organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Allyl-9H-fluoren-9-ol

aDepartment of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
*Correspondence e-mail: kyle-knight@utc.edu

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 29 April 2014; accepted 6 May 2014; online 17 May 2014)

The asymmetric unit of the title compound, C16H14O, contains two independent mol­ecules differing in the orientations of the allyl groups; the corresponding O—C—C(H2)—C(H) torsion angles are −61.01 (13) and −177.43 (10)°. In the crystal, O—H⋯O hydrogen bonds link four mol­ecules into a centrosymmetric tetra­mer, in which each hy­droxy group acts as a donor and an acceptor of hydrogen bonds.

Related literature

For the use of the title compound in the synthesis of spiro­cyclic ethers via alkene metathesis, see: Brahma et al. (2007[Brahma, S., Maity, S. & Ray, J. K. (2007). J. Heterocycl. Chem. 44, 29-34.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O

  • Mr = 222.27

  • Triclinic, [P \overline 1]

  • a = 9.3789 (15) Å

  • b = 12.2809 (18) Å

  • c = 12.936 (2) Å

  • α = 63.995 (4)°

  • β = 68.803 (4)°

  • γ = 69.887 (4)°

  • V = 1217.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.8 × 0.7 × 0.51 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 23092 measured reflections

  • 4262 independent reflections

  • 3749 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.02

  • 4262 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.95 2.7709 (13) 165
O2—H2A⋯O1 0.84 1.93 2.7558 (15) 170
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The homoallylic alcohol, 9-allylfluoren-9-ol, crystallizes as two symmetrically distinct molecules. The molecules are linked by a square shaped hydrogen bonding network in which symmetrically equivalent and inequivalent molecules occupy alternating positions in the corners, and each hydroxyl group acts as a donor and an acceptor to adjacent molecules. In the crystal, there is t-stacking between alternating rows of symmetrically inequivalent molecules. In one molecule the O—C—C-alkene bond, O2—C20—C19—C18, is anti with a torsion angle of -177.43 (10)° while in the other symmetrically inequivalent structure, the analogous torsion, O1—C5—C6—C7, is gauche and has a torsion angle of -61.01 (13)°.

Related literature top

For the use of the title compound in the synthesis of spirocyclic ethers via alkene metathesis, see: Brahma et al. (2007).

Experimental top

The title compound was prepared by addition of a 1.0 M solution of allylmagnesium chloride (0.012 mol) in tetrahydrofuran to a solution of fluorenone (0.010 mol) at 0°C. The reaction was quenched by the addition of 1.0 M HCl, extracted into diethyl ether and concentrated on a rotary evaporator. Suitable crystals were obtained by recrystallization from methanol.

Refinement top

All H atoms bonded to C were positioned geometrically, with bond distances of 0.95 Å for C(sp2)–H and 0.95 Å for methylene, and were refined as riding, with Uiso(H)= 1.2 Ueq(C). H atoms bonded to O were positioned geometrically with an O–H distance of 0.84 Å, and refined as rotating, with Uiso(H)= 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Two independent molecules of the title compound showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. Dashed line denotes hydrogen bond.
9-Allyl-9H-fluoren-9-ol top
Crystal data top
C16H14OZ = 4
Mr = 222.27F(000) = 472
Triclinic, P1Dx = 1.212 Mg m3
a = 9.3789 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2809 (18) ÅCell parameters from 9980 reflections
c = 12.936 (2) Åθ = 2.4–25.0°
α = 63.995 (4)°µ = 0.07 mm1
β = 68.803 (4)°T = 200 K
γ = 69.887 (4)°Prism, yellow
V = 1217.6 (3) Å30.8 × 0.7 × 0.51 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.031
Graphite monochromatorθmax = 25.1°, θmin = 2.4°
ϕ and ω scansh = 1111
23092 measured reflectionsk = 1414
4262 independent reflectionsl = 1515
3749 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2188P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.16 e Å3
4262 reflectionsΔρmin = 0.23 e Å3
309 parameters
Crystal data top
C16H14Oγ = 69.887 (4)°
Mr = 222.27V = 1217.6 (3) Å3
Triclinic, P1Z = 4
a = 9.3789 (15) ÅMo Kα radiation
b = 12.2809 (18) ŵ = 0.07 mm1
c = 12.936 (2) ÅT = 200 K
α = 63.995 (4)°0.8 × 0.7 × 0.51 mm
β = 68.803 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3749 reflections with I > 2σ(I)
23092 measured reflectionsRint = 0.031
4262 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
4262 reflectionsΔρmin = 0.23 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59676 (10)0.12837 (7)0.49408 (7)0.0332 (2)
H10.60880.05250.53640.050*
O20.38219 (11)0.12557 (7)0.39598 (7)0.0366 (2)
H2A0.44370.13630.42270.055*
C10.23321 (17)0.17419 (13)0.88455 (12)0.0457 (3)
H1A0.15780.17000.95810.055*
C20.18390 (16)0.20753 (13)0.78424 (13)0.0443 (3)
H20.07510.22500.78960.053*
C30.29179 (15)0.21578 (12)0.67528 (12)0.0381 (3)
H30.25770.23930.60610.046*
C40.44978 (14)0.18905 (11)0.66955 (10)0.0306 (3)
C50.58817 (13)0.19806 (10)0.56139 (10)0.0294 (3)
C60.57498 (15)0.33479 (11)0.47747 (11)0.0354 (3)
H6A0.47800.36260.45020.042*
H6B0.56340.38530.52340.042*
C70.70892 (16)0.36099 (12)0.37113 (12)0.0414 (3)
H70.74150.31260.32270.050*
C80.78483 (19)0.44707 (15)0.34030 (16)0.0612 (4)
H8A0.75500.49690.38700.073*
H8B0.86960.45950.27130.073*
C90.93625 (17)0.04974 (13)0.75621 (14)0.0499 (4)
H91.00970.01570.80330.060*
C100.77762 (17)0.07549 (12)0.80950 (12)0.0414 (3)
H100.74170.05980.89240.050*
C110.67245 (14)0.12456 (10)0.73951 (10)0.0314 (3)
C120.49977 (14)0.15303 (10)0.77147 (10)0.0315 (3)
C130.39132 (16)0.14676 (12)0.87949 (11)0.0408 (3)
H130.42480.12410.94870.049*
C140.72606 (14)0.14784 (10)0.61755 (10)0.0300 (3)
C150.88448 (15)0.12218 (12)0.56494 (12)0.0399 (3)
H150.92090.13810.48200.048*
C160.98985 (17)0.07259 (14)0.63558 (15)0.0503 (4)
H161.09930.05430.60080.060*
C170.09971 (19)0.33292 (15)0.09582 (15)0.0563 (4)
H17A0.00540.31730.15490.068*
H17B0.09590.38720.01680.068*
C180.23369 (16)0.28004 (12)0.12297 (11)0.0387 (3)
H180.32470.29850.06090.046*
C190.25818 (16)0.19311 (12)0.24235 (11)0.0365 (3)
H19A0.29990.10780.24110.044*
H19B0.15540.19470.30130.044*
C200.37019 (14)0.22274 (10)0.28309 (10)0.0304 (3)
C210.52751 (14)0.23246 (11)0.19311 (10)0.0319 (3)
C220.55426 (14)0.35111 (11)0.15307 (10)0.0328 (3)
C230.68727 (16)0.38288 (14)0.06561 (12)0.0444 (3)
H230.70560.46360.03810.053*
C240.79322 (16)0.29496 (16)0.01894 (13)0.0505 (4)
H240.88430.31600.04180.061*
C250.76786 (16)0.17710 (15)0.05973 (13)0.0502 (4)
H250.84250.11770.02740.060*
C260.63487 (15)0.14423 (13)0.14729 (12)0.0420 (3)
H260.61780.06300.17520.050*
C270.42222 (14)0.42412 (11)0.21722 (10)0.0316 (3)
C280.39539 (17)0.54383 (12)0.21355 (12)0.0433 (3)
H280.46970.59380.16310.052*
C290.25850 (19)0.58910 (13)0.28462 (14)0.0511 (4)
H290.23920.67070.28350.061*
C300.14923 (18)0.51751 (13)0.35731 (13)0.0499 (4)
H300.05460.55120.40400.060*
C310.17609 (15)0.39693 (12)0.36288 (11)0.0398 (3)
H310.10150.34730.41380.048*
C320.31348 (14)0.35039 (11)0.29287 (10)0.0298 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0450 (5)0.0288 (5)0.0306 (4)0.0107 (4)0.0147 (4)0.0086 (3)
O20.0516 (5)0.0267 (4)0.0355 (5)0.0131 (4)0.0219 (4)0.0025 (4)
C10.0469 (8)0.0436 (8)0.0409 (7)0.0099 (6)0.0003 (6)0.0192 (6)
C20.0339 (7)0.0416 (8)0.0520 (8)0.0060 (6)0.0070 (6)0.0166 (6)
C30.0372 (7)0.0368 (7)0.0407 (7)0.0071 (5)0.0142 (5)0.0115 (6)
C40.0360 (6)0.0244 (6)0.0333 (6)0.0073 (5)0.0117 (5)0.0092 (5)
C50.0341 (6)0.0269 (6)0.0303 (6)0.0078 (5)0.0111 (5)0.0096 (5)
C60.0402 (7)0.0288 (6)0.0373 (6)0.0076 (5)0.0154 (5)0.0073 (5)
C70.0493 (8)0.0347 (7)0.0370 (7)0.0125 (6)0.0147 (6)0.0046 (5)
C80.0552 (9)0.0474 (9)0.0724 (11)0.0217 (7)0.0046 (8)0.0154 (8)
C90.0513 (9)0.0420 (8)0.0645 (9)0.0094 (6)0.0372 (7)0.0088 (7)
C100.0557 (8)0.0347 (7)0.0426 (7)0.0143 (6)0.0262 (6)0.0072 (6)
C110.0421 (7)0.0223 (6)0.0360 (6)0.0098 (5)0.0166 (5)0.0085 (5)
C120.0408 (7)0.0237 (6)0.0334 (6)0.0084 (5)0.0123 (5)0.0100 (5)
C130.0537 (8)0.0369 (7)0.0339 (6)0.0102 (6)0.0109 (6)0.0145 (5)
C140.0359 (6)0.0217 (6)0.0355 (6)0.0075 (5)0.0139 (5)0.0081 (5)
C150.0378 (7)0.0366 (7)0.0444 (7)0.0091 (5)0.0110 (6)0.0124 (6)
C160.0353 (7)0.0458 (8)0.0699 (10)0.0060 (6)0.0208 (7)0.0169 (7)
C170.0571 (9)0.0587 (10)0.0587 (9)0.0055 (7)0.0307 (8)0.0186 (8)
C180.0449 (7)0.0384 (7)0.0396 (7)0.0118 (6)0.0171 (6)0.0129 (6)
C190.0447 (7)0.0305 (7)0.0411 (7)0.0135 (5)0.0167 (6)0.0101 (5)
C200.0377 (6)0.0237 (6)0.0319 (6)0.0080 (5)0.0146 (5)0.0061 (5)
C210.0348 (6)0.0307 (6)0.0341 (6)0.0043 (5)0.0171 (5)0.0106 (5)
C220.0349 (6)0.0339 (7)0.0314 (6)0.0093 (5)0.0145 (5)0.0071 (5)
C230.0425 (7)0.0495 (8)0.0398 (7)0.0178 (6)0.0121 (6)0.0075 (6)
C240.0342 (7)0.0734 (11)0.0411 (7)0.0111 (7)0.0078 (6)0.0200 (7)
C250.0389 (7)0.0648 (10)0.0501 (8)0.0056 (7)0.0177 (6)0.0311 (8)
C260.0428 (7)0.0400 (8)0.0482 (8)0.0004 (6)0.0197 (6)0.0207 (6)
C270.0396 (7)0.0265 (6)0.0317 (6)0.0088 (5)0.0165 (5)0.0059 (5)
C280.0586 (9)0.0285 (7)0.0457 (7)0.0158 (6)0.0196 (7)0.0059 (6)
C290.0717 (10)0.0281 (7)0.0567 (9)0.0032 (7)0.0239 (8)0.0177 (6)
C300.0566 (9)0.0389 (8)0.0492 (8)0.0020 (7)0.0125 (7)0.0214 (7)
C310.0406 (7)0.0369 (7)0.0391 (7)0.0075 (6)0.0099 (6)0.0122 (6)
C320.0364 (6)0.0264 (6)0.0295 (6)0.0076 (5)0.0149 (5)0.0070 (5)
Geometric parameters (Å, º) top
O1—H10.8400C15—C161.3906 (19)
O1—C51.4326 (13)C16—H160.9500
O2—H2A0.8400C17—H17A0.9500
O2—C201.4380 (14)C17—H17B0.9500
C1—H1A0.9500C17—C181.297 (2)
C1—C21.380 (2)C18—H180.9500
C1—C131.386 (2)C18—C191.4898 (17)
C2—H20.9500C19—H19A0.9900
C2—C31.3909 (19)C19—H19B0.9900
C3—H30.9500C19—C201.5314 (16)
C3—C41.3843 (17)C20—C211.5178 (17)
C4—C51.5180 (16)C20—C321.5193 (16)
C4—C121.3952 (16)C21—C221.3965 (17)
C5—C61.5393 (16)C21—C261.3859 (18)
C5—C141.5227 (16)C22—C231.3841 (18)
C6—H6A0.9900C22—C271.4736 (18)
C6—H6B0.9900C23—H230.9500
C6—C71.4880 (18)C23—C241.385 (2)
C7—H70.9500C24—H240.9500
C7—C81.314 (2)C24—C251.381 (2)
C8—H8A0.9500C25—H250.9500
C8—H8B0.9500C25—C261.387 (2)
C9—H90.9500C26—H260.9500
C9—C101.384 (2)C27—C281.3856 (18)
C9—C161.383 (2)C27—C321.3978 (17)
C10—H100.9500C28—H280.9500
C10—C111.3835 (17)C28—C291.381 (2)
C11—C121.4729 (17)C29—H290.9500
C11—C141.3977 (17)C29—C301.380 (2)
C12—C131.3874 (17)C30—H300.9500
C13—H130.9500C30—C311.387 (2)
C14—C151.3801 (18)C31—H310.9500
C15—H150.9500C31—C321.3823 (18)
C5—O1—H1109.5C15—C16—H16119.8
C20—O2—H2A109.5H17A—C17—H17B120.0
C2—C1—H1A119.6C18—C17—H17A120.0
C2—C1—C13120.87 (12)C18—C17—H17B120.0
C13—C1—H1A119.6C17—C18—H18117.0
C1—C2—H2119.7C17—C18—C19126.10 (14)
C1—C2—C3120.68 (13)C19—C18—H18117.0
C3—C2—H2119.7C18—C19—H19A108.7
C2—C3—H3120.6C18—C19—H19B108.7
C4—C3—C2118.72 (12)C18—C19—C20114.33 (10)
C4—C3—H3120.6H19A—C19—H19B107.6
C3—C4—C5128.70 (11)C20—C19—H19A108.7
C3—C4—C12120.57 (11)C20—C19—H19B108.7
C12—C4—C5110.67 (10)O2—C20—C19105.00 (9)
O1—C5—C4113.94 (9)O2—C20—C21113.20 (9)
O1—C5—C6107.01 (9)O2—C20—C32111.62 (9)
O1—C5—C14112.12 (9)C21—C20—C19112.48 (10)
C4—C5—C6108.96 (10)C21—C20—C32101.85 (9)
C4—C5—C14101.68 (9)C32—C20—C19112.95 (10)
C14—C5—C6113.19 (9)C22—C21—C20110.55 (10)
C5—C6—H6A108.4C26—C21—C20128.87 (11)
C5—C6—H6B108.4C26—C21—C22120.53 (12)
H6A—C6—H6B107.4C21—C22—C27108.61 (11)
C7—C6—C5115.68 (10)C23—C22—C21120.41 (12)
C7—C6—H6A108.4C23—C22—C27130.97 (12)
C7—C6—H6B108.4C22—C23—H23120.6
C6—C7—H7118.1C22—C23—C24118.86 (14)
C8—C7—C6123.87 (14)C24—C23—H23120.6
C8—C7—H7118.1C23—C24—H24119.6
C7—C8—H8A120.0C25—C24—C23120.71 (13)
C7—C8—H8B120.0C25—C24—H24119.6
H8A—C8—H8B120.0C24—C25—H25119.5
C10—C9—H9119.4C24—C25—C26120.94 (13)
C16—C9—H9119.4C26—C25—H25119.5
C16—C9—C10121.18 (12)C21—C26—C25118.53 (13)
C9—C10—H10120.7C21—C26—H26120.7
C9—C10—C11118.59 (13)C25—C26—H26120.7
C11—C10—H10120.7C28—C27—C22131.34 (12)
C10—C11—C12130.85 (12)C28—C27—C32120.40 (12)
C10—C11—C14120.44 (12)C32—C27—C22108.26 (11)
C14—C11—C12108.59 (10)C27—C28—H28120.6
C4—C12—C11108.33 (10)C29—C28—C27118.71 (13)
C13—C12—C4120.36 (12)C29—C28—H28120.6
C13—C12—C11131.29 (11)C28—C29—H29119.5
C1—C13—C12118.78 (12)C30—C29—C28120.99 (13)
C1—C13—H13120.6C30—C29—H29119.5
C12—C13—H13120.6C29—C30—H30119.6
C11—C14—C5110.34 (10)C29—C30—C31120.71 (13)
C15—C14—C5128.98 (11)C31—C30—H30119.6
C15—C14—C11120.66 (11)C30—C31—H31120.6
C14—C15—H15120.6C32—C31—C30118.71 (13)
C14—C15—C16118.76 (13)C32—C31—H31120.6
C16—C15—H15120.6C27—C32—C20110.68 (10)
C9—C16—C15120.38 (13)C31—C32—C20128.86 (11)
C9—C16—H16119.8C31—C32—C27120.46 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.952.7709 (13)165
O2—H2A···O10.841.932.7558 (15)170
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.952.7709 (13)165
O2—H2A···O10.841.932.7558 (15)170
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Acknowledgements are made to the National Science Foundation MRI Program (CHE-0951711) and the Grote Chemistry Fund at the University of Tennessee at Chattanooga for their generous support of our work.

References

First citationBrahma, S., Maity, S. & Ray, J. K. (2007). J. Heterocycl. Chem. 44, 29–34.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds