organic compounds
3-Chloro-2-methylanilinium chloride monohydrate
aLaboratory of Materials Chemistry, Faculty of Sciences of Bizerte, 7021 Zarzouna, Bizerte, Tunisia
*Correspondence e-mail: Lamia.khederi@fsb.rnu.tn
In the title hydrated salt, C7H9ClN+·Cl−·H2O, the organic cations, anions and water molecules are connected by N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds. These interactions lead to the formation of layers parallel to the ac plane.
CCDC reference: 1000637
Related literature
For hydrogen bonds, see: Steiner (2002); Jayaraman et al. (2002). For the of a related protonated amine, see: Hamdi et al. (2014). For related structures containing the 3-chloro-2-methylanilinium cation, see: Khemiri et al. (2008); Bel Haj Salah et al. (2014). For geometrical features, see: Oueslati et al. (2005).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1000637
10.1107/S1600536814009921/fj2671sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009921/fj2671Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814009921/fj2671Isup3.cml
An aqueous solution of AlCl3 (1 mmol) and 3-chloro-2-methylaniline (2 mmol) in hydrochloric acid was stirred for several minutes at room temperature and slowly evaporated to dryness for two weeks. White single crystals of the title compound were carefully isolated under polarizing microscope for X-ray diffraction analysis.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å for phenyl and 0.96 Å for methyl groups, and N—H = 0.89 Å; Uiso (H) = 1.2 Uiso (C,N) for phenyl and ammonium H atoms and 1.5 Uiso (C) for methyl. In water molecule the O—H distances were restrained to 0.85 (1) Å, and the distance H···H to 1.44 (2) Å.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. ORTEP drawing of the asymmetric unit of title compound with displacement ellipsoids drawn at 40% probability level. [Symmetry code: (i) x, y, z] | |
Fig. 2. A view of the atomic arrangement of the title compound along the a axis with H bonds shown as dashed lines. | |
Fig. 3. A diagram of the crystal packing in the title compound, viewed down the b axis. |
C7H9ClN+·Cl−·H2O | F(000) = 408 |
Mr = 196.07 | Dx = 1.396 Mg m−3 |
Orthorhombic, P212121 | Ag Kα radiation, λ = 0.56087 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 7.434 (4) Å | θ = 9–11° |
b = 7.475 (3) Å | µ = 0.33 mm−1 |
c = 16.785 (2) Å | T = 293 K |
V = 932.7 (6) Å3 | Rectangular, colorless |
Z = 4 | 0.50 × 0.25 × 0.15 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.035 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.4° |
Graphite monochromator | h = −3→12 |
non–profiled ω scans | k = −3→12 |
5019 measured reflections | l = −2→28 |
3947 independent reflections | 2 standard reflections every 120 min |
1804 reflections with I > 2σ(I) | intensity decay: 6% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.0841P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max < 0.001 |
3947 reflections | Δρmax = 0.35 e Å−3 |
100 parameters | Δρmin = −0.42 e Å−3 |
3 restraints | Absolute structure: Flack (1983), unique data only |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.04 (19) |
C7H9ClN+·Cl−·H2O | V = 932.7 (6) Å3 |
Mr = 196.07 | Z = 4 |
Orthorhombic, P212121 | Ag Kα radiation, λ = 0.56087 Å |
a = 7.434 (4) Å | µ = 0.33 mm−1 |
b = 7.475 (3) Å | T = 293 K |
c = 16.785 (2) Å | 0.50 × 0.25 × 0.15 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.035 |
5019 measured reflections | 2 standard reflections every 120 min |
3947 independent reflections | intensity decay: 6% |
1804 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.163 | Δρmax = 0.35 e Å−3 |
S = 0.92 | Δρmin = −0.42 e Å−3 |
3947 reflections | Absolute structure: Flack (1983), unique data only |
100 parameters | Absolute structure parameter: −0.04 (19) |
3 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.21684 (13) | 0.68978 (12) | 0.14721 (5) | 0.0605 (3) | |
N1 | 0.2400 (3) | 0.3630 (3) | 0.41835 (13) | 0.0397 (7) | |
C1 | 0.2542 (4) | 0.3587 (4) | 0.33084 (16) | 0.0375 (8) | |
C2 | 0.2248 (4) | 0.5163 (4) | 0.28915 (15) | 0.0368 (7) | |
C3 | 0.2477 (4) | 0.5022 (5) | 0.20642 (15) | 0.0429 (8) | |
C4 | 0.2959 (5) | 0.3453 (4) | 0.16946 (19) | 0.0520 (10) | |
C5 | 0.3203 (5) | 0.1946 (5) | 0.2135 (2) | 0.0581 (10) | |
C6 | 0.3010 (4) | 0.2003 (4) | 0.29557 (18) | 0.0435 (8) | |
C7 | 0.1793 (5) | 0.6906 (4) | 0.3283 (2) | 0.0551 (10) | |
O1W | 0.5280 (3) | 0.0960 (3) | 0.01902 (16) | 0.0676 (9) | |
Cl2 | 0.62142 (10) | 0.50337 (10) | 0.00015 (4) | 0.0469 (2) | |
H1A | 0.20910 | 0.47250 | 0.43403 | 0.0477* | |
H1B | 0.34559 | 0.33388 | 0.43972 | 0.0477* | |
H1C | 0.15674 | 0.28516 | 0.43419 | 0.0477* | |
H3 | 0.31954 | 0.09820 | 0.32617 | 0.0522* | |
H4 | 0.35005 | 0.08749 | 0.18857 | 0.0698* | |
H5 | 0.31181 | 0.34223 | 0.11452 | 0.0624* | |
H7A | 0.16524 | 0.78143 | 0.28835 | 0.0825* | |
H7B | 0.27430 | 0.72387 | 0.36406 | 0.0825* | |
H7C | 0.06902 | 0.67814 | 0.35757 | 0.0825* | |
H1W1 | 0.42091 | 0.05452 | 0.01130 | 0.0825* | |
H2W1 | 0.52857 | 0.20105 | −0.00122 | 0.0825* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0707 (6) | 0.0555 (5) | 0.0553 (4) | 0.0060 (5) | −0.0007 (4) | 0.0165 (4) |
N1 | 0.0420 (14) | 0.0319 (11) | 0.0452 (11) | 0.0055 (11) | 0.0059 (11) | 0.0037 (9) |
C1 | 0.0382 (16) | 0.0326 (12) | 0.0417 (12) | 0.0018 (12) | 0.0008 (12) | −0.0010 (10) |
C2 | 0.0342 (13) | 0.0304 (12) | 0.0458 (13) | 0.0014 (13) | −0.0018 (12) | −0.0004 (11) |
C3 | 0.0385 (16) | 0.0449 (14) | 0.0452 (13) | 0.0025 (16) | 0.0000 (12) | 0.0064 (14) |
C4 | 0.0593 (19) | 0.0548 (19) | 0.0419 (14) | 0.006 (2) | 0.0005 (15) | −0.0039 (14) |
C5 | 0.074 (2) | 0.0428 (16) | 0.0576 (18) | 0.012 (2) | 0.0078 (18) | −0.0144 (16) |
C6 | 0.0456 (16) | 0.0296 (12) | 0.0554 (15) | 0.0057 (15) | 0.0021 (14) | −0.0023 (13) |
C7 | 0.073 (2) | 0.0393 (16) | 0.0529 (16) | 0.0120 (19) | 0.0011 (16) | −0.0014 (16) |
O1W | 0.0608 (15) | 0.0390 (12) | 0.103 (2) | −0.0020 (11) | −0.0192 (16) | 0.0113 (13) |
Cl2 | 0.0476 (3) | 0.0359 (3) | 0.0573 (4) | −0.0004 (3) | −0.0068 (4) | 0.0006 (4) |
Cl1—C3 | 1.734 (4) | C2—C3 | 1.403 (4) |
O1W—H2W1 | 0.8600 | C3—C4 | 1.374 (5) |
O1W—H1W1 | 0.8600 | C4—C5 | 1.360 (5) |
N1—C1 | 1.473 (4) | C5—C6 | 1.386 (5) |
N1—H1A | 0.8900 | C4—H5 | 0.9300 |
N1—H1C | 0.8900 | C5—H4 | 0.9300 |
N1—H1B | 0.8900 | C6—H3 | 0.9300 |
C1—C2 | 1.388 (4) | C7—H7C | 0.9600 |
C1—C6 | 1.369 (4) | C7—H7A | 0.9600 |
C2—C7 | 1.498 (4) | C7—H7B | 0.9600 |
H1W1—O1W—H2W1 | 106.00 | C3—C4—C5 | 119.8 (3) |
H1A—N1—H1C | 109.00 | C4—C5—C6 | 120.1 (3) |
H1B—N1—H1C | 109.00 | C1—C6—C5 | 118.9 (3) |
C1—N1—H1B | 109.00 | C3—C4—H5 | 120.00 |
C1—N1—H1C | 109.00 | C5—C4—H5 | 120.00 |
C1—N1—H1A | 109.00 | C6—C5—H4 | 120.00 |
H1A—N1—H1B | 109.00 | C4—C5—H4 | 120.00 |
C2—C1—C6 | 123.8 (3) | C1—C6—H3 | 121.00 |
N1—C1—C2 | 118.2 (2) | C5—C6—H3 | 121.00 |
N1—C1—C6 | 117.9 (3) | C2—C7—H7B | 109.00 |
C1—C2—C7 | 123.6 (2) | C2—C7—H7C | 109.00 |
C3—C2—C7 | 121.8 (3) | C2—C7—H7A | 109.00 |
C1—C2—C3 | 114.6 (3) | H7A—C7—H7C | 109.00 |
Cl1—C3—C4 | 117.8 (2) | H7B—C7—H7C | 109.00 |
C2—C3—C4 | 122.9 (3) | H7A—C7—H7B | 109.00 |
Cl1—C3—C2 | 119.4 (3) | ||
N1—C1—C2—C3 | 177.7 (3) | C1—C2—C3—C4 | −0.2 (5) |
N1—C1—C2—C7 | 0.2 (4) | C7—C2—C3—Cl1 | −1.8 (4) |
C6—C1—C2—C3 | −0.3 (4) | C7—C2—C3—C4 | 177.6 (3) |
C6—C1—C2—C7 | −178.0 (3) | Cl1—C3—C4—C5 | −179.5 (3) |
N1—C1—C6—C5 | −178.1 (3) | C2—C3—C4—C5 | 1.2 (5) |
C2—C1—C6—C5 | −0.2 (5) | C3—C4—C5—C6 | −1.6 (5) |
C1—C2—C3—Cl1 | −179.5 (2) | C4—C5—C6—C1 | 1.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···Cl2i | 0.8600 | 2.2800 | 3.129 (3) | 169.00 |
O1W—H2W1···Cl2 | 0.8600 | 2.3600 | 3.139 (3) | 151.00 |
N1—H1A···Cl2ii | 0.8900 | 2.7000 | 3.178 (3) | 115.00 |
N1—H1A···O1Wiii | 0.8900 | 2.3000 | 2.667 (4) | 105.00 |
N1—H1B···Cl2iv | 0.8900 | 2.6800 | 3.187 (3) | 117.00 |
N1—H1B···O1Wiii | 0.8900 | 2.2800 | 2.667 (4) | 106.00 |
N1—H1C···Cl2ii | 0.8900 | 2.8300 | 3.178 (3) | 105.00 |
C7—H7A···Cl1 | 0.9600 | 2.5000 | 3.053 (4) | 117.00 |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···Cl2i | 0.8600 | 2.2800 | 3.129 (3) | 169.00 |
O1W—H2W1···Cl2 | 0.8600 | 2.3600 | 3.139 (3) | 151.00 |
N1—H1A···Cl2ii | 0.8900 | 2.7000 | 3.178 (3) | 115.00 |
N1—H1A···O1Wiii | 0.8900 | 2.3000 | 2.667 (4) | 105.00 |
N1—H1B···Cl2iv | 0.8900 | 2.6800 | 3.187 (3) | 117.00 |
N1—H1B···O1Wiii | 0.8900 | 2.2800 | 2.667 (4) | 106.00 |
N1—H1C···Cl2ii | 0.8900 | 2.8300 | 3.178 (3) | 105.00 |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
References
Bel Haj Salah, R., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o61. CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hamdi, A., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o342–o343. CSD CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422. Web of Science CSD CrossRef CAS Google Scholar
Khemiri, H., Akriche, S. & Rzaigui, M. (2008). Acta Cryst. E64, o526. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oueslati, A., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 105–106. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonding is of interest because of their prevalent occurrence in biological systems (Steiner 2002; Jayaraman et al., 2002). Therefore, it is extremely useful to search simple molecules allowing understanding the configuration and the function of some complex macromolecules. The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Hamdi et al., 2014). Structures containing the 3-chloro-2-methylanilinium cation have been already reported with dihydrogenphosphate (Khemiri et al., 2008) and cyclohexaphosphate (Bel Haj Salah et al., 2014).
The asymmetric unit of the title compound (I), illustrated in Fig. 1, consists of one organic cation, one Cl- anion and one water molecule. All bond distances and angles are within the ranges of accepted values. Moreover, they are close to respect the geometrical features observed in the crystal structure of 5-chloro-2-methylanilinium chloride (Oueslati et al., 2005). Components of the asymmetric unit develop different H-bonds, N—H···Cl, N—H···OW and OW—H···Cl (Fig. 2) that keep them in a state where the aromatic rings of organic buildings are oriented in the direction of the bc planes to form centro-symmetric pairs interconnected by hydrogen bonds in the direction of the b axis (Fig. 2). The resulting sequences are alternated to form the crystal packing of the title compound (Fig. 3).