 1.312 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
a = 8.36521 (9) ŵ = 2.97 mm1
b = 14.13395 (14) ÅT = 223 K
c = 26.9223 (3) ÅPrismatic, yellow
V = 3183.12 (6) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII Ultra CCD area-detector
diffractometer
2882 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode2736 reflections with I > 2σ(I)
Bruker Helios multilayer mirror monochromatorRint = 0.018
Phi and ω scansθmax = 68.3°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.47, Tmax = 0.76k = 1617
12276 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0498P)2 + 1.0464P]
where P = (Fo2 + 2Fc2)/3
2882 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H18N2S2V = 3183.12 (6) Å3
Mr = 314.45Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 8.36521 (9) ŵ = 2.97 mm1
b = 14.13395 (14) ÅT = 223 K
c = 26.9223 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII Ultra CCD area-detector
diffractometer
2882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2736 reflections with I > 2σ(I)
Tmin = 0.47, Tmax = 0.76Rint = 0.018
12276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2882 reflectionsΔρmin = 0.31 e Å3
190 parameters
Special details top

Experimental. SADABS (Sheldrick 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 was performed with all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2, while the R-factor on F. The threshold expression of F2 > 2.0 σ(F2) was used only for calculating R-factor.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04995 (15)0.30766 (10)0.42684 (5)0.0271 (3)
C20.04043 (16)0.33224 (9)0.37326 (5)0.0261 (3)
C30.15288 (18)0.39267 (10)0.35235 (5)0.0328 (3)
H30.2360.41750.37190.039*
C40.1418 (2)0.41607 (11)0.30247 (6)0.0408 (4)
H40.21930.45550.2880.049*
C50.0177 (2)0.38189 (12)0.27379 (6)0.0435 (4)
H50.01090.39810.240.052*
C60.0964 (2)0.32377 (11)0.29487 (6)0.0400 (4)
H60.18230.30170.27560.048*
C70.08486 (17)0.29786 (10)0.34432 (5)0.0318 (3)
H70.16140.25720.35840.038*
C80.00172 (17)0.17921 (12)0.48748 (6)0.0380 (4)
H8A0.0920.13510.4870.046*
H8B0.02920.2310.51010.046*
C90.14371 (17)0.12807 (10)0.50784 (5)0.0340 (3)
H9A0.23390.1720.51080.041*
H9B0.17470.07650.48550.041*
C100.09938 (18)0.08896 (11)0.55852 (6)0.0364 (3)
H10A0.07580.14190.58090.044*
H10B0.00190.0510.55530.044*
C110.19903 (16)0.02401 (9)0.61993 (5)0.0268 (3)
C120.33873 (16)0.07725 (9)0.63952 (5)0.0270 (3)
C130.34922 (18)0.09590 (10)0.69027 (5)0.0330 (3)
H130.26810.07490.71180.04*
C140.4785 (2)0.14514 (12)0.70912 (6)0.0417 (4)
H140.48580.15630.74350.05*
C150.5967 (2)0.17792 (12)0.67788 (7)0.0478 (4)
H150.68420.21170.69080.057*
C160.5859 (2)0.16086 (13)0.62749 (7)0.0480 (4)
H160.66570.18390.60610.058*
C170.45871 (19)0.11019 (11)0.60823 (6)0.0368 (3)
H170.45340.0980.57390.044*
N10.01881 (14)0.21803 (9)0.43765 (5)0.0324 (3)
H10.00980.17890.41290.039*
N20.22457 (14)0.03070 (8)0.58067 (4)0.0301 (3)
H20.31970.03190.56760.036*
S10.08969 (5)0.39123 (3)0.46914 (2)0.03743 (13)
S20.01763 (4)0.03524 (3)0.64602 (2)0.03725 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (6)0.0338 (7)0.0279 (7)0.0044 (5)0.0002 (5)0.0037 (5)
C20.0273 (6)0.0256 (6)0.0253 (6)0.0051 (5)0.0003 (5)0.0011 (5)
C30.0312 (7)0.0339 (7)0.0333 (8)0.0012 (6)0.0037 (6)0.0018 (5)
C40.0464 (9)0.0401 (8)0.0360 (8)0.0058 (7)0.0134 (7)0.0093 (6)
C50.0620 (11)0.0451 (9)0.0235 (7)0.0163 (8)0.0029 (7)0.0045 (6)
C60.0516 (9)0.0382 (8)0.0301 (7)0.0063 (7)0.0113 (6)0.0039 (6)
C70.0360 (8)0.0273 (6)0.0320 (7)0.0012 (5)0.0039 (6)0.0008 (5)
C80.0310 (7)0.0457 (9)0.0372 (8)0.0039 (6)0.0028 (6)0.0188 (7)
C90.0303 (7)0.0361 (7)0.0356 (8)0.0006 (6)0.0008 (6)0.0106 (6)
C100.0330 (8)0.0413 (8)0.0349 (8)0.0058 (6)0.0007 (6)0.0122 (6)
C110.0315 (7)0.0231 (6)0.0259 (6)0.0012 (5)0.0023 (5)0.0014 (5)
C120.0296 (7)0.0233 (6)0.0281 (6)0.0012 (5)0.0016 (5)0.0010 (5)
C130.0391 (8)0.0325 (7)0.0275 (7)0.0016 (6)0.0002 (6)0.0016 (5)
C140.0506 (9)0.0427 (8)0.0317 (8)0.0055 (7)0.0086 (7)0.0083 (7)
C150.0453 (9)0.0478 (9)0.0502 (10)0.0152 (7)0.0079 (7)0.0108 (8)
C160.0438 (9)0.0545 (10)0.0456 (9)0.0193 (8)0.0080 (7)0.0056 (8)
C170.0412 (8)0.0414 (8)0.0279 (7)0.0074 (7)0.0028 (6)0.0045 (6)
N10.0338 (6)0.0338 (6)0.0298 (6)0.0025 (5)0.0009 (5)0.0071 (5)
N20.0266 (6)0.0323 (6)0.0315 (6)0.0001 (4)0.0015 (5)0.0075 (5)
S10.0403 (2)0.0455 (2)0.0265 (2)0.00085 (15)0.00578 (14)0.00393 (14)
S20.0315 (2)0.0413 (2)0.0390 (2)0.00656 (14)0.00747 (14)0.00916 (15)
Geometric parameters (Å, º) top
C1—N11.3256 (18)C9—H9B0.98
C1—C21.4860 (17)C10—N21.4596 (18)
C1—S11.6741 (14)C10—H10A0.98
C2—C31.390 (2)C10—H10B0.98
C2—C71.393 (2)C11—N21.3270 (17)
C3—C41.386 (2)C11—C121.4867 (18)
C3—H30.94C11—S21.6795 (14)
C4—C51.381 (3)C12—C171.391 (2)
C4—H40.94C12—C131.3942 (19)
C5—C61.381 (2)C13—C141.382 (2)
C5—H50.94C13—H130.94
C6—C71.384 (2)C14—C151.379 (2)
C6—H60.94C14—H140.94
C7—H70.94C15—C161.381 (2)
C8—N11.4595 (18)C15—H150.94
C8—C91.5175 (19)C16—C171.383 (2)
C8—H8A0.98C16—H160.94
C8—H8B0.98C17—H170.94
C9—C101.518 (2)N1—H10.87
C9—H9A0.98N2—H20.87
N1—C1—C2115.21 (12)N2—C10—C9113.41 (12)
N1—C1—S1124.33 (11)N2—C10—H10A108.9
C2—C1—S1120.40 (10)C9—C10—H10A108.9
C3—C2—C7119.80 (13)N2—C10—H10B108.9
C3—C2—C1120.04 (12)C9—C10—H10B108.9
C7—C2—C1120.11 (12)H10A—C10—H10B107.7
C4—C3—C2119.58 (14)N2—C11—C12116.80 (12)
C4—C3—H3120.2N2—C11—S2122.25 (10)
C2—C3—H3120.2C12—C11—S2120.93 (10)
C5—C4—C3120.58 (15)C17—C12—C13119.01 (13)
C5—C4—H4119.7C17—C12—C11121.46 (12)
C3—C4—H4119.7C13—C12—C11119.52 (12)
C4—C5—C6119.84 (14)C14—C13—C12120.27 (14)
C4—C5—H5120.1C14—C13—H13119.9
C6—C5—H5120.1C12—C13—H13119.9
C5—C6—C7120.29 (14)C15—C14—C13120.44 (14)
C5—C6—H6119.9C15—C14—H14119.8
C7—C6—H6119.9C13—C14—H14119.8
C6—C7—C2119.87 (14)C14—C15—C16119.57 (14)
C6—C7—H7120.1C14—C15—H15120.2
C2—C7—H7120.1C16—C15—H15120.2
N1—C8—C9114.63 (12)C15—C16—C17120.60 (15)
N1—C8—H8A108.6C15—C16—H16119.7
C9—C8—H8A108.6C17—C16—H16119.7
N1—C8—H8B108.6C16—C17—C12120.09 (14)
C9—C8—H8B108.6C16—C17—H17120.0
H8A—C8—H8B107.6C12—C17—H17120.0
C8—C9—C10107.59 (12)C1—N1—C8125.74 (13)
C8—C9—H9A110.2C1—N1—H1117.1
C10—C9—H9A110.2C8—N1—H1117.1
C8—C9—H9B110.2C11—N2—C10122.59 (12)
C10—C9—H9B110.2C11—N2—H2118.7
H9A—C9—H9B108.5C10—N2—H2118.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.872.593.4412 (14)168
N2—H2···S1ii0.872.693.5135 (12)157
C17—H17···S1iii0.942.853.7665 (17)166
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.872.593.4412 (14)168
N2—H2···S1ii0.872.693.5135 (12)157
C17—H17···S1iii0.942.853.7665 (17)166
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z.
 

References

First citationBrisson, J. & Brisse, F. (1986). Macromolecules, 19, 2632–2639.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCave, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061–5087.  Google Scholar
First citationDeguire, S. & Brisse, F. (1988). Can. J. Chem. 66, 341–347.  CrossRef CAS Web of Science Google Scholar
First citationHart, H. & Brewbaker, J. L. (1969). J. Am. Chem. Soc. 91, 706–711.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagasawa, M., Sasanuma, Y. & Masu, H. (2014). Acta Cryst. E70, o586.  CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, A. & Brisse, F. (1980). Acta Cryst. B36, 1447–1452.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds