organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[3-(2-Fluoro­benzo­yl)thio­ureido]propionic acid

aKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, cFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and dAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia
*Correspondence e-mail: nurziana@iium.edu.my

(Received 14 May 2014; accepted 17 May 2014; online 24 May 2014)

In the title compound, C10H11FN3O3S, the 2-fluoro­benzoyl and proponic acid groups maintain a trans–cis conformation with respect to the thiono C=S bond across their C—N bonds. The propionic acid group adopts an anti conformation about the C—C bond, with an N—C—C—C torsion angle of 173.8 (2)°. The amino groups are involved in the formation of intra­molecular N—H⋯O and N—H⋯F hydrogen bonds. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules into inversion dimers.

Related literature

For related structures, see: Yusof et al. (2003[Yusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, o828-o829.]); Ngah et al. (2006[Ngah, N., Darman, N. & Yamin, B. M. (2006). Acta Cryst. E62, o3369-o3371.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11FN2O3S

  • Mr = 270.28

  • Monoclinic, P 21 /c

  • a = 11.7103 (7) Å

  • b = 11.1289 (7) Å

  • c = 9.6760 (7) Å

  • β = 108.407 (2)°

  • V = 1196.49 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.41 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.924

  • 21544 measured reflections

  • 2188 independent reflections

  • 1816 reflections with I > 2/s(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.134

  • S = 1.13

  • 2188 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F1 0.86 2.04 2.708 (3) 134
N2—H2A⋯O1 0.86 1.97 2.642 (3) 135
O3—H3A⋯O2i 0.83 (2) 1.82 (2) 2.645 (3) 175 (4)
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our study of thiourea derivatives containing propionic acid fragments (Yusof et al., 2003; Ngah et al., 2006), we report here the crystal structure of the title compound (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond well to those observed in the related compounds (Yusof et al., 2003; Ngah et al., 2006). However, the C11—O3 is slightly shorter [1.306 (3) Å] compared to its analogue [1.325 (4) Å; Ngah et al. (2006)] due to electron delocalization along carboxyl group. The molecule maintains its trans-cis configuration with respect to the positions of 2-fluorobenzoyl and propionic acid relative to the thino C=S bond across the C8—N1 and C8—N2, respectively. The molecule adopts an anti conformation with N2—C9—C10—C11 torsion angle of 173.8 (2)°. In the contrary the analogue adopts a gauche conformation with torsion angle of 64.9 (4)°. The 2-fluorophenyl [C1—C6/F1], thiourea [N1/C8/N2/S1] and propionic acid [C9/C10C11/O2/O3] fragments are essentially planar with maximum deviation of 031 (2) Å for atom C10 from the least square plane of propionic acid. The thiourea makes dihedral angles of 20.84 (12)° and 85.78 (11)° with 2-fluorophenyl and propionic acid fragments, respectively. The 2-fluorophenyl is inclined to propionic acid fragments by 65.65 (13)°, compared to 54.29 (19)° in the analogue. There are two intramolecular N1—H1A···F1 and N2—H2A···O1 hydrogen bonds (Table 1) furnishing in the formation of two pseudo six-membered rings (N1—H1A—F1—C5—C6—C7) and (N2—H2A—O1—C7—N1—C8), respectively.

In the crystal structure, the molecules are connected via O3—H3A···O2 intermolecular hydrogen bonds to form centrosymmetric dimers (Fig. 2).

Related literature top

For related structures, see: Yusof et al. (2003); Ngah et al. (2006).

Experimental top

30 ml acetone solution of β-alanine (2.92 g, 32.80 mmol) was added into a round-bottom flask containing a solution of 2-fluorobenzoylchloride (5.21 g, 32.80 mmol) and ammonium thiocyanate (2.50 g, 32.80 mmol). The solution mixture was refluxed for 5 h then filtered off into a beaker containing some ice and left to evaporate at room temperature. The yellowish precipitate obtained was washed with water and cold ethanol. The yellowish crytals were obtained by recrystallization of the precipitate in acetonitrile, suitable for X-ray analysis.

Refinement top

The hydroxyl H-atom [O3—H3A] was located from Fourrier map and refined isotropically. Other H atoms were positioned geometrically and refined using riding model with C—H = 0.93–0.97 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C & N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. Dashed lines denote intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A portion of the molecular packing of (I) viewed down the c axis. Dashed lines denote intermolecular O—H···O hydrogen bonds.
3-[3-(2-Fluorobenzoyl)thioureido]propionic acid top
Crystal data top
C11H11FN2O3SF(000) = 560
Mr = 270.28Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13325 reflections
a = 11.7103 (7) Åθ = 2.9–25.5°
b = 11.1289 (7) ŵ = 0.29 mm1
c = 9.6760 (7) ÅT = 296 K
β = 108.407 (2)°Block, colourless
V = 1196.49 (14) Å30.41 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2188 independent reflections
Radiation source: fine-focus sealed tube1816 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.032
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.9°
ω scanh = 1214
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.892, Tmax = 0.924l = 1111
21544 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.059P)2 + 0.9312P]
where P = (Fo2 + 2Fc2)/3
2188 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C11H11FN2O3SV = 1196.49 (14) Å3
Mr = 270.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7103 (7) ŵ = 0.29 mm1
b = 11.1289 (7) ÅT = 296 K
c = 9.6760 (7) Å0.41 × 0.30 × 0.28 mm
β = 108.407 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2188 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1816 reflections with I > 2/s(I)
Tmin = 0.892, Tmax = 0.924Rint = 0.032
21544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.23 e Å3
2188 reflectionsΔρmin = 0.31 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.40942 (16)0.72653 (14)0.75758 (18)0.0567 (5)
S10.36160 (7)0.36649 (6)0.92829 (10)0.0596 (3)
O10.16343 (16)0.70323 (15)0.9833 (2)0.0502 (5)
O20.07405 (16)0.12040 (15)1.06970 (18)0.0453 (4)
O30.0317 (2)0.09343 (17)0.8376 (2)0.0585 (6)
N10.30302 (18)0.59538 (16)0.9185 (2)0.0398 (5)
H1A0.36270.60220.88530.048*
N20.17782 (18)0.46625 (17)0.9899 (2)0.0411 (5)
H2A0.13640.52950.99280.049*
C10.2683 (2)0.9209 (2)0.9548 (3)0.0471 (6)
H10.21710.91751.01120.056*
C20.3106 (3)1.0305 (2)0.9274 (4)0.0548 (7)
H20.28831.10010.96560.066*
C30.3859 (2)1.0375 (2)0.8437 (3)0.0501 (7)
H30.41431.11180.82500.060*
C40.4193 (2)0.9348 (2)0.7879 (3)0.0476 (6)
H40.47040.93880.73140.057*
C50.3761 (2)0.8260 (2)0.8168 (3)0.0388 (5)
C60.3002 (2)0.8147 (2)0.9001 (3)0.0359 (5)
C70.2487 (2)0.7005 (2)0.9367 (3)0.0367 (5)
C80.2736 (2)0.4784 (2)0.9472 (3)0.0385 (5)
C90.1380 (2)0.3521 (2)1.0327 (3)0.0417 (6)
H9A0.08990.36731.09600.050*
H9B0.20790.30571.08730.050*
C100.0648 (2)0.2795 (2)0.9026 (3)0.0414 (6)
H10A0.00950.32180.85410.050*
H10B0.10950.27160.83410.050*
C110.0357 (2)0.1574 (2)0.9458 (3)0.0363 (5)
H3A0.041 (3)0.0267 (17)0.871 (4)0.079 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0767 (11)0.0438 (9)0.0639 (10)0.0036 (7)0.0428 (9)0.0009 (7)
S10.0532 (4)0.0281 (3)0.1082 (7)0.0000 (3)0.0408 (4)0.0041 (3)
O10.0457 (10)0.0338 (9)0.0824 (14)0.0014 (7)0.0365 (10)0.0019 (8)
O20.0572 (11)0.0356 (9)0.0410 (10)0.0121 (8)0.0124 (8)0.0000 (7)
O30.0773 (14)0.0440 (11)0.0450 (11)0.0249 (10)0.0063 (9)0.0003 (9)
N10.0378 (11)0.0265 (9)0.0618 (13)0.0024 (8)0.0253 (10)0.0007 (9)
N20.0407 (11)0.0271 (10)0.0597 (13)0.0051 (8)0.0217 (10)0.0010 (9)
C10.0442 (14)0.0329 (12)0.0716 (18)0.0012 (10)0.0290 (13)0.0010 (12)
C20.0538 (16)0.0296 (13)0.085 (2)0.0008 (11)0.0277 (15)0.0019 (13)
C30.0485 (15)0.0344 (13)0.0655 (17)0.0057 (11)0.0154 (13)0.0111 (12)
C40.0499 (15)0.0473 (14)0.0492 (15)0.0023 (11)0.0205 (12)0.0103 (12)
C50.0429 (13)0.0344 (12)0.0395 (12)0.0026 (10)0.0132 (10)0.0029 (10)
C60.0341 (12)0.0275 (11)0.0452 (13)0.0013 (9)0.0111 (10)0.0027 (9)
C70.0358 (12)0.0275 (11)0.0472 (13)0.0017 (9)0.0138 (10)0.0004 (9)
C80.0382 (12)0.0280 (11)0.0498 (14)0.0040 (9)0.0143 (11)0.0021 (10)
C90.0471 (14)0.0331 (12)0.0483 (14)0.0098 (10)0.0200 (11)0.0000 (10)
C100.0452 (14)0.0359 (12)0.0441 (13)0.0097 (10)0.0156 (11)0.0013 (10)
C110.0362 (12)0.0347 (12)0.0404 (13)0.0060 (9)0.0156 (10)0.0031 (10)
Geometric parameters (Å, º) top
F1—C51.360 (3)C2—C31.375 (4)
S1—C81.663 (2)C2—H20.9300
O1—C71.219 (3)C3—C41.372 (4)
O2—C111.212 (3)C3—H30.9300
O3—C111.306 (3)C4—C51.375 (3)
O3—H3A0.830 (10)C4—H40.9300
N1—C71.369 (3)C5—C61.380 (3)
N1—C81.397 (3)C6—C71.497 (3)
N1—H1A0.8600C9—C101.514 (3)
N2—C81.319 (3)C9—H9A0.9700
N2—C91.458 (3)C9—H9B0.9700
N2—H2A0.8600C10—C111.491 (3)
C1—C21.373 (4)C10—H10A0.9700
C1—C61.393 (3)C10—H10B0.9700
C1—H10.9300
C11—O3—H3A107 (3)C5—C6—C7126.7 (2)
C7—N1—C8128.1 (2)C1—C6—C7117.0 (2)
C7—N1—H1A115.9O1—C7—N1122.5 (2)
C8—N1—H1A115.9O1—C7—C6120.3 (2)
C8—N2—C9123.9 (2)N1—C7—C6117.2 (2)
C8—N2—H2A118.0N2—C8—N1116.4 (2)
C9—N2—H2A118.0N2—C8—S1125.12 (18)
C2—C1—C6121.6 (2)N1—C8—S1118.43 (17)
C2—C1—H1119.2N2—C9—C10112.2 (2)
C6—C1—H1119.2N2—C9—H9A109.2
C1—C2—C3120.1 (2)C10—C9—H9A109.2
C1—C2—H2120.0N2—C9—H9B109.2
C3—C2—H2120.0C10—C9—H9B109.2
C4—C3—C2120.0 (2)H9A—C9—H9B107.9
C4—C3—H3120.0C11—C10—C9111.9 (2)
C2—C3—H3120.0C11—C10—H10A109.2
C3—C4—C5118.9 (2)C9—C10—H10A109.2
C3—C4—H4120.5C11—C10—H10B109.2
C5—C4—H4120.5C9—C10—H10B109.2
F1—C5—C4117.3 (2)H10A—C10—H10B107.9
F1—C5—C6119.7 (2)O2—C11—O3123.3 (2)
C4—C5—C6123.0 (2)O2—C11—C10122.7 (2)
C5—C6—C1116.3 (2)O3—C11—C10114.0 (2)
C6—C1—C2—C30.3 (4)C5—C6—C7—O1163.9 (2)
C1—C2—C3—C40.3 (4)C1—C6—C7—O115.8 (4)
C2—C3—C4—C50.2 (4)C5—C6—C7—N117.5 (4)
C3—C4—C5—F1178.9 (2)C1—C6—C7—N1162.8 (2)
C3—C4—C5—C60.1 (4)C9—N2—C8—N1176.3 (2)
F1—C5—C6—C1178.8 (2)C9—N2—C8—S12.6 (4)
C4—C5—C6—C10.1 (4)C7—N1—C8—N23.9 (4)
F1—C5—C6—C70.9 (4)C7—N1—C8—S1175.0 (2)
C4—C5—C6—C7179.8 (2)C8—N2—C9—C1082.4 (3)
C2—C1—C6—C50.2 (4)N2—C9—C10—C11173.8 (2)
C2—C1—C6—C7180.0 (2)C9—C10—C11—O24.5 (3)
C8—N1—C7—O10.2 (4)C9—C10—C11—O3177.3 (2)
C8—N1—C7—C6178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F10.862.042.708 (3)134
N2—H2A···O10.861.972.642 (3)135
O3—H3A···O2i0.83 (2)1.82 (2)2.645 (3)175 (4)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F10.862.042.708 (3)134
N2—H2A···O10.861.972.642 (3)135
O3—H3A···O2i0.83 (2)1.82 (2)2.645 (3)175 (4)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors thanks the Ministry of Higher Education of Malaysia for funding the synthetic chemistry project under research grant scheme FRGS11–002-0150, Inter­national Islamic University Malaysia, Universiti Kebangsaan Malaysia and Universiti Teknologi MARA for providing access to research facilities.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNgah, N., Darman, N. & Yamin, B. M. (2006). Acta Cryst. E62, o3369–o3371.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, o828–o829.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds