metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m211-m212

Bis{μ-N-[(E)-4-benz­yl­oxy-2-oxido­benzyl­­idene]-4-nitro­benzene­carbo­hydrazidato}bis­­[di­aqua­nickel(II)] di­methyl­formamide tetra­solvate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: eesans@yahoo.com

Edited by L. Farrugia, University of Glasgow, Scotland (Received 15 April 2014; accepted 5 May 2014; online 17 May 2014)

The molecule of the title complex, [Ni2(C21H15N3O5)2(H2O)4]·4C3H7NO, is located on an inversion centre. This results in a dimeric NiII complex, with the two NiII atoms bridged by phenolate O atoms. The tridentate ligand is chelated to each NiII atom via one N and two O atoms of the imino­late form of the hydrazide moiety, which has the same conformation as the free ligand. The coordination geometry around each NiII ion is slightly distorted octa­hedral. A supra­molecular three-dimensional architecture is created by dominant inter­molecular O—H⋯N, O—H⋯O and C—H⋯O hydrogen-bonding inter­actions. These are augmented by two C—H⋯π inter­actions and a ππ inter­action with a centroid–centroid distance of 3.681 (2) Å.

Related literature

For biological applications of hydrazinecarboxamide and its derivatives, see: Lakshmi et al. (2011[Lakshmi, B., Avaji, P. G., Nagella, P., Manohar, S. H. & Mahendra, K. N. (2011). Polyhedron, 30, 1507-1515.]); Prasanna & Kumar (2013[Prasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24-29.]); Singh et al. (2007[Singh, B., Narang, K. K. & Srivastava, R. (2007). Synth. React. Inorg. Met. Org. Chem. 33, 1025-1036.]); Naseema et al. (2010[Naseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741-748.]). For the synthesis of related compounds, see: Joseph et al. (2013[Joseph, B., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1160-o1161.]). For related structures, see: Joseph et al. (2012[Joseph, B., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1421-o1422.]); Raj & Kurup (2007[Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C21H15N3O5)2(H2O)4]·4C3H7NO

  • Mr = 1260.55

  • Triclinic, [P \overline 1]

  • a = 8.4939 (3) Å

  • b = 12.5451 (6) Å

  • c = 14.6717 (6) Å

  • α = 81.662 (2)°

  • β = 75.613 (1)°

  • γ = 79.442 (1)°

  • V = 1480.56 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.870

  • 11081 measured reflections

  • 6571 independent reflections 6785

  • 4713 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.02

  • 6785 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O6 0.84 2.00 2.702 (4) 140
O1W—H12⋯O7 0.84 1.98 2.674 (4) 139
O2W—H21⋯O1Wi 0.84 2.40 2.862 (2) 115
O2W—H22⋯N2ii 0.84 2.43 2.908 (3) 117
C2—H2⋯O3i 0.93 2.36 3.217 (3) 153
C18—H18⋯O7iii 0.93 2.43 3.257 (6) 147
C26—H26B⋯O5iv 0.96 2.56 3.320 (8) 136
C22—H22ACg4 0.93 2.95 3.440 (5) 115
C23—H23BCg5v 0.96 2.94 3.89 (8) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazones and their nickel complexes have been shown to possess a diverse range of biological activities (Lakshmi et al., 2011; Prasanna & Kumar, 2013). In most cases, the metal complexes show more antibacterial activity compared to their parent ligands (Singh et al., 2007). They also have applications in chemical processes like non-linear optics, sensors etc (Naseema et al., 2010).

The title complex [C42H38N6Ni2O14]·4(C3H7NO) has a dimeric structure. This is generated by the unique part of the NiII complex (Fig. 1) bridging two Ni atoms through phenolate O atoms. The molecule adopts an E configuration with respect to C7N1 bond and the tridentate ligand has its coordinating entities disposed in a cis fashion to each other. The Ni atom in the complex is N,O,O' chelated by the iminolate form of the hydrazide ligand. The C7N1 [1.272 (3) Å] and C15–O3 [1.282 (3) Å] bond distances are very close to the formal CN and C–O bond lengths (Allen et al., 1987) respectively confirming the azomethine bond formation and the coordination via iminolate form. The coordination geometry around each NiII ion is octahedral with a slight distortion. The hydrazide moiety of the free ligand is coordinated to each Ni atom via iminolate form of the hydrazide moiety without changing its configuration (Joseph et al., 2012; Raj & Kurup, 2007; Joseph et al., 2013).

There are seven O–H···N, O–H···O and C–H···O intermolecular (classical and non-classical) hydrogen bonding interactions (Table 1), which interconnect the neighbouring complex and the solvent DMF molecules with D···A distances of 2.702 (4), 2.674 (4), 2.862 (3), 2.908 (3), 3.217 (3), 3.257 (6) and 3.320 (8) Å (Fig. 2). Two C–H···π interactions with H···Cg distances of 3.440 (5) and 3.894 (7) Å progressing along c axis and a π···π interaction (Fig. 3) with a Cg···Cg distance of 3.681 (2) Å progressing along b axis also support the dominant intermolecular hydrogen bonding interactions to establish a supramolecular three-dimensional network in the crystal system. Fig. 4 shows the packing diagram of the title compound along b axis.

Related literature top

For biological applications of hydrazinecarboxamide and its derivatives, see: Lakshmi et al. (2011); Prasanna et al. (2013); Singh et al. (2007); Naseema et al. (2010). For the synthesis of related compounds, see: Joseph et al. (2013). For related structures, see: Joseph et al. (2012); Raj & Kurup (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title complex was prepared by adapting a reported procedure (Joseph et al., 2013) by mixing hot methanolic solutions of N'-[(E)-4-benzyloxy-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate (0.464 g, 1 mmol) and Ni(OAc)2·4H2O (0.248 g, 1 mmol) for 4 h. On cooling, brown colored product formed were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from a mixture of methanol and dimethylformamide (1:1 v/v). The compound was obtained in 65% yield (0.857 g).

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93–0.97 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(carrier). Omitted owing to bad disagreement was reflections (0 - 1 1), (0 1 1), (0 0 1) and (0 1 0).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Graphical representation showing hydrogen bonding interactions in the crystal structure of [C42H38N6Ni2O14]·4(C3H7NO).
[Figure 3] Fig. 3. C–H···π and π···π interactions found in the title compound.
[Figure 4] Fig. 4. A view of the unit cell along b axis.
Bis{µ-N-[(E)-4-benzyloxy-2-oxidobenzylidene]-4-nitrobenzenecarbohydrazidato}bis[diaquanickel(II)] dimethylformamide tetrasolvate top
Crystal data top
[Ni2(C21H15N3O5)2(H2O)4]·4C3H7NOZ = 1
Mr = 1260.55F(000) = 660
Triclinic, P1Dx = 1.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4939 (3) ÅCell parameters from 3205 reflections
b = 12.5451 (6) Åθ = 2.9–26.1°
c = 14.6717 (6) ŵ = 0.72 mm1
α = 81.662 (2)°T = 293 K
β = 75.613 (1)°Block, brown
γ = 79.442 (1)°0.40 × 0.25 × 0.20 mm
V = 1480.56 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6571 independent reflections
Radiation source: fine-focus sealed tube4713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω and ϕ scanh = 116
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1616
Tmin = 0.763, Tmax = 0.870l = 1916
11081 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.2776P]
where P = (Fo2 + 2Fc2)/3
6785 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni2(C21H15N3O5)2(H2O)4]·4C3H7NOγ = 79.442 (1)°
Mr = 1260.55V = 1480.56 (11) Å3
Triclinic, P1Z = 1
a = 8.4939 (3) ÅMo Kα radiation
b = 12.5451 (6) ŵ = 0.72 mm1
c = 14.6717 (6) ÅT = 293 K
α = 81.662 (2)°0.40 × 0.25 × 0.20 mm
β = 75.613 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6571 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4713 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.870Rint = 0.025
11081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
6785 reflectionsΔρmin = 0.42 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.32132 (3)0.56165 (3)0.52457 (2)0.03177 (13)
O10.47991 (19)0.48838 (15)0.41614 (12)0.0316 (4)
O20.6760 (3)0.3770 (3)0.10470 (16)0.0811 (10)
O30.1376 (2)0.64291 (17)0.61866 (14)0.0427 (5)
O40.5294 (5)0.9447 (4)0.8836 (3)0.1297 (16)
O50.6793 (4)0.9197 (3)0.7950 (3)0.1240 (15)
O60.3857 (4)0.7887 (3)0.2882 (2)0.0846 (9)
O70.3202 (5)0.8970 (3)0.5412 (3)0.1077 (12)
O1W0.4206 (2)0.70844 (16)0.46434 (15)0.0427 (5)
H110.44960.70890.40520.064*
H120.34860.76270.47830.064*
O2W0.2508 (2)0.40630 (17)0.58160 (14)0.0418 (5)
H210.31310.37400.61670.063*
H220.25850.36880.53720.063*
N10.1453 (2)0.59582 (18)0.45394 (15)0.0317 (5)
N20.0044 (2)0.65070 (19)0.50159 (16)0.0342 (5)
N30.5476 (4)0.9086 (3)0.8164 (3)0.0864 (12)
N40.4309 (4)0.7733 (3)0.1324 (2)0.0737 (9)
N50.1458 (6)1.0356 (3)0.6066 (3)0.1009 (15)
C10.4525 (3)0.4821 (2)0.33231 (18)0.0318 (6)
C20.5816 (3)0.4342 (3)0.2632 (2)0.0423 (7)
H20.68450.40990.27660.051*
C30.5579 (4)0.4229 (3)0.1763 (2)0.0557 (10)
C40.4067 (4)0.4603 (3)0.1528 (2)0.0636 (11)
H40.39130.45310.09350.076*
C50.2821 (4)0.5078 (3)0.2195 (2)0.0536 (9)
H50.18080.53280.20430.064*
C60.2981 (3)0.5210 (2)0.30952 (19)0.0353 (6)
C70.1548 (3)0.5754 (2)0.37016 (19)0.0360 (6)
H70.06120.59760.34600.043*
C80.8333 (4)0.3326 (4)0.1248 (3)0.0764 (14)
H8A0.82150.27550.17720.092*
H8B0.88170.38900.14180.092*
C90.9403 (4)0.2870 (4)0.0367 (3)0.0756 (13)
C101.0033 (5)0.1770 (4)0.0401 (3)0.0836 (14)
H100.97750.13170.09600.100*
C111.1050 (5)0.1345 (5)0.0403 (4)0.1038 (19)
H11A1.14760.06070.03880.125*
C121.1420 (5)0.2034 (6)0.1226 (4)0.117 (2)
H12A1.21060.17470.17620.141*
C131.0813 (6)0.3122 (6)0.1277 (3)0.119 (2)
H131.10640.35690.18400.143*
C140.9792 (5)0.3550 (5)0.0451 (3)0.107 (2)
H140.93850.42910.04630.128*
C150.0093 (3)0.6707 (2)0.5843 (2)0.0341 (6)
C160.1380 (3)0.7329 (3)0.6438 (2)0.0400 (7)
C170.2891 (4)0.7543 (3)0.6213 (3)0.0636 (11)
H170.30140.72940.56720.076*
C180.4227 (4)0.8118 (4)0.6775 (3)0.0750 (13)
H180.52440.82580.66150.090*
C190.4044 (4)0.8476 (3)0.7558 (2)0.0592 (10)
C200.2586 (5)0.8284 (4)0.7814 (3)0.0735 (12)
H200.24840.85380.83580.088*
C210.1248 (4)0.7701 (3)0.7250 (2)0.0640 (11)
H21A0.02420.75580.74220.077*
C220.4572 (5)0.7448 (4)0.2167 (3)0.0716 (11)
H22A0.53820.68530.22350.086*
C230.3069 (8)0.8619 (6)0.1161 (4)0.140 (3)
H23A0.25340.89190.17450.209*
H23B0.22760.83640.09140.209*
H23C0.35600.91700.07140.209*
C240.5236 (7)0.7171 (5)0.0517 (3)0.1112 (18)
H24A0.59280.65360.07260.167*
H24B0.59030.76490.00820.167*
H24C0.44900.69550.02080.167*
C250.1844 (8)0.9403 (5)0.5711 (5)0.117 (2)
H250.09830.90470.56960.140*
C260.2699 (10)1.0969 (5)0.6094 (5)0.154 (3)
H26A0.36861.07410.56380.231*
H26B0.29191.08480.67150.231*
H26C0.23271.17310.59480.231*
C270.0180 (10)1.0771 (7)0.6473 (7)0.231 (6)
H27A0.09071.04790.62010.347*
H27B0.03471.15510.63530.347*
H27C0.04051.05650.71430.347*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01855 (17)0.0461 (2)0.0311 (2)0.00660 (13)0.00672 (12)0.01827 (16)
O10.0220 (8)0.0457 (11)0.0290 (9)0.0055 (7)0.0087 (7)0.0184 (8)
O20.0481 (13)0.146 (3)0.0468 (14)0.0433 (15)0.0216 (11)0.0589 (16)
O30.0269 (9)0.0638 (14)0.0375 (11)0.0146 (9)0.0110 (8)0.0266 (10)
O40.112 (3)0.172 (4)0.078 (2)0.064 (3)0.000 (2)0.070 (3)
O50.0563 (18)0.172 (4)0.112 (3)0.052 (2)0.0070 (18)0.047 (3)
O60.102 (2)0.088 (2)0.0554 (17)0.0048 (17)0.0103 (16)0.0082 (16)
O70.107 (3)0.082 (2)0.141 (3)0.0190 (19)0.040 (2)0.057 (2)
O1W0.0339 (9)0.0425 (12)0.0517 (13)0.0051 (8)0.0118 (9)0.0151 (10)
O2W0.0310 (9)0.0549 (13)0.0406 (11)0.0009 (9)0.0097 (8)0.0127 (10)
N10.0199 (9)0.0416 (13)0.0329 (12)0.0058 (9)0.0055 (8)0.0154 (10)
N20.0183 (9)0.0465 (14)0.0357 (13)0.0085 (9)0.0059 (9)0.0154 (11)
N30.068 (2)0.098 (3)0.063 (2)0.040 (2)0.0104 (18)0.018 (2)
N40.077 (2)0.086 (3)0.059 (2)0.0139 (19)0.0130 (17)0.0139 (19)
N50.122 (3)0.056 (2)0.092 (3)0.019 (2)0.013 (3)0.009 (2)
C10.0273 (12)0.0396 (16)0.0297 (14)0.0007 (11)0.0080 (10)0.0129 (12)
C20.0291 (13)0.062 (2)0.0350 (15)0.0114 (13)0.0103 (11)0.0213 (14)
C30.0397 (16)0.090 (3)0.0365 (17)0.0191 (16)0.0108 (13)0.0355 (18)
C40.0478 (17)0.105 (3)0.0419 (18)0.0241 (18)0.0237 (14)0.041 (2)
C50.0361 (15)0.085 (3)0.0425 (18)0.0159 (15)0.0205 (13)0.0292 (18)
C60.0293 (12)0.0473 (17)0.0312 (14)0.0022 (11)0.0098 (11)0.0154 (13)
C70.0231 (12)0.0492 (18)0.0375 (15)0.0063 (11)0.0126 (11)0.0153 (13)
C80.0428 (18)0.128 (4)0.055 (2)0.037 (2)0.0175 (16)0.050 (2)
C90.0441 (18)0.130 (4)0.052 (2)0.030 (2)0.0181 (16)0.050 (2)
C100.052 (2)0.113 (4)0.084 (3)0.016 (2)0.007 (2)0.054 (3)
C110.062 (3)0.133 (5)0.117 (4)0.017 (3)0.006 (3)0.081 (4)
C120.055 (3)0.209 (7)0.091 (4)0.021 (3)0.006 (3)0.098 (5)
C130.076 (3)0.200 (7)0.067 (3)0.041 (4)0.012 (2)0.052 (4)
C140.075 (3)0.167 (5)0.064 (3)0.054 (3)0.020 (2)0.049 (3)
C150.0235 (12)0.0398 (16)0.0362 (15)0.0016 (11)0.0006 (11)0.0135 (12)
C160.0293 (13)0.0493 (18)0.0359 (16)0.0061 (12)0.0020 (11)0.0111 (14)
C170.0347 (15)0.094 (3)0.060 (2)0.0211 (17)0.0116 (15)0.040 (2)
C180.0344 (16)0.109 (3)0.073 (3)0.0261 (19)0.0099 (16)0.034 (2)
C190.0442 (17)0.068 (2)0.047 (2)0.0218 (16)0.0072 (15)0.0148 (18)
C200.067 (2)0.096 (3)0.049 (2)0.025 (2)0.0089 (18)0.036 (2)
C210.0402 (17)0.093 (3)0.054 (2)0.0248 (17)0.0123 (15)0.032 (2)
C220.073 (3)0.071 (3)0.069 (3)0.016 (2)0.012 (2)0.001 (2)
C230.138 (5)0.181 (7)0.083 (4)0.036 (5)0.040 (4)0.012 (4)
C240.130 (4)0.131 (5)0.070 (3)0.017 (4)0.006 (3)0.035 (3)
C250.102 (4)0.094 (4)0.150 (6)0.002 (3)0.032 (4)0.015 (4)
C260.242 (9)0.095 (5)0.125 (6)0.042 (5)0.029 (6)0.015 (4)
C270.173 (8)0.199 (9)0.211 (10)0.069 (7)0.072 (7)0.010 (7)
Geometric parameters (Å, º) top
Ni1—N11.974 (2)C8—C91.505 (4)
Ni1—O12.0237 (16)C8—H8A0.9700
Ni1—O32.0335 (17)C8—H8B0.9700
Ni1—O1i2.0456 (16)C9—C141.374 (7)
Ni1—O2W2.136 (2)C9—C101.383 (6)
Ni1—O1W2.147 (2)C10—C111.389 (6)
O1—C11.323 (3)C10—H100.9300
O1—Ni1i2.0456 (16)C11—C121.383 (8)
O2—C31.372 (3)C11—H11A0.9300
O2—C81.434 (4)C12—C131.366 (8)
O3—C151.282 (3)C12—H12A0.9300
O4—N31.197 (5)C13—C141.416 (6)
O5—N31.215 (5)C13—H130.9300
O6—C221.225 (5)C14—H140.9300
O7—C251.186 (6)C15—C161.494 (3)
O1W—H110.8400C16—C171.373 (4)
O1W—H120.8400C16—C211.377 (5)
O2W—H210.8400C17—C181.377 (4)
O2W—H220.8400C17—H170.9300
N1—C71.272 (3)C18—C191.345 (5)
N1—N21.399 (3)C18—H180.9300
N2—C151.311 (3)C19—C201.352 (5)
N3—C191.474 (4)C20—C211.384 (4)
N4—C221.299 (5)C20—H200.9300
N4—C231.421 (6)C21—H21A0.9300
N4—C241.447 (5)C22—H22A0.9300
N5—C251.326 (7)C23—H23A0.9600
N5—C271.405 (7)C23—H23B0.9600
N5—C261.426 (8)C23—H23C0.9600
C1—C21.405 (3)C24—H24A0.9600
C1—C61.417 (3)C24—H24B0.9600
C2—C31.369 (4)C24—H24C0.9600
C2—H20.9300C25—H250.9300
C3—C41.393 (4)C26—H26A0.9600
C4—C51.363 (4)C26—H26B0.9600
C4—H40.9300C26—H26C0.9600
C5—C61.396 (4)C27—H27A0.9600
C5—H50.9300C27—H27B0.9600
C6—C71.440 (3)C27—H27C0.9600
C7—H70.9300
N1—Ni1—O191.70 (8)C10—C9—C8119.3 (4)
N1—Ni1—O379.10 (8)C9—C10—C11119.8 (5)
O1—Ni1—O3170.70 (7)C9—C10—H10120.1
N1—Ni1—O1i171.98 (7)C11—C10—H10120.1
O1—Ni1—O1i80.54 (7)C12—C11—C10119.1 (5)
O3—Ni1—O1i108.71 (7)C12—C11—H11A120.4
N1—Ni1—O2W91.81 (9)C10—C11—H11A120.4
O1—Ni1—O2W88.30 (7)C13—C12—C11122.2 (4)
O3—Ni1—O2W93.27 (8)C13—C12—H12A118.9
O1i—Ni1—O2W85.99 (7)C11—C12—H12A118.9
N1—Ni1—O1W92.89 (9)C12—C13—C14118.3 (6)
O1—Ni1—O1W87.03 (8)C12—C13—H13120.9
O3—Ni1—O1W92.07 (8)C14—C13—H13120.9
O1i—Ni1—O1W88.74 (7)C9—C14—C13120.0 (5)
O2W—Ni1—O1W173.47 (7)C9—C14—H14120.0
C1—O1—Ni1126.65 (14)C13—C14—H14120.0
C1—O1—Ni1i133.85 (14)O3—C15—N2126.2 (2)
Ni1—O1—Ni1i99.46 (7)O3—C15—C16116.9 (2)
C3—O2—C8117.0 (2)N2—C15—C16116.9 (2)
C15—O3—Ni1109.58 (16)C17—C16—C21117.7 (3)
Ni1—O1W—H11109.5C17—C16—C15122.6 (3)
Ni1—O1W—H12109.5C21—C16—C15119.7 (2)
H11—O1W—H12109.5C16—C17—C18121.3 (3)
Ni1—O2W—H21109.5C16—C17—H17119.4
Ni1—O2W—H22109.5C18—C17—H17119.4
H21—O2W—H22109.5C19—C18—C17119.2 (3)
C7—N1—N2117.2 (2)C19—C18—H18120.4
C7—N1—Ni1127.20 (16)C17—C18—H18120.4
N2—N1—Ni1115.54 (16)C18—C19—C20122.0 (3)
C15—N2—N1109.52 (19)C18—C19—N3119.2 (3)
O4—N3—O5123.2 (3)C20—C19—N3118.8 (4)
O4—N3—C19119.1 (4)C19—C20—C21118.6 (4)
O5—N3—C19117.7 (4)C19—C20—H20120.7
C22—N4—C23120.6 (4)C21—C20—H20120.7
C22—N4—C24122.3 (4)C16—C21—C20121.2 (3)
C23—N4—C24117.1 (4)C16—C21—H21A119.4
C25—N5—C27121.3 (7)C20—C21—H21A119.4
C25—N5—C26121.2 (5)O6—C22—N4126.3 (4)
C27—N5—C26117.5 (6)O6—C22—H22A116.8
O1—C1—C2118.7 (2)N4—C22—H22A116.8
O1—C1—C6122.7 (2)N4—C23—H23A109.5
C2—C1—C6118.6 (2)N4—C23—H23B109.5
C3—C2—C1120.8 (2)H23A—C23—H23B109.5
C3—C2—H2119.6N4—C23—H23C109.5
C1—C2—H2119.6H23A—C23—H23C109.5
C2—C3—O2125.0 (3)H23B—C23—H23C109.5
C2—C3—C4121.4 (3)N4—C24—H24A109.5
O2—C3—C4113.7 (3)N4—C24—H24B109.5
C5—C4—C3117.8 (3)H24A—C24—H24B109.5
C5—C4—H4121.1N4—C24—H24C109.5
C3—C4—H4121.1H24A—C24—H24C109.5
C4—C5—C6123.6 (3)H24B—C24—H24C109.5
C4—C5—H5118.2O7—C25—N5125.0 (6)
C6—C5—H5118.2O7—C25—H25117.5
C5—C6—C1117.8 (2)N5—C25—H25117.5
C5—C6—C7116.1 (2)N5—C26—H26A109.5
C1—C6—C7126.0 (2)N5—C26—H26B109.5
N1—C7—C6125.6 (2)H26A—C26—H26B109.5
N1—C7—H7117.2N5—C26—H26C109.5
C6—C7—H7117.2H26A—C26—H26C109.5
O2—C8—C9107.1 (3)H26B—C26—H26C109.5
O2—C8—H8A110.3N5—C27—H27A109.5
C9—C8—H8A110.3N5—C27—H27B109.5
O2—C8—H8B110.3H27A—C27—H27B109.5
C9—C8—H8B110.3N5—C27—H27C109.5
H8A—C8—H8B108.5H27A—C27—H27C109.5
C14—C9—C10120.6 (4)H27B—C27—H27C109.5
C14—C9—C8120.0 (4)
N1—Ni1—O1—C13.8 (2)N2—N1—C7—C6179.3 (3)
O1i—Ni1—O1—C1178.2 (3)Ni1—N1—C7—C60.9 (4)
O2W—Ni1—O1—C195.6 (2)C5—C6—C7—N1179.4 (3)
O1W—Ni1—O1—C189.0 (2)C1—C6—C7—N10.7 (5)
N1—Ni1—O1—Ni1i177.97 (9)C3—O2—C8—C9179.7 (4)
O1i—Ni1—O1—Ni1i0.0O2—C8—C9—C1462.8 (5)
O2W—Ni1—O1—Ni1i86.21 (8)O2—C8—C9—C10119.4 (4)
O1W—Ni1—O1—Ni1i89.22 (8)C14—C9—C10—C110.9 (7)
N1—Ni1—O3—C150.94 (19)C8—C9—C10—C11178.6 (4)
O1i—Ni1—O3—C15177.14 (18)C9—C10—C11—C120.2 (7)
O2W—Ni1—O3—C1590.27 (19)C10—C11—C12—C130.3 (8)
O1W—Ni1—O3—C1593.49 (19)C11—C12—C13—C141.0 (8)
O1—Ni1—N1—C72.0 (3)C10—C9—C14—C131.6 (7)
O3—Ni1—N1—C7176.7 (3)C8—C9—C14—C13179.3 (4)
O2W—Ni1—N1—C790.3 (3)C12—C13—C14—C91.6 (8)
O1W—Ni1—N1—C785.2 (3)Ni1—O3—C15—N20.0 (4)
O1—Ni1—N1—N2179.60 (17)Ni1—O3—C15—C16179.2 (2)
O3—Ni1—N1—N21.74 (17)N1—N2—C15—O31.5 (4)
O2W—Ni1—N1—N291.25 (18)N1—N2—C15—C16177.8 (2)
O1W—Ni1—N1—N293.29 (18)O3—C15—C16—C17170.8 (3)
C7—N1—N2—C15176.4 (3)N2—C15—C16—C179.9 (5)
Ni1—N1—N2—C152.2 (3)O3—C15—C16—C218.6 (5)
Ni1—O1—C1—C2175.7 (2)N2—C15—C16—C21170.7 (3)
Ni1i—O1—C1—C21.8 (4)C21—C16—C17—C180.6 (6)
Ni1—O1—C1—C64.7 (4)C15—C16—C17—C18180.0 (3)
Ni1i—O1—C1—C6177.80 (19)C16—C17—C18—C190.0 (7)
O1—C1—C2—C3178.1 (3)C17—C18—C19—C200.2 (7)
C6—C1—C2—C31.6 (5)C17—C18—C19—N3179.6 (4)
C1—C2—C3—O2179.7 (3)O4—N3—C19—C18176.6 (5)
C1—C2—C3—C41.3 (6)O5—N3—C19—C183.4 (6)
C8—O2—C3—C23.4 (6)O4—N3—C19—C204.0 (7)
C8—O2—C3—C4177.6 (4)O5—N3—C19—C20176.0 (4)
C2—C3—C4—C50.6 (6)C18—C19—C20—C210.0 (7)
O2—C3—C4—C5179.6 (4)N3—C19—C20—C21179.3 (4)
C3—C4—C5—C60.1 (6)C17—C16—C21—C200.9 (6)
C4—C5—C6—C10.4 (5)C15—C16—C21—C20179.7 (3)
C4—C5—C6—C7178.5 (4)C19—C20—C21—C160.6 (7)
O1—C1—C6—C5178.6 (3)C23—N4—C22—O61.4 (8)
C2—C1—C6—C51.1 (4)C24—N4—C22—O6179.2 (4)
O1—C1—C6—C72.7 (5)C27—N5—C25—O7175.0 (7)
C2—C1—C6—C7177.6 (3)C26—N5—C25—O71.6 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H11···O60.842.002.702 (4)140
O1W—H12···O70.841.982.674 (4)139
O2W—H21···O1Wi0.842.402.862 (2)115
O2W—H22···N2ii0.842.432.908 (3)117
C2—H2···O3i0.932.363.217 (3)153
C18—H18···O7iii0.932.433.257 (6)147
C26—H26B···O5iv0.962.563.320 (8)136
C22—H22A···Cg40.932.953.440 (5)115
C23—H23B···Cg5v0.962.943.89 (8)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H11···O60.842.002.702 (4)140
O1W—H12···O70.841.982.674 (4)139
O2W—H21···O1Wi0.842.402.862 (2)115
O2W—H22···N2ii0.842.432.908 (3)117
C2—H2···O3i0.93002.363.217 (3)153
C18—H18···O7iii0.93002.433.257 (6)147
C26—H26B···O5iv0.96002.563.320 (8)136
C22—H22A···Cg40.932.953.440 (5)115
C23—H23B···Cg5v0.962.943.894 (75)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y+1, z.
 

Acknowledgements

BJ is grateful to the Council for Scientific and Industrial Research, New Delhi, India, for the award of a Senior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, Kochi-22, India, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, B., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1421–o1422.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, B., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1160–o1161.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLakshmi, B., Avaji, P. G., Nagella, P., Manohar, S. H. & Mahendra, K. N. (2011). Polyhedron, 30, 1507–1515.  Web of Science CrossRef CAS Google Scholar
First citationNaseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741–748.  Web of Science CrossRef CAS Google Scholar
First citationPrasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24–29.  Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, B., Narang, K. K. & Srivastava, R. (2007). Synth. React. Inorg. Met. Org. Chem. 33, 1025–1036.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m211-m212
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds