organic compounds
1-(2-Bromo-4-chlorophenyl)-3,3-dimethylthiourea
aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cPetrochemical Research Institute, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk
In the title compound, C9H10BrClN2S, the dimethylthiourea group is twisted from the benzene ring plane by 54.38 (6)°. In the crystal, the amino groups are involved in the formation of N—H⋯S hydrogen bonds, which link the molecules into chains along [010]. Weak C—H⋯Cl interactions further link these chains into layers parallel to the ab plane.
CCDC reference: 1003616
Related literature
For related compounds, see: Maddani & Prabhu (2010); Yahyazadeh & Ghasemi (2013); Zhao et al. (2013). For convenient routes for modifying urea derivatives via organolithium intermediates, see: Smith et al. (1996, 1999, 2009, 2010, 2012, 2014). For the structures of related compounds, see: Zhao et al. (2008); Ramnathan et al. (1996).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1003616
10.1107/S1600536814011350/cv5457sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814011350/cv5457Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814011350/cv5457Isup3.cml
Recently, various thiourea derivatives have been synthesised and showed broad interesting properties (Maddani & Prabhu, 2010; Yahyazadeh & Ghasemi, 2013; Zhao et al., 2013). In a continuation of our research focused on new synthetic routes towards novel substituted urea derivatives (Smith et al., 1996, 1999, 2009, 2010, 2012, 2014) we have synthesized 3-(2-bromo-4-chlorophenyl)-1,1-dimethylthiourea (I) in a high yield (Smith et al., 1996). We have prepared the material again and crystallized it in high purity in order to obtain its
which we present herein.In (I) (Fig. 1), all bond lengths and angles are normal and correspond well to those observed in the related compounds (Zhao et al., 2008; Ramnathan et al., 1996). The non-hydrogen atoms in (I) fall into two planes with an interplaner angle of 54.38 (6)° between the bromo-chlorophenyl and dimethylthiourea groups. Each molecule is involved in N—H···S contacts (Table 1) with two neigbouring molecules, with one as an acceptor and the other as a donor, leading to the formation of zig-zag-chains in [010] (Fig 2). The bromo-chlorophenyl and dimethylthiourea groups of adjacent molecules are parallel in the stack forming chains of alternating S···Br···S groups with a separation of 4.07Å and 4.11Å between the atoms.
To a stirred solution of 2-bromo-4-chloro-1-isothiocyanatobenzene (12.43 g, 50.0 mmol) in anhydrous dioxane (120 ml) dimethylamine (7.10 g of 33% solution in ethanol, 52.0 mmol) was slowly added in a drop-wise manner over 5 min. The reaction mixture was stirred at room temperature for an extra 1 h. The solid obtained was collected by filtration and washed with dioxane (2 x 20 ml) and dried. Recrystallization from ethyl acetate gave 3-(2-bromo-4-chlorophenyl)-1,1-dimethylthiourea (13.80 g, 47.0 mmol; 94%) as yellow crystals, m.p. 193–194 °C [lit. 184–185 °C (ethyl acetate); Smith et al. (1996)]. 1H NMR (500 MHz, CDCl3, δ, p.p.m.) 7.97 (d, J = 8.8 Hz, 1 H, H-6), 7.59 (d, J = 2.3 Hz, 1 H, H-3), 7.32 (dd, J = 2.3, 8.8 Hz, 1 H, H-5), 7.17 (br, exch., 1 H, NH), 3.43 [s, 6 H, N(CH3)2]. 13C NMR (125 MHz, CDCl3, δ, p.p.m.) 181.2 (s, C=S), 136.6 (s, C-1), 131.8 (d, C-3), 131.0 (s, C-4), 127.8 (d, C-6), 127.7 (d, C-5), 118.1 (s, C-2), 41.3 [q, N(CH3)2]. AP+—MS (m/z, %): 297 ([MH81Br37Cl]+, 34), 295 ([MH81Br35Cl and MH79Br37Cl]+, 100), 293 ([MH79Br35Cl]+, 80), 263 (12), 215 (22), 213 (50). HRMS (AP+): Calculated for C9H1179Br35ClN2S [MH] 292.9515; found, 292.9515.
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C9H10BrClN2S | F(000) = 584 |
Mr = 293.61 | Dx = 1.693 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
a = 12.1369 (3) Å | Cell parameters from 2078 reflections |
b = 7.9431 (2) Å | θ = 4.1–75.5° |
c = 13.2230 (4) Å | µ = 8.40 mm−1 |
β = 115.386 (3)° | T = 296 K |
V = 1151.67 (6) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.20 × 0.09 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2245 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2078 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.015 |
ω scans | θmax = 73.5°, θmin = 4.1° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −13→14 |
Tmin = 0.580, Tmax = 1.000 | k = −9→6 |
4291 measured reflections | l = −16→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.4682P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.077 | (Δ/σ)max = 0.002 |
S = 1.04 | Δρmax = 0.33 e Å−3 |
2245 reflections | Δρmin = −0.39 e Å−3 |
130 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0048 (3) |
C9H10BrClN2S | V = 1151.67 (6) Å3 |
Mr = 293.61 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 12.1369 (3) Å | µ = 8.40 mm−1 |
b = 7.9431 (2) Å | T = 296 K |
c = 13.2230 (4) Å | 0.28 × 0.20 × 0.09 mm |
β = 115.386 (3)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2245 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 2078 reflections with I > 2σ(I) |
Tmin = 0.580, Tmax = 1.000 | Rint = 0.015 |
4291 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.33 e Å−3 |
2245 reflections | Δρmin = −0.39 e Å−3 |
130 parameters |
Experimental. Absorption correction: CrysAlisPro (Agilent, 2014). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.85876 (18) | 0.0661 (3) | 0.22866 (16) | 0.0377 (4) | |
C2 | 0.85637 (19) | 0.1344 (3) | 0.13058 (16) | 0.0404 (4) | |
C3 | 0.9605 (2) | 0.1405 (3) | 0.11271 (19) | 0.0495 (5) | |
H3 | 0.9581 | 0.1851 | 0.0468 | 0.059* | |
C4 | 1.0675 (2) | 0.0794 (3) | 0.1942 (2) | 0.0523 (5) | |
C5 | 1.0726 (2) | 0.0087 (3) | 0.29241 (19) | 0.0497 (5) | |
H5 | 1.1455 | −0.0334 | 0.3465 | 0.060* | |
C6 | 0.96763 (19) | 0.0022 (3) | 0.30797 (17) | 0.0440 (5) | |
H6 | 0.9699 | −0.0460 | 0.3729 | 0.053* | |
C7 | 0.72784 (18) | 0.1177 (3) | 0.32603 (16) | 0.0379 (4) | |
C8 | 0.5801 (3) | 0.1471 (4) | 0.4043 (2) | 0.0638 (7) | |
H8A | 0.5786 | 0.0517 | 0.4483 | 0.096* | |
H8B | 0.5006 | 0.1978 | 0.3710 | 0.096* | |
H8C | 0.6383 | 0.2278 | 0.4515 | 0.096* | |
C9 | 0.5176 (2) | 0.0190 (4) | 0.2169 (2) | 0.0569 (6) | |
H9A | 0.5032 | 0.0890 | 0.1533 | 0.085* | |
H9B | 0.4443 | 0.0110 | 0.2274 | 0.085* | |
H9C | 0.5416 | −0.0913 | 0.2045 | 0.085* | |
Br1 | 0.70976 (2) | 0.22178 (4) | 0.01974 (2) | 0.05768 (14) | |
Cl1 | 1.19895 (7) | 0.08827 (15) | 0.17270 (8) | 0.0936 (3) | |
N1 | 0.74917 (15) | 0.0536 (3) | 0.24110 (14) | 0.0442 (4) | |
H1 | 0.6901 | −0.0001 | 0.1897 | 0.053* | |
N2 | 0.61441 (17) | 0.0925 (3) | 0.31655 (16) | 0.0470 (4) | |
S1 | 0.83592 (5) | 0.22395 (7) | 0.43366 (4) | 0.04637 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0377 (9) | 0.0420 (10) | 0.0314 (9) | −0.0038 (8) | 0.0129 (7) | −0.0039 (8) |
C2 | 0.0436 (10) | 0.0403 (10) | 0.0335 (9) | −0.0009 (8) | 0.0128 (8) | −0.0013 (8) |
C3 | 0.0570 (13) | 0.0531 (13) | 0.0436 (11) | −0.0046 (10) | 0.0264 (10) | 0.0013 (10) |
C4 | 0.0437 (11) | 0.0644 (15) | 0.0526 (12) | −0.0043 (10) | 0.0242 (10) | −0.0078 (11) |
C5 | 0.0395 (10) | 0.0595 (14) | 0.0420 (11) | 0.0018 (9) | 0.0098 (9) | −0.0050 (10) |
C6 | 0.0451 (10) | 0.0495 (12) | 0.0327 (9) | 0.0004 (9) | 0.0123 (8) | 0.0013 (8) |
C7 | 0.0420 (10) | 0.0375 (10) | 0.0312 (9) | 0.0047 (8) | 0.0128 (8) | 0.0048 (7) |
C8 | 0.0684 (15) | 0.0766 (18) | 0.0611 (15) | 0.0111 (14) | 0.0416 (13) | 0.0006 (13) |
C9 | 0.0376 (10) | 0.0679 (16) | 0.0603 (14) | 0.0018 (10) | 0.0164 (10) | −0.0056 (12) |
Br1 | 0.05856 (19) | 0.0600 (2) | 0.04035 (17) | 0.01302 (11) | 0.00771 (12) | 0.00683 (10) |
Cl1 | 0.0558 (4) | 0.1432 (9) | 0.0976 (6) | −0.0020 (4) | 0.0480 (4) | −0.0011 (6) |
N1 | 0.0376 (8) | 0.0595 (11) | 0.0339 (8) | −0.0088 (8) | 0.0138 (7) | −0.0088 (8) |
N2 | 0.0435 (9) | 0.0547 (11) | 0.0451 (9) | 0.0054 (8) | 0.0213 (8) | −0.0008 (8) |
S1 | 0.0545 (3) | 0.0447 (3) | 0.0308 (3) | 0.0000 (2) | 0.0096 (2) | −0.00197 (19) |
C1—C6 | 1.384 (3) | C7—N2 | 1.343 (3) |
C1—C2 | 1.395 (3) | C7—N1 | 1.355 (3) |
C1—N1 | 1.412 (3) | C7—S1 | 1.690 (2) |
C2—C3 | 1.383 (3) | C8—N2 | 1.457 (3) |
C2—Br1 | 1.887 (2) | C8—H8A | 0.9600 |
C3—C4 | 1.372 (3) | C8—H8B | 0.9600 |
C3—H3 | 0.9300 | C8—H8C | 0.9600 |
C4—C5 | 1.392 (3) | C9—N2 | 1.459 (3) |
C4—Cl1 | 1.738 (2) | C9—H9A | 0.9600 |
C5—C6 | 1.375 (3) | C9—H9B | 0.9600 |
C5—H5 | 0.9300 | C9—H9C | 0.9600 |
C6—H6 | 0.9300 | N1—H1 | 0.8600 |
C6—C1—C2 | 118.68 (18) | N1—C7—S1 | 122.03 (16) |
C6—C1—N1 | 121.79 (18) | N2—C8—H8A | 109.5 |
C2—C1—N1 | 119.39 (18) | N2—C8—H8B | 109.5 |
C3—C2—C1 | 121.09 (19) | H8A—C8—H8B | 109.5 |
C3—C2—Br1 | 118.76 (16) | N2—C8—H8C | 109.5 |
C1—C2—Br1 | 120.14 (15) | H8A—C8—H8C | 109.5 |
C4—C3—C2 | 118.7 (2) | H8B—C8—H8C | 109.5 |
C4—C3—H3 | 120.7 | N2—C9—H9A | 109.5 |
C2—C3—H3 | 120.7 | N2—C9—H9B | 109.5 |
C3—C4—C5 | 121.6 (2) | H9A—C9—H9B | 109.5 |
C3—C4—Cl1 | 118.89 (19) | N2—C9—H9C | 109.5 |
C5—C4—Cl1 | 119.51 (19) | H9A—C9—H9C | 109.5 |
C6—C5—C4 | 118.8 (2) | H9B—C9—H9C | 109.5 |
C6—C5—H5 | 120.6 | C7—N1—C1 | 126.45 (17) |
C4—C5—H5 | 120.6 | C7—N1—H1 | 116.8 |
C5—C6—C1 | 121.2 (2) | C1—N1—H1 | 116.8 |
C5—C6—H6 | 119.4 | C7—N2—C8 | 120.9 (2) |
C1—C6—H6 | 119.4 | C7—N2—C9 | 122.72 (18) |
N2—C7—N1 | 114.77 (18) | C8—N2—C9 | 116.3 (2) |
N2—C7—S1 | 123.19 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.67 | 3.3488 (19) | 137 |
C9—H9B···Cl1ii | 0.96 | 2.81 | 3.696 (2) | 153 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.67 | 3.3488 (19) | 136.9 |
C9—H9B···Cl1ii | 0.96 | 2.81 | 3.696 (2) | 153.2 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1, y, z. |
Acknowledgements
The authors thank the College of Applied Medical Sciences Research Center and the Deanship of Scientific Research at King Saud University for funding this research.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327–2332. Web of Science CrossRef CAS PubMed Google Scholar
Ramnathan, A., Sivakumar, K., Janarthanan, N., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 411–414. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). Synthesis, 44, 2013–2022. Web of Science CrossRef CAS Google Scholar
Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2014). Synthesis, 46, 394–402. Web of Science CSD CrossRef Google Scholar
Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2010). Synthesis, pp. 1371–1380. Web of Science CSD CrossRef Google Scholar
Smith, K., El-Hiti, G. A., Hegazy, A. S., Fekri, A. & Kariuki, B. M. (2009). Arkivoc xiv, 266–300. Google Scholar
Smith, K., El-Hiti, G. A. & Shukla, A. P. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2305–2313. Web of Science CrossRef Google Scholar
Smith, K., Shukla, A. P. & Matthews, I. (1996). Sulfur Lett. 20, 121–137. CAS Google Scholar
Yahyazadeh, A. & Ghasemi, Z. (2013). Eur. Chem. Bull. 2, 573–575. CAS Google Scholar
Zhao, Q., Li, S., Huang, K., Wang, R. & Zhang, X. (2013). Org. Lett. 15, 4014–4017. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhao, P. S., Qin, Y. Q., Zhang, J. & Jian, F. F. (2008). Pol. J. Chem. 82, 2153–2165. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.