organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-2-methyl­anilinium chloride monohydrate

aLaboratory of Materials Chemistry, Faculty of Sciences of Bizerte, 7021 Zarzouna, Bizerte, Tunisia
*Correspondence e-mail: Lamia.khederi@fsb.rnu.tn

Edited by L. Farrugia, University of Glasgow, Scotland (Received 7 April 2014; accepted 2 May 2014; online 10 May 2014)

In the title hydrated salt, C7H9ClN+·Cl·H2O, the organic cations, anions and water mol­ecules are connected by N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds. These inter­actions lead to the formation of layers parallel to the ac plane.

Related literature

For hydrogen bonds, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Jayaraman et al. (2002[Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.]). For the crystal structure of a related protonated amine, see: Hamdi et al. (2014[Hamdi, A., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o342-o343.]). For related structures containing the 3-chloro-2-methyl­anilinium cation, see: Khemiri et al. (2008[Khemiri, H., Akriche, S. & Rzaigui, M. (2008). Acta Cryst. E64, o526.]); Bel Haj Salah et al. (2014[Bel Haj Salah, R., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o61.]). For geometrical features, see: Oueslati et al. (2005[Oueslati, A., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 105-106.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9ClN+·Cl·H2O

  • Mr = 196.07

  • Orthorhombic, P 21 21 21

  • a = 7.434 (4) Å

  • b = 7.475 (3) Å

  • c = 16.785 (2) Å

  • V = 932.7 (6) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.50 × 0.25 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5019 measured reflections

  • 3947 independent reflections

  • 1804 reflections with I > 2σ(I)

  • Rint = 0.035

  • 2 standard reflections every 120 min intensity decay: 6%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.163

  • S = 0.92

  • 3947 reflections

  • 100 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), unique data only

  • Absolute structure parameter: −0.04 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯Cl2i 0.86 2.28 3.129 (3) 169
O1W—H2W1⋯Cl2 0.86 2.36 3.139 (3) 151
N1—H1A⋯Cl2ii 0.89 2.70 3.178 (3) 115
N1—H1A⋯O1Wiii 0.89 2.30 2.667 (4) 105
N1—H1B⋯Cl2iv 0.89 2.68 3.187 (3) 117
N1—H1B⋯O1Wiii 0.89 2.28 2.667 (4) 106
N1—H1C⋯Cl2ii 0.89 2.83 3.178 (3) 105
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Hydrogen bonding is of interest because of their prevalent occurrence in biological systems (Steiner 2002; Jayaraman et al., 2002). Therefore, it is extremely useful to search simple molecules allowing understanding the configuration and the function of some complex macromolecules. The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Hamdi et al., 2014). Structures containing the 3-chloro-2-methylanilinium cation have been already reported with dihydrogenphosphate (Khemiri et al., 2008) and cyclohexaphosphate (Bel Haj Salah et al., 2014).

The asymmetric unit of the title compound (I), illustrated in Fig. 1, consists of one organic cation, one Cl- anion and one water molecule. All bond distances and angles are within the ranges of accepted values. Moreover, they are close to respect the geometrical features observed in the crystal structure of 5-chloro-2-methylanilinium chloride (Oueslati et al., 2005). Components of the asymmetric unit develop different H-bonds, N—H···Cl, N—H···OW and OW—H···Cl (Fig. 2) that keep them in a state where the aromatic rings of organic buildings are oriented in the direction of the bc planes to form centro-symmetric pairs interconnected by hydrogen bonds in the direction of the b axis (Fig. 2). The resulting sequences are alternated to form the crystal packing of the title compound (Fig. 3).

Related literature top

For hydrogen bonds, see: Steiner (2002); Jayaraman et al. (2002). For the crystal structures of a related protonated amine, see: Hamdi et al. (2014). For related structures containing the 3-chloro-2-methylanilinium cation, see: Khemiri et al. (2008); Bel Haj Salah et al. (2014). For geometrical features, see: Oueslati et al. (2005).

Experimental top

An aqueous solution of AlCl3 (1 mmol) and 3-chloro-2-methylaniline (2 mmol) in hydrochloric acid was stirred for several minutes at room temperature and slowly evaporated to dryness for two weeks. White single crystals of the title compound were carefully isolated under polarizing microscope for X-ray diffraction analysis.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å for phenyl and 0.96 Å for methyl groups, and N—H = 0.89 Å; Uiso (H) = 1.2 Uiso (C,N) for phenyl and ammonium H atoms and 1.5 Uiso (C) for methyl. In water molecule the O—H distances were restrained to 0.85 (1) Å, and the distance H···H to 1.44 (2) Å.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the asymmetric unit of title compound with displacement ellipsoids drawn at 40% probability level. [Symmetry code: (i) x, y, z]
[Figure 2] Fig. 2. A view of the atomic arrangement of the title compound along the a axis with H bonds shown as dashed lines.
[Figure 3] Fig. 3. A diagram of the crystal packing in the title compound, viewed down the b axis.
3-Chloro-2-methylanilinium chloride monohydrate top
Crystal data top
C7H9ClN+·Cl·H2OF(000) = 408
Mr = 196.07Dx = 1.396 Mg m3
Orthorhombic, P212121Ag Kα radiation, λ = 0.56087 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.434 (4) Åθ = 9–11°
b = 7.475 (3) ŵ = 0.33 mm1
c = 16.785 (2) ÅT = 293 K
V = 932.7 (6) Å3Rectangular, colorless
Z = 40.50 × 0.25 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.035
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.4°
Graphite monochromatorh = 312
non–profiled ω scansk = 312
5019 measured reflectionsl = 228
3947 independent reflections2 standard reflections every 120 min
1804 reflections with I > 2σ(I) intensity decay: 6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0841P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3947 reflectionsΔρmax = 0.35 e Å3
100 parametersΔρmin = 0.42 e Å3
3 restraintsAbsolute structure: Flack (1983), unique data only
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (19)
Crystal data top
C7H9ClN+·Cl·H2OV = 932.7 (6) Å3
Mr = 196.07Z = 4
Orthorhombic, P212121Ag Kα radiation, λ = 0.56087 Å
a = 7.434 (4) ŵ = 0.33 mm1
b = 7.475 (3) ÅT = 293 K
c = 16.785 (2) Å0.50 × 0.25 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.035
5019 measured reflections2 standard reflections every 120 min
3947 independent reflections intensity decay: 6%
1804 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.163Δρmax = 0.35 e Å3
S = 0.92Δρmin = 0.42 e Å3
3947 reflectionsAbsolute structure: Flack (1983), unique data only
100 parametersAbsolute structure parameter: 0.04 (19)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21684 (13)0.68978 (12)0.14721 (5)0.0605 (3)
N10.2400 (3)0.3630 (3)0.41835 (13)0.0397 (7)
C10.2542 (4)0.3587 (4)0.33084 (16)0.0375 (8)
C20.2248 (4)0.5163 (4)0.28915 (15)0.0368 (7)
C30.2477 (4)0.5022 (5)0.20642 (15)0.0429 (8)
C40.2959 (5)0.3453 (4)0.16946 (19)0.0520 (10)
C50.3203 (5)0.1946 (5)0.2135 (2)0.0581 (10)
C60.3010 (4)0.2003 (4)0.29557 (18)0.0435 (8)
C70.1793 (5)0.6906 (4)0.3283 (2)0.0551 (10)
O1W0.5280 (3)0.0960 (3)0.01902 (16)0.0676 (9)
Cl20.62142 (10)0.50337 (10)0.00015 (4)0.0469 (2)
H1A0.209100.472500.434030.0477*
H1B0.345590.333880.439720.0477*
H1C0.156740.285160.434190.0477*
H30.319540.098200.326170.0522*
H40.350050.087490.188570.0698*
H50.311810.342230.114520.0624*
H7A0.165240.781430.288350.0825*
H7B0.274300.723870.364060.0825*
H7C0.069020.678140.357570.0825*
H1W10.420910.054520.011300.0825*
H2W10.528570.201050.001220.0825*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0707 (6)0.0555 (5)0.0553 (4)0.0060 (5)0.0007 (4)0.0165 (4)
N10.0420 (14)0.0319 (11)0.0452 (11)0.0055 (11)0.0059 (11)0.0037 (9)
C10.0382 (16)0.0326 (12)0.0417 (12)0.0018 (12)0.0008 (12)0.0010 (10)
C20.0342 (13)0.0304 (12)0.0458 (13)0.0014 (13)0.0018 (12)0.0004 (11)
C30.0385 (16)0.0449 (14)0.0452 (13)0.0025 (16)0.0000 (12)0.0064 (14)
C40.0593 (19)0.0548 (19)0.0419 (14)0.006 (2)0.0005 (15)0.0039 (14)
C50.074 (2)0.0428 (16)0.0576 (18)0.012 (2)0.0078 (18)0.0144 (16)
C60.0456 (16)0.0296 (12)0.0554 (15)0.0057 (15)0.0021 (14)0.0023 (13)
C70.073 (2)0.0393 (16)0.0529 (16)0.0120 (19)0.0011 (16)0.0014 (16)
O1W0.0608 (15)0.0390 (12)0.103 (2)0.0020 (11)0.0192 (16)0.0113 (13)
Cl20.0476 (3)0.0359 (3)0.0573 (4)0.0004 (3)0.0068 (4)0.0006 (4)
Geometric parameters (Å, º) top
Cl1—C31.734 (4)C2—C31.403 (4)
O1W—H2W10.8600C3—C41.374 (5)
O1W—H1W10.8600C4—C51.360 (5)
N1—C11.473 (4)C5—C61.386 (5)
N1—H1A0.8900C4—H50.9300
N1—H1C0.8900C5—H40.9300
N1—H1B0.8900C6—H30.9300
C1—C21.388 (4)C7—H7C0.9600
C1—C61.369 (4)C7—H7A0.9600
C2—C71.498 (4)C7—H7B0.9600
H1W1—O1W—H2W1106.00C3—C4—C5119.8 (3)
H1A—N1—H1C109.00C4—C5—C6120.1 (3)
H1B—N1—H1C109.00C1—C6—C5118.9 (3)
C1—N1—H1B109.00C3—C4—H5120.00
C1—N1—H1C109.00C5—C4—H5120.00
C1—N1—H1A109.00C6—C5—H4120.00
H1A—N1—H1B109.00C4—C5—H4120.00
C2—C1—C6123.8 (3)C1—C6—H3121.00
N1—C1—C2118.2 (2)C5—C6—H3121.00
N1—C1—C6117.9 (3)C2—C7—H7B109.00
C1—C2—C7123.6 (2)C2—C7—H7C109.00
C3—C2—C7121.8 (3)C2—C7—H7A109.00
C1—C2—C3114.6 (3)H7A—C7—H7C109.00
Cl1—C3—C4117.8 (2)H7B—C7—H7C109.00
C2—C3—C4122.9 (3)H7A—C7—H7B109.00
Cl1—C3—C2119.4 (3)
N1—C1—C2—C3177.7 (3)C1—C2—C3—C40.2 (5)
N1—C1—C2—C70.2 (4)C7—C2—C3—Cl11.8 (4)
C6—C1—C2—C30.3 (4)C7—C2—C3—C4177.6 (3)
C6—C1—C2—C7178.0 (3)Cl1—C3—C4—C5179.5 (3)
N1—C1—C6—C5178.1 (3)C2—C3—C4—C51.2 (5)
C2—C1—C6—C50.2 (5)C3—C4—C5—C61.6 (5)
C1—C2—C3—Cl1179.5 (2)C4—C5—C6—C11.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl2i0.86002.28003.129 (3)169.00
O1W—H2W1···Cl20.86002.36003.139 (3)151.00
N1—H1A···Cl2ii0.89002.70003.178 (3)115.00
N1—H1A···O1Wiii0.89002.30002.667 (4)105.00
N1—H1B···Cl2iv0.89002.68003.187 (3)117.00
N1—H1B···O1Wiii0.89002.28002.667 (4)106.00
N1—H1C···Cl2ii0.89002.83003.178 (3)105.00
C7—H7A···Cl10.96002.50003.053 (4)117.00
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl2i0.86002.28003.129 (3)169.00
O1W—H2W1···Cl20.86002.36003.139 (3)151.00
N1—H1A···Cl2ii0.89002.70003.178 (3)115.00
N1—H1A···O1Wiii0.89002.30002.667 (4)105.00
N1—H1B···Cl2iv0.89002.68003.187 (3)117.00
N1—H1B···O1Wiii0.89002.28002.667 (4)106.00
N1—H1C···Cl2ii0.89002.83003.178 (3)105.00
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

References

First citationBel Haj Salah, R., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o61.  CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamdi, A., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o342–o343.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhemiri, H., Akriche, S. & Rzaigui, M. (2008). Acta Cryst. E64, o526.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOueslati, A., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 105–106.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds