organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Bromo-4-chloro­phen­yl)-3,3-di­methyl­thio­urea

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cPetrochemical Research Institute, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

(Received 9 May 2014; accepted 16 May 2014; online 24 May 2014)

In the title compound, C9H10BrClN2S, the di­methyl­thio­urea group is twisted from the benzene ring plane by 54.38 (6)°. In the crystal, the amino groups are involved in the formation of N—H⋯S hydrogen bonds, which link the mol­ecules into chains along [010]. Weak C—H⋯Cl inter­actions further link these chains into layers parallel to the ab plane.

Related literature

For related compounds, see: Maddani & Prabhu (2010[Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327-2332.]); Yahyaza­deh & Ghasemi (2013[Yahyazadeh, A. & Ghasemi, Z. (2013). Eur. Chem. Bull. 2, 573-575.]); Zhao et al. (2013[Zhao, Q., Li, S., Huang, K., Wang, R. & Zhang, X. (2013). Org. Lett. 15, 4014-4017.]). For convenient routes for modifying urea derivatives via organolithium inter­mediates, see: Smith et al. (1996[Smith, K., Shukla, A. P. & Matthews, I. (1996). Sulfur Lett. 20, 121-137.], 1999[Smith, K., El-Hiti, G. A. & Shukla, A. P. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2305-2313.], 2009[Smith, K., El-Hiti, G. A., Hegazy, A. S., Fekri, A. & Kariuki, B. M. (2009). Arkivoc xiv, 266-300.], 2010[Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2010). Synthesis, pp. 1371-1380.], 2012[Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). Synthesis, 44, 2013-2022.], 2014[Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2014). Synthesis, 46, 394-402.]). For the structures of related compounds, see: Zhao et al. (2008[Zhao, P. S., Qin, Y. Q., Zhang, J. & Jian, F. F. (2008). Pol. J. Chem. 82, 2153-2165.]); Ramnathan et al. (1996[Ramnathan, A., Sivakumar, K., Janarthanan, N., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 411-414.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10BrClN2S

  • Mr = 293.61

  • Monoclinic, P 21 /n

  • a = 12.1369 (3) Å

  • b = 7.9431 (2) Å

  • c = 13.2230 (4) Å

  • β = 115.386 (3)°

  • V = 1151.67 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.40 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.09 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.580, Tmax = 1.000

  • 4291 measured reflections

  • 2245 independent reflections

  • 2078 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.04

  • 2245 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.67 3.349 (2) 137
C9—H9B⋯Cl1ii 0.96 2.81 3.696 (2) 153
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

Recently, various thio­urea derivatives have been synthesised and showed broad inter­esting properties (Maddani & Prabhu, 2010; Yahyaza­deh & Ghasemi, 2013; Zhao et al., 2013). In a continuation of our research focused on new synthetic routes towards novel substituted urea derivatives (Smith et al., 1996, 1999, 2009, 2010, 2012, 2014) we have synthesized 3-(2-bromo-4-chloro­phenyl)-1,1-di­methyl­thio­urea (I) in a high yield (Smith et al., 1996). We have prepared the material again and crystallized it in high purity in order to obtain its crystal structure, which we present herein.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond well to those observed in the related compounds (Zhao et al., 2008; Ramnathan et al., 1996). The non-hydrogen atoms in (I) fall into two planes with an inter­planer angle of 54.38 (6)° between the bromo-chloro­phenyl and di­methyl­thio­urea groups. Each molecule is involved in N—H···S contacts (Table 1) with two neigbouring molecules, with one as an acceptor and the other as a donor, leading to the formation of zig-zag-chains in [010] (Fig 2). The bromo-chloro­phenyl and di­methyl­thio­urea groups of adjacent molecules are parallel in the stack forming chains of alternating S···Br···S groups with a separation of 4.07Å and 4.11Å between the atoms.

Synthesis and crystallization top

To a stirred solution of 2-bromo-4-chloro-1-iso­thio­cyanato­benzene (12.43 g, 50.0 mmol) in anhydrous dioxane (120 ml) di­methyl­amine (7.10 g of 33% solution in ethanol, 52.0 mmol) was slowly added in a drop-wise manner over 5 min. The reaction mixture was stirred at room temperature for an extra 1 h. The solid obtained was collected by filtration and washed with dioxane (2 x 20 ml) and dried. Recrystallization from ethyl acetate gave 3-(2-bromo-4-chloro­phenyl)-1,1-di­methyl­thio­urea (13.80 g, 47.0 mmol; 94%) as yellow crystals, m.p. 193–194 °C [lit. 184–185 °C (ethyl acetate); Smith et al. (1996)]. 1H NMR (500 MHz, CDCl3, δ, p.p.m.) 7.97 (d, J = 8.8 Hz, 1 H, H-6), 7.59 (d, J = 2.3 Hz, 1 H, H-3), 7.32 (dd, J = 2.3, 8.8 Hz, 1 H, H-5), 7.17 (br, exch., 1 H, NH), 3.43 [s, 6 H, N(CH3)2]. 13C NMR (125 MHz, CDCl3, δ, p.p.m.) 181.2 (s, C=S), 136.6 (s, C-1), 131.8 (d, C-3), 131.0 (s, C-4), 127.8 (d, C-6), 127.7 (d, C-5), 118.1 (s, C-2), 41.3 [q, N(CH3)2]. AP+—MS (m/z, %): 297 ([MH81Br37Cl]+, 34), 295 ([MH81Br35Cl and MH79Br37Cl]+, 100), 293 ([MH79Br35Cl]+, 80), 263 (12), 215 (22), 213 (50). HRMS (AP+): Calculated for C9H1179Br35ClN2S [MH] 292.9515; found, 292.9515.

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uĩso(H) = 1.2 times Ueq for the atom they are bonded to except for the methyl groups where 1.5 times Ueq was used with free rotation about the C—C bond.

Related literature top

For related compounds, see: Maddani & Prabhu (2010); Yahyazadeh & Ghasemi (2013); Zhao et al. (2013). For convenient routes for modifying urea derivatives via organolithium intermediates, see: Smith et al. (1996, 1999, 2009, 2010, 2012, 2014). For the X-ray structures of related compounds, see: Zhao et al. (2008); Ramnathan et al. (1996).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of (I) showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the a axis. N—H···S contacts are shown as dotted lines.
1-(2-Bromo-4-chlorophenyl)-3,3-dimethylthiourea top
Crystal data top
C9H10BrClN2SF(000) = 584
Mr = 293.61Dx = 1.693 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 12.1369 (3) ÅCell parameters from 2078 reflections
b = 7.9431 (2) Åθ = 4.1–75.5°
c = 13.2230 (4) ŵ = 8.40 mm1
β = 115.386 (3)°T = 296 K
V = 1151.67 (6) Å3Plate, colourless
Z = 40.28 × 0.20 × 0.09 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2245 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2078 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
ω scansθmax = 73.5°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1314
Tmin = 0.580, Tmax = 1.000k = 96
4291 measured reflectionsl = 1615
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.4682P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.33 e Å3
2245 reflectionsΔρmin = 0.39 e Å3
130 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0048 (3)
Crystal data top
C9H10BrClN2SV = 1151.67 (6) Å3
Mr = 293.61Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.1369 (3) ŵ = 8.40 mm1
b = 7.9431 (2) ÅT = 296 K
c = 13.2230 (4) Å0.28 × 0.20 × 0.09 mm
β = 115.386 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2245 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
2078 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 1.000Rint = 0.015
4291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2245 reflectionsΔρmin = 0.39 e Å3
130 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent, 2014). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85876 (18)0.0661 (3)0.22866 (16)0.0377 (4)
C20.85637 (19)0.1344 (3)0.13058 (16)0.0404 (4)
C30.9605 (2)0.1405 (3)0.11271 (19)0.0495 (5)
H30.95810.18510.04680.059*
C41.0675 (2)0.0794 (3)0.1942 (2)0.0523 (5)
C51.0726 (2)0.0087 (3)0.29241 (19)0.0497 (5)
H51.14550.03340.34650.060*
C60.96763 (19)0.0022 (3)0.30797 (17)0.0440 (5)
H60.96990.04600.37290.053*
C70.72784 (18)0.1177 (3)0.32603 (16)0.0379 (4)
C80.5801 (3)0.1471 (4)0.4043 (2)0.0638 (7)
H8A0.57860.05170.44830.096*
H8B0.50060.19780.37100.096*
H8C0.63830.22780.45150.096*
C90.5176 (2)0.0190 (4)0.2169 (2)0.0569 (6)
H9A0.50320.08900.15330.085*
H9B0.44430.01100.22740.085*
H9C0.54160.09130.20450.085*
Br10.70976 (2)0.22178 (4)0.01974 (2)0.05768 (14)
Cl11.19895 (7)0.08827 (15)0.17270 (8)0.0936 (3)
N10.74917 (15)0.0536 (3)0.24110 (14)0.0442 (4)
H10.69010.00010.18970.053*
N20.61441 (17)0.0925 (3)0.31655 (16)0.0470 (4)
S10.83592 (5)0.22395 (7)0.43366 (4)0.04637 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0377 (9)0.0420 (10)0.0314 (9)0.0038 (8)0.0129 (7)0.0039 (8)
C20.0436 (10)0.0403 (10)0.0335 (9)0.0009 (8)0.0128 (8)0.0013 (8)
C30.0570 (13)0.0531 (13)0.0436 (11)0.0046 (10)0.0264 (10)0.0013 (10)
C40.0437 (11)0.0644 (15)0.0526 (12)0.0043 (10)0.0242 (10)0.0078 (11)
C50.0395 (10)0.0595 (14)0.0420 (11)0.0018 (9)0.0098 (9)0.0050 (10)
C60.0451 (10)0.0495 (12)0.0327 (9)0.0004 (9)0.0123 (8)0.0013 (8)
C70.0420 (10)0.0375 (10)0.0312 (9)0.0047 (8)0.0128 (8)0.0048 (7)
C80.0684 (15)0.0766 (18)0.0611 (15)0.0111 (14)0.0416 (13)0.0006 (13)
C90.0376 (10)0.0679 (16)0.0603 (14)0.0018 (10)0.0164 (10)0.0056 (12)
Br10.05856 (19)0.0600 (2)0.04035 (17)0.01302 (11)0.00771 (12)0.00683 (10)
Cl10.0558 (4)0.1432 (9)0.0976 (6)0.0020 (4)0.0480 (4)0.0011 (6)
N10.0376 (8)0.0595 (11)0.0339 (8)0.0088 (8)0.0138 (7)0.0088 (8)
N20.0435 (9)0.0547 (11)0.0451 (9)0.0054 (8)0.0213 (8)0.0008 (8)
S10.0545 (3)0.0447 (3)0.0308 (3)0.0000 (2)0.0096 (2)0.00197 (19)
Geometric parameters (Å, º) top
C1—C61.384 (3)C7—N21.343 (3)
C1—C21.395 (3)C7—N11.355 (3)
C1—N11.412 (3)C7—S11.690 (2)
C2—C31.383 (3)C8—N21.457 (3)
C2—Br11.887 (2)C8—H8A0.9600
C3—C41.372 (3)C8—H8B0.9600
C3—H30.9300C8—H8C0.9600
C4—C51.392 (3)C9—N21.459 (3)
C4—Cl11.738 (2)C9—H9A0.9600
C5—C61.375 (3)C9—H9B0.9600
C5—H50.9300C9—H9C0.9600
C6—H60.9300N1—H10.8600
C6—C1—C2118.68 (18)N1—C7—S1122.03 (16)
C6—C1—N1121.79 (18)N2—C8—H8A109.5
C2—C1—N1119.39 (18)N2—C8—H8B109.5
C3—C2—C1121.09 (19)H8A—C8—H8B109.5
C3—C2—Br1118.76 (16)N2—C8—H8C109.5
C1—C2—Br1120.14 (15)H8A—C8—H8C109.5
C4—C3—C2118.7 (2)H8B—C8—H8C109.5
C4—C3—H3120.7N2—C9—H9A109.5
C2—C3—H3120.7N2—C9—H9B109.5
C3—C4—C5121.6 (2)H9A—C9—H9B109.5
C3—C4—Cl1118.89 (19)N2—C9—H9C109.5
C5—C4—Cl1119.51 (19)H9A—C9—H9C109.5
C6—C5—C4118.8 (2)H9B—C9—H9C109.5
C6—C5—H5120.6C7—N1—C1126.45 (17)
C4—C5—H5120.6C7—N1—H1116.8
C5—C6—C1121.2 (2)C1—N1—H1116.8
C5—C6—H6119.4C7—N2—C8120.9 (2)
C1—C6—H6119.4C7—N2—C9122.72 (18)
N2—C7—N1114.77 (18)C8—N2—C9116.3 (2)
N2—C7—S1123.19 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.673.3488 (19)137
C9—H9B···Cl1ii0.962.813.696 (2)153
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.673.3488 (19)136.9
C9—H9B···Cl1ii0.962.813.696 (2)153.2
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank the College of Applied Medical Sciences Research Center and the Deanship of Scientific Research at King Saud University for funding this research.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327–2332.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamnathan, A., Sivakumar, K., Janarthanan, N., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 411–414.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). Synthesis, 44, 2013–2022.  Web of Science CrossRef CAS Google Scholar
First citationSmith, K., El-Hiti, G. A. & Alshammari, M. B. (2014). Synthesis, 46, 394–402.  Web of Science CSD CrossRef Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hegazy, A. S. (2010). Synthesis, pp. 1371–1380.  Web of Science CSD CrossRef Google Scholar
First citationSmith, K., El-Hiti, G. A., Hegazy, A. S., Fekri, A. & Kariuki, B. M. (2009). Arkivoc xiv, 266–300.  Google Scholar
First citationSmith, K., El-Hiti, G. A. & Shukla, A. P. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2305–2313.  Web of Science CrossRef Google Scholar
First citationSmith, K., Shukla, A. P. & Matthews, I. (1996). Sulfur Lett. 20, 121–137.  CAS Google Scholar
First citationYahyazadeh, A. & Ghasemi, Z. (2013). Eur. Chem. Bull. 2, 573–575.  CAS Google Scholar
First citationZhao, Q., Li, S., Huang, K., Wang, R. & Zhang, X. (2013). Org. Lett. 15, 4014–4017.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, P. S., Qin, Y. Q., Zhang, J. & Jian, F. F. (2008). Pol. J. Chem. 82, 2153–2165.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds