metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-di­phenyl­phosphinamide-κ2O:O)bis­­[bis­(di­phenyl­phosphinamide-κO)lithium] dichloride aceto­nitrile disolvate

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bState Key Laboratory of Solid Waste Reuse for Building Materials, No. 69, Jingding North Road, Shijingshan District, Beijing 100041, People's Republic of China
*Correspondence e-mail: lxf7777@sxu.edu.cn

(Received 8 April 2014; accepted 14 May 2014; online 21 May 2014)

The asymmetric unit of the title compound, [Li2(C12H12NOP)6]Cl2·2CH3CN, contains one-half of the centrosymmetric dication, one chloride anion and one aceto­nitrile solvent mol­ecule. Each Li atom is coordinated by four O atoms [Li—O 1.891 (3) and 2.025 (3) Å] from the four di­phenyl­phosphinamide ligands in a distorted tetra­hedral geometry. In the crystal, weak N—H⋯Cl hydrogen bonds link the anions and dications into columns extending along [100].

Related literature

For reviews of related phospho­rus–nitro­gen transition-metal compounds, see: Roesky & Lucke (1989[Roesky, H. W. & Lucke, M. (1989). Angew. Chem. Int. Ed. 28, 493-493.]); Wong et al. (1997[Wong, W. K., Sun, C. & Wong, W. T. (1997). J. Chem. Soc. Dalton Trans. pp. 3387-3396.]). For the crystal structures of related compounds, see: Oliva et al. (1981[Oliva, G., Castellano, E. E. & Franco de Carvalho, L. R. (1981). Acta Cryst. B37, 474-475.]); Pisareva et al. (2004[Pisareva, S. A., Petrovskii, P. V., Lyssenko, K. A., Antipin, M. Y. & Nifant'ev, E. E. (2004). Russ. Chem. Bull. 53, 2008-2012.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C12H12NOP)6]Cl2·2C2H3N

  • Mr = 1470.06

  • Triclinic, [P \overline 1]

  • a = 11.5625 (7) Å

  • b = 12.5552 (8) Å

  • c = 13.7686 (9) Å

  • α = 82.559 (1)°

  • β = 76.515 (1)°

  • γ = 89.897 (1)°

  • V = 1926.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997)[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.] Tmin = 0.925, Tmax = 0.949

  • 13486 measured reflections

  • 6790 independent reflections

  • 5174 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.01

  • 6790 reflections

  • 452 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1i 0.84 2.61 3.4351 (17) 169
N1—H1D⋯Cl1ii 0.83 2.70 3.4534 (17) 152
N2—H2C⋯Cl1iii 0.83 2.50 3.2789 (18) 158
N2—H2D⋯Cl1iv 0.84 2.55 3.3776 (18) 169
N3—H3C⋯Cl1iv 0.88 2.58 3.3967 (19) 154
Symmetry codes: (i) x+1, y, z-1; (ii) -x+2, -y, -z+1; (iii) x, y, z-1; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The π-electron-rich phosphorus-nitrogen compounds had been known as a type of potential precursors for inorganic polymers with unusual properties, and led to considerable interest in their syntheses and coordination chemistry toward transition metals (Roesky & Lucke, 1989; Wong et al., 1997). The title lithium compound is a by-product in the preparation of this type compounds. Treatment of 1,2-dicyanobenzene with the equivalent LiN(SiMe3)2 and then the equivalent diphenylphosphinic chloride did not give the π-electron-rich phosphorus-nitrogen compound. The unexpectd title compound was obtained after csystallization in acetonitrile. The crystal structure was ascertained by elemental analysis.

The crystal structure of the compound showed that it has triclinic symmetry. Every lithium ion is coordinated via four oxygen of the ligands to give a tetrahedral geometry. The average bond length of Li—O is 1.945 Å. This value is comparable to the analogous lithium compound (Pisareva et al., 2004). The square-plane ring is formed by the two lithium ion and bridged O atoms in which the bond angle of O1—Li1—O1A is 91.28 (17)°. The average bond length of phosphors-nitrogen in the title compound is 1.623 Å. It is very similar to the bond length of phosphors-nitrogen in the crystal structure of diphenylphosphinamide determined in 1981 (Oliva et al., 1981).

Related literature top

For reviews of related phosphorus–nitrogen transition-metal compounds, see: Roesky & Lucke (1989); Wong et al. (1997). For the crystal structures of related compounds, see: Oliva et al. (1981); Pisareva et al. (2004).

Experimental top

All reactions were carried out under nitrogen atmosphere in flamed Schlenk-type glassware on a dualmanifold Schlenk line. n-Butyllithium (1.8 cm3, 5 mmol) and NH(SiMe3)2 (1.06 cm3, 5 mmol) were dissolveded in THF (20 cm3) at 0°C. The resultant yellow solution was warmed to room temperature and stirred for an additional 2 h. A solution of 1,2-Dicyanobenzene (0.64 g, 5 mmol) in THF (10 cm3) was slowly added to the reaction mixture which was stirred at 0°C for two hours before warming up to room temperature. Then diphenylphosphinic chloride (0.95 cm3,5 mmol) was added to the mixture at -78°C for an hour before warming up to room temperature and allowed to react overnight. Solvent was then removed in vacuum. The residue was extracted with dichloromethane and the solution was filtered. The solvent of the filtrate was removed in vacuum and was dissolveded in CH3CN at room temperature. Finally a coulourless product was obtained. Yield: 0.43 g, 0.83 mmol, 35%. Elemental analysis cacld (%) for C72H72N6O6P6Li2Cl2·0.75CH3CN·0.25H2O: C 65.28, H 5.57, N 6.99; found: C 65.12, H 5.50, N 7.05.

Refinement top

H atoms of phenyl were placed in their idealized positions and allowed to ride on the respective parent atoms with C—H 0.93 Å, and with Uiso(H) = 1.2Ueq. H atoms of acetonitrile were placed in their idealized positions and allowed to ride on the respective parent atoms with C—H 0.96 Å, and with Uiso(H) = 1.5Ueq. H atoms of amino were found from difference Fourier map and N—H bond restraint of 0.84 Å was applied, and with Uiso(H) = 1.2Ueq.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms and the labels of C atoms were omitted for clarity [symmetry code: (A) 2 - x,-y,-z].
Bis(µ2-diphenylphosphinamide-κ2O:O)bis[bis(diphenylphosphinamide-κO)lithium] dichloride acetonitrile disolvate top
Crystal data top
[Li2(C12H12NOP)6]Cl2·2C2H3NZ = 1
Mr = 1470.06F(000) = 768
Triclinic, P1Dx = 1.267 Mg m3
a = 11.5625 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5552 (8) ÅCell parameters from 5610 reflections
c = 13.7686 (9) Åθ = 2.4–26.3°
α = 82.559 (1)°µ = 0.26 mm1
β = 76.515 (1)°T = 296 K
γ = 89.897 (1)°Block, colourless
V = 1926.5 (2) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
6790 independent reflections
Radiation source: fine-focus sealed tube5174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scanθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1313
Tmin = 0.925, Tmax = 0.949k = 1414
13486 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.5389P]
where P = (Fo2 + 2Fc2)/3
6790 reflections(Δ/σ)max = 0.001
452 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Li2(C12H12NOP)6]Cl2·2C2H3Nγ = 89.897 (1)°
Mr = 1470.06V = 1926.5 (2) Å3
Triclinic, P1Z = 1
a = 11.5625 (7) ÅMo Kα radiation
b = 12.5552 (8) ŵ = 0.26 mm1
c = 13.7686 (9) ÅT = 296 K
α = 82.559 (1)°0.30 × 0.25 × 0.20 mm
β = 76.515 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6790 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
5174 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.949Rint = 0.024
13486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
6790 reflectionsΔρmin = 0.29 e Å3
452 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P11.17820 (4)0.13701 (4)0.04663 (4)0.03162 (13)
O11.08254 (11)0.07098 (10)0.02456 (9)0.0363 (3)
N11.30710 (14)0.08603 (13)0.04165 (13)0.0437 (4)
H1C1.35280.08440.01550.052*
H1D1.32110.04120.08740.052*
C11.13169 (17)0.17935 (15)0.16940 (14)0.0347 (4)
C21.02395 (18)0.23041 (17)0.19186 (16)0.0444 (5)
H2A0.97590.23640.14600.053*
C30.9875 (2)0.27232 (19)0.28161 (17)0.0562 (6)
H3A0.91640.30850.29500.067*
C41.0562 (2)0.2606 (2)0.35105 (17)0.0602 (7)
H4A1.03150.28870.41160.072*
C51.1608 (3)0.2079 (2)0.33147 (17)0.0609 (7)
H5A1.20610.19860.37940.073*
C61.1998 (2)0.16818 (18)0.24046 (16)0.0490 (5)
H6A1.27210.13390.22700.059*
C71.20818 (17)0.25753 (15)0.04187 (14)0.0362 (4)
C81.3130 (2)0.31763 (18)0.05706 (18)0.0559 (6)
H8A1.37010.29450.02200.067*
C91.3330 (2)0.4112 (2)0.1235 (2)0.0742 (8)
H9A1.40320.45140.13280.089*
C101.2495 (3)0.4455 (2)0.1764 (2)0.0720 (8)
H10A1.26380.50790.22220.086*
C111.1448 (3)0.3874 (2)0.16130 (18)0.0625 (7)
H11A1.08790.41110.19630.075*
C121.1239 (2)0.29339 (17)0.09390 (16)0.0468 (5)
H12A1.05280.25440.08370.056*
P20.69875 (5)0.20933 (4)0.06022 (4)0.03561 (13)
O30.81395 (12)0.15618 (11)0.05724 (11)0.0479 (4)
N20.59011 (15)0.15019 (13)0.03084 (13)0.0458 (4)
H2C0.59270.14190.02840.055*
H2D0.55570.09870.07260.055*
C130.63198 (17)0.23950 (15)0.18497 (15)0.0367 (4)
C140.5256 (2)0.29275 (18)0.20447 (17)0.0512 (6)
H14A0.48730.31200.15270.061*
C150.4761 (2)0.3175 (2)0.29941 (18)0.0610 (7)
H15A0.40480.35330.31170.073*
C160.5318 (2)0.2895 (2)0.37561 (18)0.0655 (7)
H16A0.49900.30740.43960.079*
C170.6362 (2)0.2350 (2)0.35852 (18)0.0700 (8)
H17A0.67310.21500.41110.084*
C180.6866 (2)0.21000 (19)0.26293 (16)0.0521 (6)
H18A0.75740.17330.25130.063*
C190.72346 (17)0.33430 (15)0.02247 (14)0.0377 (5)
C200.8251 (2)0.39536 (17)0.02838 (18)0.0540 (6)
H20A0.87860.37090.00990.065*
C210.8479 (2)0.49210 (19)0.0904 (2)0.0681 (7)
H21A0.91600.53270.09300.082*
C220.7717 (3)0.52853 (19)0.1478 (2)0.0662 (7)
H22A0.78710.59400.18930.079*
C230.6720 (2)0.4685 (2)0.1442 (2)0.0715 (8)
H23A0.62030.49260.18450.086*
C240.6473 (2)0.37226 (19)0.08125 (18)0.0581 (6)
H24A0.57840.33270.07860.070*
P30.81312 (5)0.10015 (4)0.29783 (4)0.04037 (14)
O50.87404 (14)0.02105 (12)0.21222 (10)0.0544 (4)
N30.69211 (16)0.16261 (16)0.28927 (14)0.0554 (5)
H3C0.63820.12150.26870.066*
H3D0.70380.21410.25650.066*
C250.77229 (18)0.03918 (16)0.41151 (14)0.0402 (5)
C260.8565 (2)0.02739 (18)0.43200 (16)0.0518 (6)
H26A0.92910.04160.38570.062*
C270.8337 (2)0.0727 (2)0.52018 (18)0.0631 (7)
H27A0.89120.11670.53350.076*
C280.7262 (3)0.0530 (2)0.58840 (18)0.0645 (7)
H28A0.71080.08390.64780.077*
C290.6420 (2)0.0118 (2)0.56917 (18)0.0661 (7)
H29A0.56920.02470.61560.079*
C300.6637 (2)0.05871 (19)0.48111 (16)0.0535 (6)
H30A0.60600.10310.46860.064*
C310.91044 (19)0.20680 (18)0.32190 (15)0.0456 (5)
C320.8707 (2)0.2984 (2)0.38919 (18)0.0624 (7)
H32A0.79140.30580.42420.075*
C330.9491 (4)0.3790 (2)0.4044 (2)0.0868 (10)
H33A0.92220.44050.44950.104*
C341.0650 (4)0.3682 (3)0.3537 (3)0.1030 (13)
H34A1.11700.42280.36400.124*
C351.1063 (3)0.2777 (3)0.2874 (3)0.0959 (11)
H35A1.18610.27080.25360.115*
C361.0290 (2)0.1965 (2)0.27084 (19)0.0653 (7)
H36A1.05670.13530.22560.078*
Cl10.52785 (5)0.08079 (5)0.82677 (4)0.05126 (16)
Li10.9102 (3)0.0364 (2)0.0743 (2)0.0338 (7)
C370.6237 (4)0.4221 (4)0.5809 (3)0.1075 (12)
C380.5623 (5)0.3318 (4)0.6414 (3)0.1495 (18)
H38A0.56940.33160.70950.224*
H38B0.59570.26770.61660.224*
H38C0.47990.33420.63960.224*
N40.6733 (4)0.4948 (4)0.5345 (4)0.190 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0277 (3)0.0330 (3)0.0350 (3)0.0010 (2)0.0076 (2)0.0068 (2)
O10.0300 (7)0.0412 (8)0.0391 (7)0.0042 (6)0.0064 (6)0.0134 (6)
N10.0338 (9)0.0485 (10)0.0467 (10)0.0059 (8)0.0074 (8)0.0030 (8)
C10.0375 (11)0.0321 (10)0.0342 (10)0.0050 (8)0.0085 (8)0.0035 (8)
C20.0412 (12)0.0518 (13)0.0423 (12)0.0009 (10)0.0100 (9)0.0144 (10)
C30.0518 (14)0.0628 (15)0.0524 (14)0.0001 (12)0.0009 (11)0.0228 (12)
C40.0794 (19)0.0614 (16)0.0369 (13)0.0162 (14)0.0028 (12)0.0157 (11)
C50.0848 (19)0.0636 (16)0.0404 (13)0.0067 (14)0.0274 (13)0.0057 (12)
C60.0555 (14)0.0513 (13)0.0444 (13)0.0034 (11)0.0211 (11)0.0043 (10)
C70.0366 (11)0.0371 (11)0.0340 (10)0.0012 (9)0.0050 (9)0.0077 (8)
C80.0427 (13)0.0513 (14)0.0677 (16)0.0068 (11)0.0073 (11)0.0040 (12)
C90.0607 (17)0.0562 (16)0.092 (2)0.0126 (13)0.0018 (15)0.0137 (15)
C100.093 (2)0.0471 (15)0.0616 (17)0.0027 (15)0.0004 (15)0.0115 (12)
C110.0855 (19)0.0569 (16)0.0498 (14)0.0174 (14)0.0263 (13)0.0055 (12)
C120.0546 (14)0.0444 (12)0.0446 (12)0.0026 (10)0.0181 (10)0.0068 (10)
P20.0356 (3)0.0325 (3)0.0403 (3)0.0050 (2)0.0125 (2)0.0040 (2)
O30.0442 (8)0.0468 (8)0.0541 (9)0.0159 (7)0.0150 (7)0.0058 (7)
N20.0512 (11)0.0453 (10)0.0426 (10)0.0075 (8)0.0142 (8)0.0056 (8)
C130.0383 (11)0.0311 (10)0.0416 (11)0.0015 (8)0.0119 (9)0.0031 (8)
C140.0510 (14)0.0583 (14)0.0471 (13)0.0165 (11)0.0165 (11)0.0080 (11)
C150.0592 (15)0.0651 (16)0.0564 (15)0.0216 (13)0.0076 (12)0.0109 (12)
C160.0775 (19)0.0726 (17)0.0430 (14)0.0147 (15)0.0046 (13)0.0126 (12)
C170.0782 (19)0.093 (2)0.0424 (14)0.0209 (16)0.0232 (13)0.0078 (13)
C180.0486 (13)0.0623 (15)0.0470 (13)0.0131 (11)0.0152 (11)0.0058 (11)
C190.0372 (11)0.0365 (11)0.0388 (11)0.0048 (9)0.0076 (9)0.0059 (9)
C200.0544 (14)0.0439 (13)0.0661 (16)0.0025 (11)0.0216 (12)0.0026 (11)
C210.0652 (17)0.0464 (15)0.089 (2)0.0149 (13)0.0131 (15)0.0029 (14)
C220.0773 (19)0.0415 (14)0.0688 (17)0.0003 (13)0.0034 (15)0.0087 (12)
C230.0721 (18)0.0641 (17)0.0740 (18)0.0065 (14)0.0257 (15)0.0217 (14)
C240.0476 (14)0.0564 (15)0.0689 (16)0.0031 (11)0.0230 (12)0.0139 (12)
P30.0419 (3)0.0473 (3)0.0304 (3)0.0046 (2)0.0076 (2)0.0010 (2)
O50.0662 (10)0.0590 (10)0.0312 (8)0.0009 (8)0.0027 (7)0.0030 (7)
N30.0509 (11)0.0658 (13)0.0553 (12)0.0068 (10)0.0212 (9)0.0136 (10)
C250.0447 (12)0.0420 (12)0.0309 (10)0.0076 (9)0.0070 (9)0.0029 (9)
C260.0543 (14)0.0566 (14)0.0402 (12)0.0008 (11)0.0027 (10)0.0059 (11)
C270.0796 (19)0.0640 (16)0.0475 (14)0.0011 (14)0.0153 (13)0.0136 (12)
C280.089 (2)0.0661 (17)0.0374 (13)0.0203 (15)0.0096 (13)0.0113 (12)
C290.0615 (16)0.0847 (19)0.0411 (14)0.0193 (15)0.0067 (12)0.0023 (13)
C300.0476 (13)0.0661 (15)0.0409 (13)0.0044 (11)0.0018 (10)0.0012 (11)
C310.0515 (13)0.0547 (13)0.0357 (11)0.0107 (11)0.0161 (10)0.0135 (10)
C320.0811 (18)0.0611 (16)0.0476 (14)0.0170 (14)0.0233 (13)0.0021 (12)
C330.135 (3)0.073 (2)0.0621 (18)0.039 (2)0.044 (2)0.0075 (15)
C340.125 (3)0.125 (3)0.079 (2)0.076 (3)0.052 (2)0.037 (2)
C350.069 (2)0.146 (3)0.085 (2)0.052 (2)0.0269 (18)0.042 (2)
C360.0544 (15)0.0855 (19)0.0595 (16)0.0155 (14)0.0153 (13)0.0188 (14)
Cl10.0512 (3)0.0653 (4)0.0356 (3)0.0019 (3)0.0094 (2)0.0017 (2)
Li10.0315 (17)0.0380 (18)0.0317 (17)0.0030 (13)0.0069 (13)0.0054 (14)
C370.107 (3)0.103 (3)0.109 (3)0.012 (2)0.016 (2)0.018 (2)
C380.202 (5)0.141 (4)0.098 (3)0.060 (4)0.027 (3)0.002 (3)
N40.174 (4)0.132 (3)0.226 (5)0.038 (3)0.006 (4)0.012 (3)
Geometric parameters (Å, º) top
P1—O11.4928 (13)C19—C241.375 (3)
P1—N11.6112 (16)C19—C201.385 (3)
P1—C71.795 (2)C20—C211.379 (3)
P1—C11.7991 (19)C20—H20A0.9300
O1—Li11.980 (3)C21—C221.357 (4)
O1—Li1i2.025 (3)C21—H21A0.9300
N1—H1C0.8423C22—C231.366 (4)
N1—H1D0.8335C22—H22A0.9300
C1—C61.386 (3)C23—C241.381 (3)
C1—C21.388 (3)C23—H23A0.9300
C2—C31.381 (3)C24—H24A0.9300
C2—H2A0.9300P3—O51.4777 (15)
C3—C41.373 (3)P3—N31.6405 (19)
C3—H3A0.9300P3—C251.795 (2)
C4—C51.366 (3)P3—C311.795 (2)
C4—H4A0.9300O5—Li11.891 (3)
C5—C61.386 (3)N3—H3C0.8823
C5—H5A0.9300N3—H3D0.8287
C6—H6A0.9300C25—C261.385 (3)
C7—C121.381 (3)C25—C301.390 (3)
C7—C81.388 (3)C26—C271.377 (3)
C8—C91.377 (3)C26—H26A0.9300
C8—H8A0.9300C27—C281.373 (3)
C9—C101.376 (4)C27—H27A0.9300
C9—H9A0.9300C28—C291.363 (4)
C10—C111.373 (4)C28—H28A0.9300
C10—H10A0.9300C29—C301.387 (3)
C11—C121.387 (3)C29—H29A0.9300
C11—H11A0.9300C30—H30A0.9300
C12—H12A0.9300C31—C361.385 (3)
P2—O31.4831 (14)C31—C321.385 (3)
P2—N21.6159 (17)C32—C331.385 (4)
P2—C191.796 (2)C32—H32A0.9300
P2—C131.800 (2)C33—C341.357 (5)
O3—Li11.892 (3)C33—H33A0.9300
N2—H2C0.8286C34—C351.372 (5)
N2—H2D0.8393C34—H34A0.9300
C13—C181.379 (3)C35—C361.386 (4)
C13—C141.386 (3)C35—H35A0.9300
C14—C151.374 (3)C36—H36A0.9300
C14—H14A0.9300Li1—O1i2.025 (3)
C15—C161.363 (3)Li1—Li1i2.799 (6)
C15—H15A0.9300C37—N41.119 (5)
C16—C171.374 (3)C37—C381.402 (5)
C16—H16A0.9300C38—H38A0.9600
C17—C181.385 (3)C38—H38B0.9600
C17—H17A0.9300C38—H38C0.9600
C18—H18A0.9300
O1—P1—N1118.66 (8)C21—C20—C19120.7 (2)
O1—P1—C7109.85 (8)C21—C20—H20A119.6
N1—P1—C7104.13 (9)C19—C20—H20A119.6
O1—P1—C1110.95 (8)C22—C21—C20120.5 (2)
N1—P1—C1106.11 (9)C22—C21—H21A119.8
C7—P1—C1106.30 (9)C20—C21—H21A119.8
P1—O1—Li1140.12 (12)C21—C22—C23119.6 (2)
P1—O1—Li1i131.06 (11)C21—C22—H22A120.2
Li1—O1—Li1i88.68 (13)C23—C22—H22A120.2
P1—N1—H1C118.0C22—C23—C24120.5 (2)
P1—N1—H1D122.7C22—C23—H23A119.8
H1C—N1—H1D114.9C24—C23—H23A119.8
C6—C1—C2118.55 (19)C19—C24—C23120.7 (2)
C6—C1—P1123.63 (16)C19—C24—H24A119.7
C2—C1—P1117.76 (15)C23—C24—H24A119.7
C3—C2—C1120.6 (2)O5—P3—N3118.56 (9)
C3—C2—H2A119.7O5—P3—C25110.89 (9)
C1—C2—H2A119.7N3—P3—C25105.63 (10)
C4—C3—C2120.0 (2)O5—P3—C31110.65 (10)
C4—C3—H3A120.0N3—P3—C31104.03 (10)
C2—C3—H3A120.0C25—P3—C31106.20 (9)
C5—C4—C3120.2 (2)P3—O5—Li1152.08 (14)
C5—C4—H4A119.9P3—N3—H3C115.8
C3—C4—H4A119.9P3—N3—H3D114.9
C4—C5—C6120.3 (2)H3C—N3—H3D109.1
C4—C5—H5A119.8C26—C25—C30118.8 (2)
C6—C5—H5A119.8C26—C25—P3117.40 (15)
C5—C6—C1120.3 (2)C30—C25—P3123.70 (17)
C5—C6—H6A119.9C27—C26—C25120.7 (2)
C1—C6—H6A119.9C27—C26—H26A119.7
C12—C7—C8119.0 (2)C25—C26—H26A119.7
C12—C7—P1119.53 (16)C28—C27—C26120.0 (2)
C8—C7—P1121.44 (16)C28—C27—H27A120.0
C9—C8—C7120.5 (2)C26—C27—H27A120.0
C9—C8—H8A119.7C29—C28—C27120.1 (2)
C7—C8—H8A119.7C29—C28—H28A120.0
C10—C9—C8120.1 (2)C27—C28—H28A120.0
C10—C9—H9A120.0C28—C29—C30120.6 (2)
C8—C9—H9A120.0C28—C29—H29A119.7
C11—C10—C9120.0 (2)C30—C29—H29A119.7
C11—C10—H10A120.0C29—C30—C25119.7 (2)
C9—C10—H10A120.0C29—C30—H30A120.1
C10—C11—C12120.1 (2)C25—C30—H30A120.1
C10—C11—H11A120.0C36—C31—C32119.4 (2)
C12—C11—H11A120.0C36—C31—P3118.41 (19)
C7—C12—C11120.3 (2)C32—C31—P3122.23 (18)
C7—C12—H12A119.9C33—C32—C31120.1 (3)
C11—C12—H12A119.9C33—C32—H32A120.0
O3—P2—N2121.04 (9)C31—C32—H32A120.0
O3—P2—C19109.35 (9)C34—C33—C32120.1 (3)
N2—P2—C19104.64 (9)C34—C33—H33A120.0
O3—P2—C13111.06 (9)C32—C33—H33A120.0
N2—P2—C13102.34 (9)C33—C34—C35120.8 (3)
C19—P2—C13107.49 (9)C33—C34—H34A119.6
P2—O3—Li1153.97 (13)C35—C34—H34A119.6
P2—N2—H2C121.0C34—C35—C36119.9 (3)
P2—N2—H2D116.1C34—C35—H35A120.1
H2C—N2—H2D113.2C36—C35—H35A120.1
C18—C13—C14118.9 (2)C31—C36—C35119.8 (3)
C18—C13—P2120.15 (16)C31—C36—H36A120.1
C14—C13—P2120.95 (16)C35—C36—H36A120.1
C15—C14—C13120.8 (2)O5—Li1—O3108.65 (16)
C15—C14—H14A119.6O5—Li1—O1110.82 (16)
C13—C14—H14A119.6O3—Li1—O1113.23 (16)
C16—C15—C14119.9 (2)O5—Li1—O1i116.04 (16)
C16—C15—H15A120.1O3—Li1—O1i115.90 (16)
C14—C15—H15A120.1O1—Li1—O1i91.32 (13)
C15—C16—C17120.4 (2)O5—Li1—Li1i124.7 (2)
C15—C16—H16A119.8O3—Li1—Li1i126.5 (2)
C17—C16—H16A119.8O1—Li1—Li1i46.32 (10)
C16—C17—C18120.0 (2)O1i—Li1—Li1i45.00 (9)
C16—C17—H17A120.0N4—C37—C38178.5 (5)
C18—C17—H17A120.0C37—C38—H38A109.5
C13—C18—C17120.1 (2)C37—C38—H38B109.5
C13—C18—H18A120.0H38A—C38—H38B109.5
C17—C18—H18A120.0C37—C38—H38C109.5
C24—C19—C20118.0 (2)H38A—C38—H38C109.5
C24—C19—P2123.43 (16)H38B—C38—H38C109.5
C20—C19—P2118.52 (16)
N1—P1—O1—Li1138.66 (19)C13—P2—C19—C2083.06 (18)
C7—P1—O1—Li1101.80 (19)C24—C19—C20—C210.9 (3)
C1—P1—O1—Li115.4 (2)P2—C19—C20—C21179.74 (19)
N1—P1—O1—Li1i35.57 (18)C19—C20—C21—C220.8 (4)
C7—P1—O1—Li1i83.98 (16)C20—C21—C22—C230.3 (4)
C1—P1—O1—Li1i158.79 (15)C21—C22—C23—C241.3 (4)
O1—P1—C1—C6130.81 (17)C20—C19—C24—C230.0 (4)
N1—P1—C1—C60.6 (2)P2—C19—C24—C23179.3 (2)
C7—P1—C1—C6109.80 (18)C22—C23—C24—C191.1 (4)
O1—P1—C1—C252.26 (17)N3—P3—O5—Li123.4 (3)
N1—P1—C1—C2177.57 (15)C25—P3—O5—Li1145.8 (3)
C7—P1—C1—C267.13 (17)C31—P3—O5—Li196.7 (3)
C6—C1—C2—C32.2 (3)O5—P3—C25—C2644.58 (19)
P1—C1—C2—C3174.93 (17)N3—P3—C25—C26174.24 (16)
C1—C2—C3—C42.1 (3)C31—P3—C25—C2675.68 (18)
C2—C3—C4—C50.2 (4)O5—P3—C25—C30138.18 (18)
C3—C4—C5—C61.6 (4)N3—P3—C25—C308.5 (2)
C4—C5—C6—C11.5 (3)C31—P3—C25—C30101.57 (19)
C2—C1—C6—C50.4 (3)C30—C25—C26—C270.6 (3)
P1—C1—C6—C5176.55 (17)P3—C25—C26—C27176.76 (18)
O1—P1—C7—C1220.38 (19)C25—C26—C27—C280.7 (4)
N1—P1—C7—C12148.45 (16)C26—C27—C28—C290.3 (4)
C1—P1—C7—C1299.72 (17)C27—C28—C29—C300.2 (4)
O1—P1—C7—C8161.65 (17)C28—C29—C30—C250.3 (4)
N1—P1—C7—C833.6 (2)C26—C25—C30—C290.2 (3)
C1—P1—C7—C878.25 (19)P3—C25—C30—C29177.05 (17)
C12—C7—C8—C90.5 (3)O5—P3—C31—C368.5 (2)
P1—C7—C8—C9178.4 (2)N3—P3—C31—C36136.90 (18)
C7—C8—C9—C100.6 (4)C25—P3—C31—C36111.89 (19)
C8—C9—C10—C111.3 (4)O5—P3—C31—C32171.27 (18)
C9—C10—C11—C120.9 (4)N3—P3—C31—C3242.9 (2)
C8—C7—C12—C110.9 (3)C25—P3—C31—C3268.3 (2)
P1—C7—C12—C11178.90 (17)C36—C31—C32—C330.4 (4)
C10—C11—C12—C70.2 (4)P3—C31—C32—C33179.36 (19)
N2—P2—O3—Li136.5 (3)C31—C32—C33—C340.2 (4)
C19—P2—O3—Li1158.1 (3)C32—C33—C34—C350.4 (5)
C13—P2—O3—Li183.5 (3)C33—C34—C35—C360.7 (5)
O3—P2—C13—C182.0 (2)C32—C31—C36—C350.1 (4)
N2—P2—C13—C18128.51 (18)P3—C31—C36—C35179.7 (2)
C19—P2—C13—C18121.61 (18)C34—C35—C36—C310.5 (4)
O3—P2—C13—C14177.75 (17)P3—O5—Li1—O399.5 (3)
N2—P2—C13—C1451.71 (19)P3—O5—Li1—O1135.5 (2)
C19—P2—C13—C1458.17 (19)P3—O5—Li1—O1i33.2 (4)
C18—C13—C14—C151.1 (3)P3—O5—Li1—Li1i85.0 (4)
P2—C13—C14—C15178.71 (18)P2—O3—Li1—O563.1 (4)
C13—C14—C15—C160.0 (4)P2—O3—Li1—O1173.3 (2)
C14—C15—C16—C171.1 (4)P2—O3—Li1—O1i69.6 (4)
C15—C16—C17—C181.2 (4)P2—O3—Li1—Li1i121.4 (3)
C14—C13—C18—C171.0 (3)P1—O1—Li1—O557.1 (3)
P2—C13—C18—C17178.81 (19)Li1i—O1—Li1—O5118.6 (2)
C16—C17—C18—C130.1 (4)P1—O1—Li1—O365.3 (2)
O3—P2—C19—C24141.69 (19)Li1i—O1—Li1—O3119.0 (2)
N2—P2—C19—C2410.6 (2)P1—O1—Li1—O1i175.65 (16)
C13—P2—C19—C2497.6 (2)Li1i—O1—Li1—O1i0.0
O3—P2—C19—C2037.60 (19)P1—O1—Li1—Li1i175.65 (16)
N2—P2—C19—C20168.64 (17)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1ii0.842.613.4351 (17)169
N1—H1D···Cl1iii0.832.703.4534 (17)152
N2—H2C···Cl1iv0.832.503.2789 (18)158
N2—H2D···Cl1v0.842.553.3776 (18)169
N3—H3C···Cl1v0.882.583.3967 (19)154
Symmetry codes: (ii) x+1, y, z1; (iii) x+2, y, z+1; (iv) x, y, z1; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.842.613.4351 (17)169
N1—H1D···Cl1ii0.832.703.4534 (17)152
N2—H2C···Cl1iii0.832.503.2789 (18)158
N2—H2D···Cl1iv0.842.553.3776 (18)169
N3—H3C···Cl1iv0.882.583.3967 (19)154
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y, z+1; (iii) x, y, z1; (iv) x+1, y, z+1.
 

Acknowledgements

This work was carried out under the sponsorship of the National Natural Science Foundation of China (No. 20872084).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOliva, G., Castellano, E. E. & Franco de Carvalho, L. R. (1981). Acta Cryst. B37, 474–475.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPisareva, S. A., Petrovskii, P. V., Lyssenko, K. A., Antipin, M. Y. & Nifant'ev, E. E. (2004). Russ. Chem. Bull. 53, 2008–2012.  Web of Science CrossRef CAS Google Scholar
First citationRoesky, H. W. & Lucke, M. (1989). Angew. Chem. Int. Ed. 28, 493–493.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWong, W. K., Sun, C. & Wong, W. T. (1997). J. Chem. Soc. Dalton Trans. pp. 3387–3396.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds