metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m231-m232

1,8-Di­aza­bi­cyclo­[5.4.0]undec-7-en-8-ium bromido­(phthalocyaninato)zincate

aInstitute of Low Temperature and Structural Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
*Correspondence e-mail: j.janczak@int.pan.wroc.pl

(Received 24 April 2014; accepted 19 May 2014; online 24 May 2014)

The title compound, (C9H17N2)[ZnBr(C32H16N8)], contains a bromido­(phthalocyaninato)zincate anion and a protonated 1,8-di­aza­bicyclo­[5.4.0]undece-7-ene cation, [DBUH]+. The central ZnII atom has a distorted square-pyramidal geometry, with four iso­indole N atoms of the macrocycle in equatorial positions and a bromide ion in the axial position. The latter has a relatively high displacement parameter, but no evidence for disorder was obtained. The central ZnII atom is displaced by 0.488 (3) Å from the mean plane defined by the four iso­indole N atoms. The [DBUH]+ cation is involved in an almost linear N—H⋯Br hydrogen bond. In the crystal, ππ inter­actions lead to a relatively short distance of 3.366 (3) Å between the phthalocyaninate rings.

Related literature

For background information on phthalocyanines, see: Nyokong et al. (1987[Nyokong, T., Gasyna, Z. & Stillman, M. J. (1987). Inorg. Chem. 26, 1087-1095.]); Gregory (2000[Gregory, P. (2000). J. Porphyrins Phthalocyanines, 4, 432-437.]); Leznoff & Lever (1996[Leznoff, C. C. & Lever, A. B. P. (1996). Editors. Phthalocyanines: Properties and Applications, Vol. 4. New York: VCH Publishers.]); Tedesco et al. (2003[Tedesco, A. C., Rott, J. C. G. & Lunardi, C. N. (2003). Curr. Org. Chem. 7, 187-196.]); Ormond & Freeman (2013[Ormond, A. B. & Freeman, H. S. (2013). Materials, 6, 817-840.]). For related structures, see: Kobayashi et al. (1971[Kobayashi, T., Ashida, W., Uyeda, N., Suito, E. & Makudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 2095-2103.]); Mossoyan-Deneux et al. (1985[Mossoyan-Deneux, M., Benlian, D., Pierrot, M., Fournel, A. & Sorbier, J. P. (1985). Inorg. Chem. 24, 1878-1882.]); Zeng et al. (2005[Zeng, Q., Wu, D., Wang, C., Lu, J., Ma, B., Shu, C., Ma, H., Li, Y. & Bai, C. (2005). CrystEngComm, 7, 243-248.]); Del Sole et al. (2005[Del Sole, R., De Luca, A., Mele, G. & Vasapollo, G. (2005). J. Porphyrins Phthalocyanines, 9, 519-527.]); Kubiak et al. (2007[Kubiak, R., Janczak, J., Śledź, M. & Bukowska, E. (2007). Polyhedron, 26, 4179-4186.]); Yang et al. (2008[Yang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375-m377.]); Janczak et al. (2009[Janczak, J., Kubiak, R. & Bukowska, E. (2009). J. Mol. Struct. 937, 25-33.], 2011[Janczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253-258.]); Janczak & Kubiak (2009[Janczak, J. & Kubiak, R. (2009). Polyhedron, 28, 2391-2396.]); Li et al. (2011[Li, X., He, X., Chen, Y., Fan, X. & Zeng, Q. (2011). J. Mol. Struct. 1002, 145-150.]); Przybył & Janczak (2014[Przybył, B. & Janczak, J. (2014). Dyes Pigments, 100, 247-254.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H17N2)[ZnBr(C32H16N8)]

  • Mr = 811.05

  • Monoclinic, P 21 /n

  • a = 12.4336 (8) Å

  • b = 22.9278 (16) Å

  • c = 13.3267 (9) Å

  • β = 113.266 (4)°

  • V = 3490.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 295 K

  • 0.35 × 0.21 × 0.19 mm

Data collection
  • Kuma KM-4 with CCD detector diffractometer

  • Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED, Oxford Diffraction, Wrocław, Poland.]) Tmin = 0.562, Tmax = 0.725

  • 42041 measured reflections

  • 8492 independent reflections

  • 4908 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.143

  • S = 1.00

  • 8492 reflections

  • 478 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯Br1 0.87 (2) 2.44 (2) 3.281 (4) 163 (2)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED, Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED, Oxford Diffraction, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phthalocyanines and metallophthalocyanines (Pcs and MPcs) arouses inter­est because of exhibition of many important features which gives potential application in many fields from industry to medicine (Leznoff & Lever, 1996; Gregory, 2000). The utility of MPc complexes is limited by their relatively low solubility in the most organic solvents. The solubility of MPcs can be enhanced by substitution of the H atoms of Pc macrocycle or/and by ligation an additional ligand the the metal centre of MPcs. Both ways of modification of MPc's lead to improvment of their solubility, due to decreasing of the π···π inter­actions between the Pc macrocycles as well as lowering their aggregation in solution. ZnPc and its derivatives, due to strong absorption in the red region of visible radiation and high triplet quantum yield and long lifetimes, are intensively studied as potential agents in photodynamic therapy (Tedesco et al., 2003; Ormond & Freeman, 2013).

Complex 1 crystallizes as ionic compound in the centrosymmetric space group of monoclinic system. The blue-violet crystals of 1 are built up from bromido(phthalocyaninato)zinc(II) anion (ZnPcBr-) and 1,8-di­aza­bicyclo­[5.4.0]undec-7-en-8-ium cation (DBUH+) (Fig. 1). Both oppositely charged units inter­act via N—H10···Br hydrogen-bond, in which DBUH+ plays role of a donor (Table 1). Due to presence of DBU that accepts H+, phthalocyaninato macrocyle maintains -2 oxidation state, therefore the complex 1 is diamagnetic as show the magnetic susceptibility measurements. This is in contrast to the chloro­(phthalocyaninato)zinc(II) in which ZnPc is oxidised and has +1 charge, and the metal centre is coordinated by phthalocyaninato anion with π-radical character, Pc-. (Mossoyan-Deneux et al., 1985). As an effect of monaxial Zn—Br bond formation, Zn(II) atom exhibits displacement from a plane defined by four iso­indole nitro­gen atoms of Pc(2-) (N4 plane) by 0.488 (3) Å. This is a value situated in the typical range in comparison with other 4+1 complexes of ZnPc reported in the literature (Table S1). Additionally, pyramidal coordination environment of Zn(II) centre is slightly distorted, angle between the normal to the N4 plane and the Zn—Br bond is equal 1.65 (5) ° that is inclined towards the hydrogen-bond. In reported structure Pc(2-) macrocycle has nearly flat conformation though deformation from flat to saucer-like shape is very common among 4+1 MPc complexes arranged in the back-to-back fashion in solids. Almost all nitro­gen and carbon atoms of Pc(2-) exhibit displacement from the mean plane of these atoms smaller than 0.1 Å (only three peripheral carbon atoms slightly exceed this value). Complex of ZnPc with chloride (Mossoyan-Deneux et al., 1985) also exhibits nearly flat conformation of Pc(2-) macrocycle, thus deformation of the molecule into saucer-like shape is probably caused by inter­action with bulky ligands like amines or pyridine derivatives (Table S1). Mutual arrangement of the complex molecules exhibits typical back-to-back fashion, with the distance 3.366 (3) Å, as a consequence of π···π inter­action between Pc(2-) macrocycles. Back-to-back oriented molecules exhibits relatively small shift in plane of Pc(2-) macrorings (Fig. 2).

Thanks to DBU molecule that plays role of acceptor H+, ligation of ZnPc by Br- with the formation of the ionic complex (ZnPcBr-)(DBUH+) maintains -2 oxidation state of the Pc macrocycle . Thus ligation of the central Zn atom of ZnPc by Br- in 1 does not change the colouring properties compared with the parent ZnPc pigment since the energy gap of HOMO-LUMO level is not disturbed. The Q band assigned to HOMO-LUMO transition is observed at almost the same wavelength of ~673 nm in both complexes (ZnPcBr-)(DBUH+) and ZnPc (Nyokong et al., 1987). However, the ionic compound 1 is significantly better soluble than ZnPc pigment and therefore this feature of 1 widnes its potential utility.

Experimental top

Crystals of 1 were obtained by heating of complex ZnPc—DBU, well characterized in literature (Del Sole et al. 2005, Janczak et al., 2011), with n-pentano­thiol slightly acidified with HBr under solvothermal conditions (evacuated glass elongated ampoule, 130 °C, 5 days). Elemental analysis of the ionic (ZnPcBr-)(DBUH+) crystals was performed with energy dispersive spectroscopy (EDS) as well as with a Perkin-Elmer 2400 elemental analyser. EDS spectra were acquired and analysed using an EDAX Pegasus XM4 spectrometer with SDD Apollo 4D detector mounted on a FEI Nova NanoSEM 230 microscope. Found: Zn, 8.00; Br, 9.95; C, 60.45; N, 17.17 and H, 4.20%. Calculated for C41H33N10ZnBr: Zn, 8.06; Br, 9.84; C, 60.72; N, 17.27 and H, 4.10%.

The temperature dependence of the magnetic susceptibility was performed on Quantum Design SQUID magnetometer (San Diego, CA). The data were recorded at a magnetic field of 0.5 T between 1.8 and 300 K on the sample of 50 mg. Electronic absorption spectrum in solution (CARY Varian SE UV-Vis-NIR spectrometer) exhibits typical for Pc macrocycle two bands: Q (~673 nm, logε=5.55) and B (~350 nm,logε=4.22).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. During refinement of the crystal structure we have seen the relatively high thermal parameters of Br coordinated to ZnPc. Therefore, the composition of the crystal has been checked with energy dispersive spectroscopy (EDS) as well as with a Perkin-Elmer 2400 elemental analyser. Elemental analysis evidently points to 1:1 proportion of Zn:Br. Therefore the refinement of the crystal structure was performed with the occupation factor of 1 for Br. Hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for aliphatic and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic moieties. H atom involved in N—H···Br bond was localized in difference maps and refined with N—H distance restrain of 0.87 (2) Å.

Related literature top

For background information, see: Nyokong et al. (1987); Gregory (2000); Leznoff & Lever (1996); Tedesco et al. (2003); Ormond & Freeman (2013). For related structures, see: Kobayashi et al. (1971); Mossoyan-Deneux et al. (1985);, Zeng et al. (2005); Del Sole et al. (2005); Kubiak et al. (2007); Yang et al. (2008); Janczak et al. (2009, 2011); Janczak & Kubiak (2009); Li et al. (2011); Przybył & Janczak (2014).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric part of the unit cell of 1, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing in 1, viewed along a. All atoms are represented by spheres. H atoms, except one involved in hydrogen-bond formation, have been omitted for clarity.
1,8-Diazabicyclo[5.4.0]undec-7-en-8-ium bromido(phthalocyaninato)zincate top
Crystal data top
(C9H17N2)[ZnBr(C32H16N8)]F(000) = 1656
Mr = 811.05Dx = 1.544 Mg m3
Dm = 1.54 Mg m3
Dm measured by floatation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3452 reflections
a = 12.4336 (8) Åθ = 2.6–27.5°
b = 22.9278 (16) ŵ = 1.90 mm1
c = 13.3267 (9) ÅT = 295 K
β = 113.266 (4)°Parallelepiped, blue-violet
V = 3490.2 (4) Å30.35 × 0.21 × 0.19 mm
Z = 4
Data collection top
Kuma KM-4 with CCD detector
diffractometer
8492 independent reflections
Radiation source: fine-focus sealed tube4908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scanθmax = 28.8°, θmin = 2.6°
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1612
Tmin = 0.562, Tmax = 0.725k = 3030
42041 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
8492 reflections(Δ/σ)max < 0.001
478 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
(C9H17N2)[ZnBr(C32H16N8)]V = 3490.2 (4) Å3
Mr = 811.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4336 (8) ŵ = 1.90 mm1
b = 22.9278 (16) ÅT = 295 K
c = 13.3267 (9) Å0.35 × 0.21 × 0.19 mm
β = 113.266 (4)°
Data collection top
Kuma KM-4 with CCD detector
diffractometer
8492 independent reflections
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2008)
4908 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.725Rint = 0.045
42041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.76 e Å3
8492 reflectionsΔρmin = 1.26 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.45113 (3)0.025014 (16)0.31931 (3)0.02443 (12)
Br10.34125 (5)0.06134 (3)0.13296 (5)0.07214 (19)
N10.4406 (2)0.14541 (12)0.4657 (2)0.0260 (6)
N20.3569 (2)0.04946 (12)0.4069 (2)0.0262 (6)
N30.2243 (2)0.03246 (12)0.3688 (2)0.0266 (6)
N40.3855 (2)0.05667 (12)0.3176 (2)0.0257 (6)
N50.5072 (2)0.11056 (12)0.2462 (2)0.0274 (7)
N60.5907 (2)0.01490 (11)0.3055 (2)0.0241 (6)
N70.7220 (2)0.06751 (12)0.3406 (2)0.0255 (6)
N80.5615 (2)0.09175 (12)0.3933 (2)0.0255 (6)
C10.3601 (3)0.10425 (14)0.4491 (3)0.0241 (7)
C20.2578 (3)0.11214 (15)0.4761 (3)0.0254 (7)
C30.2179 (3)0.15852 (16)0.5191 (3)0.0360 (9)
H30.25940.19340.53760.043*
C40.1140 (3)0.15119 (18)0.5335 (3)0.0392 (10)
H40.08510.18170.56150.047*
C50.0527 (3)0.09887 (18)0.5065 (3)0.0374 (9)
H50.01700.09530.51630.045*
C60.0927 (3)0.05206 (16)0.4655 (3)0.0310 (8)
H60.05220.01690.44970.037*
C70.1959 (3)0.05924 (15)0.4485 (3)0.0257 (8)
C80.2596 (3)0.02122 (15)0.4053 (3)0.0257 (7)
C90.2820 (3)0.06799 (14)0.3283 (3)0.0259 (8)
C100.2418 (3)0.12622 (15)0.2871 (3)0.0282 (8)
C110.1426 (3)0.15806 (16)0.2767 (3)0.0351 (9)
H110.08860.14380.30300.042*
C120.1275 (4)0.21193 (17)0.2256 (4)0.0445 (11)
H120.06140.23390.21670.053*
C130.2086 (4)0.23419 (18)0.1871 (4)0.0460 (11)
H130.19590.27070.15420.055*
C140.3078 (3)0.20285 (15)0.1971 (3)0.0376 (9)
H140.36140.21720.17040.045*
C150.3235 (3)0.14865 (15)0.2493 (3)0.0282 (8)
C160.4146 (3)0.10403 (14)0.2715 (3)0.0274 (8)
C170.5885 (3)0.06958 (14)0.2633 (3)0.0260 (8)
C180.6887 (3)0.07754 (16)0.2344 (3)0.0295 (8)
C190.7285 (3)0.12345 (17)0.1915 (3)0.0371 (9)
H190.68850.15880.17450.044*
C200.8312 (4)0.11469 (19)0.1750 (4)0.0459 (11)
H200.85920.14480.14530.055*
C210.8930 (3)0.06286 (18)0.2010 (3)0.0402 (10)
H210.96180.05910.18970.048*
C220.8530 (3)0.01619 (17)0.2442 (3)0.0324 (8)
H220.89300.01910.26040.039*
C230.7526 (3)0.02415 (15)0.2619 (3)0.0285 (8)
C240.6867 (3)0.01334 (14)0.3065 (3)0.0240 (7)
C250.6642 (3)0.10279 (14)0.3824 (3)0.0238 (7)
C260.7048 (3)0.16120 (14)0.4240 (3)0.0259 (8)
C270.8037 (3)0.19329 (16)0.4326 (3)0.0325 (9)
H270.85760.17890.40640.039*
C280.8176 (3)0.24766 (17)0.4819 (3)0.0388 (10)
H280.88230.27020.48850.047*
C290.7384 (3)0.26927 (16)0.5212 (3)0.0386 (9)
H290.75200.30540.55560.046*
C300.6399 (3)0.23853 (15)0.5107 (3)0.0343 (9)
H300.58530.25380.53510.041*
C310.6246 (3)0.18372 (14)0.4624 (3)0.0253 (8)
C320.5330 (3)0.13890 (14)0.4404 (3)0.0226 (7)
N90.2108 (3)0.14631 (15)0.0847 (3)0.0429 (8)
C340.3084 (4)0.1587 (2)0.1199 (4)0.0594 (13)
H34A0.31810.20060.12330.089*
H34B0.28960.14290.19230.089*
C350.4196 (4)0.1325 (2)0.0422 (4)0.0561 (12)
H35A0.47970.13630.07100.084*
H35B0.44580.15300.02710.084*
C360.4004 (4)0.0697 (2)0.0254 (4)0.0532 (12)
H36A0.46910.05410.03320.080*
H36B0.38880.04800.09140.080*
N100.3005 (3)0.06292 (16)0.0010 (3)0.0476 (9)
H100.2977 (9)0.0324 (8)0.0388 (8)0.057*
C370.2124 (3)0.09974 (18)0.0279 (3)0.0395 (10)
C380.1153 (4)0.0872 (2)0.0084 (4)0.0559 (12)
H38A0.13890.05530.06020.084*
H38B0.10360.12120.04610.084*
C390.0027 (4)0.0713 (2)0.0856 (4)0.0540 (12)
H39A0.05300.05330.05430.081*
H39B0.01210.04260.13210.081*
C400.0669 (4)0.1216 (2)0.1551 (4)0.0629 (14)
H40A0.08970.14790.11000.094*
H40B0.13820.10680.21170.094*
C410.0026 (4)0.1557 (2)0.2082 (4)0.0668 (15)
H41A0.01880.12990.25490.100*
H41B0.05480.18520.25450.100*
C420.1090 (4)0.18605 (19)0.1279 (4)0.0546 (12)
H42A0.09360.20180.06730.082*
H42B0.12810.21840.16480.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0227 (2)0.0204 (2)0.0316 (2)0.00134 (17)0.01218 (17)0.00316 (18)
Br10.0702 (4)0.0754 (4)0.0621 (4)0.0065 (3)0.0168 (3)0.0066 (3)
N10.0239 (15)0.0223 (15)0.0314 (17)0.0007 (12)0.0104 (13)0.0021 (13)
N20.0263 (15)0.0239 (15)0.0305 (16)0.0017 (12)0.0136 (13)0.0001 (13)
N30.0244 (15)0.0224 (15)0.0341 (17)0.0033 (12)0.0128 (13)0.0002 (13)
N40.0275 (16)0.0212 (15)0.0307 (16)0.0026 (12)0.0141 (13)0.0024 (13)
N50.0256 (15)0.0246 (15)0.0293 (17)0.0032 (13)0.0079 (13)0.0016 (13)
N60.0220 (14)0.0210 (15)0.0287 (16)0.0013 (11)0.0094 (13)0.0008 (12)
N70.0227 (15)0.0253 (15)0.0293 (16)0.0009 (12)0.0111 (13)0.0002 (13)
N80.0237 (15)0.0221 (14)0.0309 (17)0.0018 (12)0.0111 (13)0.0019 (13)
C10.0236 (17)0.0230 (17)0.0250 (18)0.0022 (14)0.0089 (15)0.0004 (15)
C20.0193 (17)0.0291 (18)0.0270 (19)0.0036 (14)0.0083 (15)0.0006 (15)
C30.035 (2)0.028 (2)0.043 (2)0.0000 (17)0.0139 (19)0.0059 (18)
C40.033 (2)0.042 (2)0.048 (3)0.0118 (18)0.022 (2)0.001 (2)
C50.028 (2)0.048 (2)0.039 (2)0.0058 (18)0.0154 (18)0.0071 (19)
C60.0262 (19)0.035 (2)0.034 (2)0.0013 (16)0.0144 (17)0.0067 (17)
C70.0234 (18)0.0280 (19)0.0252 (19)0.0026 (15)0.0088 (15)0.0022 (15)
C80.0224 (17)0.0276 (18)0.0277 (18)0.0003 (15)0.0104 (15)0.0063 (16)
C90.0239 (18)0.0228 (17)0.0289 (19)0.0020 (14)0.0082 (16)0.0025 (15)
C100.0273 (19)0.0231 (18)0.030 (2)0.0029 (15)0.0061 (16)0.0034 (15)
C110.035 (2)0.030 (2)0.036 (2)0.0078 (17)0.0096 (18)0.0049 (17)
C120.037 (2)0.035 (2)0.052 (3)0.0131 (18)0.007 (2)0.002 (2)
C130.053 (3)0.030 (2)0.049 (3)0.012 (2)0.015 (2)0.011 (2)
C140.041 (2)0.0218 (19)0.044 (2)0.0011 (17)0.0099 (19)0.0040 (17)
C150.0302 (19)0.0231 (18)0.0266 (19)0.0028 (15)0.0063 (16)0.0011 (15)
C160.0285 (19)0.0202 (17)0.0297 (19)0.0030 (15)0.0074 (16)0.0030 (15)
C170.0262 (18)0.0240 (17)0.0233 (18)0.0032 (15)0.0051 (15)0.0005 (15)
C180.0252 (19)0.0313 (19)0.0268 (19)0.0051 (15)0.0049 (16)0.0023 (16)
C190.036 (2)0.034 (2)0.041 (2)0.0067 (17)0.0140 (19)0.0100 (18)
C200.046 (3)0.043 (2)0.053 (3)0.009 (2)0.025 (2)0.014 (2)
C210.034 (2)0.050 (3)0.041 (2)0.0038 (19)0.019 (2)0.002 (2)
C220.0306 (19)0.035 (2)0.034 (2)0.0060 (16)0.0157 (17)0.0019 (17)
C230.0282 (18)0.0276 (18)0.0288 (19)0.0018 (16)0.0102 (16)0.0024 (16)
C240.0234 (17)0.0253 (18)0.0240 (18)0.0027 (14)0.0101 (15)0.0008 (14)
C250.0205 (17)0.0227 (17)0.0287 (19)0.0007 (14)0.0102 (15)0.0011 (15)
C260.0233 (17)0.0208 (17)0.0295 (19)0.0021 (14)0.0062 (15)0.0028 (15)
C270.0269 (19)0.032 (2)0.039 (2)0.0040 (16)0.0133 (17)0.0049 (17)
C280.033 (2)0.029 (2)0.049 (3)0.0078 (17)0.0103 (19)0.0070 (19)
C290.038 (2)0.0238 (19)0.047 (2)0.0064 (17)0.009 (2)0.0039 (18)
C300.035 (2)0.0235 (19)0.042 (2)0.0027 (16)0.0131 (18)0.0008 (17)
C310.0243 (18)0.0190 (17)0.0286 (19)0.0013 (14)0.0062 (15)0.0015 (14)
C320.0195 (16)0.0198 (16)0.0267 (18)0.0012 (13)0.0071 (15)0.0004 (14)
N90.043 (2)0.043 (2)0.041 (2)0.0002 (17)0.0150 (17)0.0038 (17)
C340.070 (3)0.060 (3)0.059 (3)0.004 (3)0.038 (3)0.002 (3)
C350.047 (3)0.066 (3)0.059 (3)0.008 (2)0.025 (2)0.013 (3)
C360.034 (2)0.072 (3)0.044 (3)0.006 (2)0.005 (2)0.014 (2)
N100.046 (2)0.050 (2)0.037 (2)0.0004 (18)0.0054 (17)0.0001 (17)
C370.036 (2)0.045 (2)0.031 (2)0.0023 (19)0.0059 (18)0.0049 (19)
C380.055 (3)0.070 (3)0.044 (3)0.015 (2)0.021 (2)0.007 (2)
C390.045 (3)0.054 (3)0.067 (3)0.007 (2)0.026 (3)0.019 (2)
C400.042 (3)0.057 (3)0.078 (4)0.003 (2)0.011 (3)0.021 (3)
C410.053 (3)0.050 (3)0.070 (4)0.014 (2)0.005 (3)0.002 (3)
C420.056 (3)0.039 (2)0.061 (3)0.009 (2)0.015 (2)0.006 (2)
Geometric parameters (Å, º) top
Zn1—N22.032 (3)C19—H190.9300
Zn1—N82.032 (3)C20—C211.383 (6)
Zn1—N62.034 (3)C20—H200.9300
Zn1—N42.040 (3)C21—C221.396 (5)
Zn1—Br12.4591 (7)C21—H210.9300
N1—C321.327 (4)C22—C231.370 (5)
N1—C11.328 (4)C22—H220.9300
N2—C81.366 (4)C23—C241.466 (5)
N2—C11.370 (4)C25—C261.461 (5)
N3—C81.332 (4)C26—C311.388 (5)
N3—C91.333 (4)C26—C271.398 (5)
N4—C161.365 (4)C27—C281.388 (5)
N4—C91.374 (4)C27—H270.9300
N5—C161.330 (4)C28—C291.378 (5)
N5—C171.332 (4)C28—H280.9300
N6—C241.353 (4)C29—C301.371 (5)
N6—C171.370 (4)C29—H290.9300
N7—C241.336 (4)C30—C311.390 (5)
N7—C251.341 (4)C30—H300.9300
N8—C321.365 (4)C31—C321.475 (4)
N8—C251.365 (4)N9—C371.304 (5)
C1—C21.465 (4)N9—C421.479 (5)
C2—C31.389 (5)N9—C341.492 (5)
C2—C71.405 (5)C34—C351.488 (6)
C3—C41.389 (5)C34—H34A0.9700
C3—H30.9300C34—H34B0.9700
C4—C51.390 (6)C35—C361.491 (6)
C4—H40.9300C35—H35A0.9700
C5—C61.383 (5)C35—H35B0.9700
C5—H50.9300C36—N101.428 (5)
C6—C71.397 (5)C36—H36A0.9700
C6—H60.9300C36—H36B0.9700
C7—C81.442 (5)N10—C371.314 (5)
C9—C101.455 (5)N10—H100.87 (2)
C10—C111.393 (5)C37—C381.495 (6)
C10—C151.398 (5)C38—C391.551 (6)
C11—C121.387 (5)C38—H38A0.9700
C11—H110.9300C38—H38B0.9700
C12—C131.396 (6)C39—C401.496 (7)
C12—H120.9300C39—H39A0.9700
C13—C141.388 (5)C39—H39B0.9700
C13—H130.9300C40—C411.483 (7)
C14—C151.400 (5)C40—H40A0.9700
C14—H140.9300C40—H40B0.9700
C15—C161.467 (5)C41—C421.544 (6)
C17—C181.454 (5)C41—H41A0.9700
C18—C191.379 (5)C41—H41B0.9700
C18—C231.426 (5)C42—H42A0.9700
C19—C201.393 (5)C42—H42B0.9700
N2—Zn1—N886.86 (11)C23—C22—H22121.1
N2—Zn1—N6151.95 (12)C21—C22—H22121.1
N8—Zn1—N686.90 (11)C22—C23—C18121.5 (3)
N2—Zn1—N486.61 (11)C22—C23—C24133.2 (3)
N8—Zn1—N4152.57 (12)C18—C23—C24105.3 (3)
N6—Zn1—N486.44 (11)N7—C24—N6128.2 (3)
N2—Zn1—Br1105.68 (8)N7—C24—C23121.5 (3)
N8—Zn1—Br1103.56 (8)N6—C24—C23110.3 (3)
N6—Zn1—Br1102.38 (8)N7—C25—N8127.6 (3)
N4—Zn1—Br1103.85 (8)N7—C25—C26123.3 (3)
C32—N1—C1123.2 (3)N8—C25—C26109.0 (3)
C8—N2—C1108.8 (3)C31—C26—C27120.7 (3)
C8—N2—Zn1124.7 (2)C31—C26—C25106.9 (3)
C1—N2—Zn1124.0 (2)C27—C26—C25132.3 (3)
C8—N3—C9124.1 (3)C28—C27—C26116.9 (3)
C16—N4—C9108.8 (3)C28—C27—H27121.5
C16—N4—Zn1124.0 (2)C26—C27—H27121.5
C9—N4—Zn1124.0 (2)C29—C28—C27121.9 (3)
C16—N5—C17123.4 (3)C29—C28—H28119.0
C24—N6—C17108.5 (3)C27—C28—H28119.0
C24—N6—Zn1124.4 (2)C30—C29—C28121.3 (4)
C17—N6—Zn1124.7 (2)C30—C29—H29119.3
C24—N7—C25123.0 (3)C28—C29—H29119.3
C32—N8—C25109.0 (3)C29—C30—C31117.7 (4)
C32—N8—Zn1124.8 (2)C29—C30—H30121.1
C25—N8—Zn1124.6 (2)C31—C30—H30121.1
N1—C1—N2128.1 (3)C26—C31—C30121.3 (3)
N1—C1—C2122.8 (3)C26—C31—C32106.1 (3)
N2—C1—C2109.1 (3)C30—C31—C32132.5 (3)
C3—C2—C7121.4 (3)N1—C32—N8127.9 (3)
C3—C2—C1133.0 (3)N1—C32—C31123.3 (3)
C7—C2—C1105.6 (3)N8—C32—C31108.9 (3)
C2—C3—C4117.8 (3)C37—N9—C42123.1 (4)
C2—C3—H3121.1C37—N9—C34120.7 (4)
C4—C3—H3121.1C42—N9—C34115.9 (4)
C3—C4—C5120.9 (3)C35—C34—N9110.6 (4)
C3—C4—H4119.6C35—C34—H34A109.5
C5—C4—H4119.6N9—C34—H34A109.5
C6—C5—C4121.7 (3)C35—C34—H34B109.5
C6—C5—H5119.1N9—C34—H34B109.5
C4—C5—H5119.1H34A—C34—H34B108.1
C5—C6—C7117.9 (3)C34—C35—C36109.6 (4)
C5—C6—H6121.0C34—C35—H35A109.8
C7—C6—H6121.0C36—C35—H35A109.8
C6—C7—C2120.2 (3)C34—C35—H35B109.8
C6—C7—C8132.7 (3)C36—C35—H35B109.8
C2—C7—C8107.2 (3)H35A—C35—H35B108.2
N3—C8—N2127.3 (3)N10—C36—C35110.4 (4)
N3—C8—C7123.4 (3)N10—C36—H36A109.6
N2—C8—C7109.3 (3)C35—C36—H36A109.6
N3—C9—N4127.1 (3)N10—C36—H36B109.6
N3—C9—C10123.6 (3)C35—C36—H36B109.6
N4—C9—C10109.3 (3)H36A—C36—H36B108.1
C11—C10—C15120.8 (3)C37—N10—C36124.3 (4)
C11—C10—C9132.6 (3)C37—N10—H10118 (1)
C15—C10—C9106.5 (3)C36—N10—H10118 (1)
C12—C11—C10117.3 (4)N9—C37—N10121.2 (4)
C12—C11—H11121.4N9—C37—C38121.0 (4)
C10—C11—H11121.4N10—C37—C38117.9 (4)
C11—C12—C13121.9 (4)C37—C38—C39114.3 (4)
C11—C12—H12119.0C37—C38—H38A108.7
C13—C12—H12119.0C39—C38—H38A108.7
C14—C13—C12121.3 (4)C37—C38—H38B108.7
C14—C13—H13119.4C39—C38—H38B108.7
C12—C13—H13119.4H38A—C38—H38B107.6
C13—C14—C15116.8 (4)C40—C39—C38114.9 (4)
C13—C14—H14121.6C40—C39—H39A108.5
C15—C14—H14121.6C38—C39—H39A108.5
C10—C15—C14121.8 (3)C40—C39—H39B108.5
C10—C15—C16106.5 (3)C38—C39—H39B108.5
C14—C15—C16131.6 (3)H39A—C39—H39B107.5
N5—C16—N4127.9 (3)C41—C40—C39116.5 (4)
N5—C16—C15123.2 (3)C41—C40—H40A108.2
N4—C16—C15109.0 (3)C39—C40—H40A108.2
N5—C17—N6127.4 (3)C41—C40—H40B108.2
N5—C17—C18122.5 (3)C39—C40—H40B108.2
N6—C17—C18110.0 (3)H40A—C40—H40B107.3
C19—C18—C23120.4 (3)C40—C41—C42114.4 (5)
C19—C18—C17133.7 (3)C40—C41—H41A108.7
C23—C18—C17105.9 (3)C42—C41—H41A108.7
C18—C19—C20117.2 (4)C40—C41—H41B108.7
C18—C19—H19121.4C42—C41—H41B108.7
C20—C19—H19121.4H41A—C41—H41B107.6
C21—C20—C19122.5 (4)N9—C42—C41112.9 (3)
C21—C20—H20118.8N9—C42—H42A109.0
C19—C20—H20118.8C41—C42—H42A109.0
C20—C21—C22120.6 (4)N9—C42—H42B109.0
C20—C21—H21119.7C41—C42—H42B109.0
C22—C21—H21119.7H42A—C42—H42B107.8
C23—C22—C21117.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···Br10.87 (2)2.44 (2)3.281 (4)163 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···Br10.87 (2)2.44 (2)3.281 (4)163 (2)
Table S1 Comparison of Zn—L bond length and displacement of Zn from N4 plane (Zn—N4) in 1 and different literature ZnPc complexes (Å) top
CompoundZn—LZn—N4Ref.
ZnPc—(DBU)2.063 (2)0.614 (2)Janczak et al., 2011
ZnPc—(4-picoline)2.166 (3)0.352 (2)Kubiak et al., 2007
ZnPc—(2-amino-3-picoline)2.157 (2)0.470 (2)Janczak et al., 2009
ZnPc—(n-buthylamine)2.073 (4)0.494 (4)Przybył & Janczak, 2014
ZnPc—(n-amylamine)2.087 (3)0.498 (4)Przybył & Janczak, 2014
ZnPc—(n-heptylamine)2.097 (2)0.477 (4)Przybył & Janczak, 2014
ZnPc—(n-hexylamine)2.1780.480Kobayashi et al., 1971
ZnPc—(pyrazine)2.178 (2)0.371 (2)Janczak & Kubiak, 2009
(ZnPc)2—(pyrazine)2.207 (2)0.296 (2)Janczak & Kubiak, 2009
ZnPc—(4-aminopyridine)2.092 (3)0.446 (1)Yang et al., 2008
ZnPc—(1,3-bis(4-pyridyl)propane)2.130 (5)0.375 (3)Zeng et al., 2005
(ZnPc)2—(µ2-1,2-bis(4-pyridyl)ethane)2.125 (7)0.483 (4)Zeng et al., 2005
(ZnPc)2—(µ2-1,2-bis(4-pyridyl)ethylene)2.156 (2)0.347 (2)Zeng et al., 2005
(ZnPc)2—(µ2-N,N'-bis((pyridin-3-yl)methyl)ethanediamide)2.147 (3)0.377 (3)Li et al., 2011
ZnPc—Cl2.350.59Mossoyan-Deneux et al., 1985
ZnPc—Br2.459 (3)0.488 (3)this work

Acknowledgements

This work was supported by the Ministry of Science and Higher Education (grant No. N N204 397540).

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDel Sole, R., De Luca, A., Mele, G. & Vasapollo, G. (2005). J. Porphyrins Phthalocyanines, 9, 519–527.  CrossRef CAS Google Scholar
First citationGregory, P. (2000). J. Porphyrins Phthalocyanines, 4, 432–437.  CrossRef CAS Google Scholar
First citationJanczak, J. & Kubiak, R. (2009). Polyhedron, 28, 2391–2396.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanczak, J., Kubiak, R. & Bukowska, E. (2009). J. Mol. Struct. 937, 25–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253–258.  Web of Science CSD CrossRef CAS Google Scholar
First citationKobayashi, T., Ashida, W., Uyeda, N., Suito, E. & Makudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 2095–2103.  CrossRef CAS Web of Science Google Scholar
First citationKubiak, R., Janczak, J., Śledź, M. & Bukowska, E. (2007). Polyhedron, 26, 4179–4186.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., He, X., Chen, Y., Fan, X. & Zeng, Q. (2011). J. Mol. Struct. 1002, 145–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeznoff, C. C. & Lever, A. B. P. (1996). Editors. Phthalocyanines: Properties and Applications, Vol. 4. New York: VCH Publishers.  Google Scholar
First citationMossoyan-Deneux, M., Benlian, D., Pierrot, M., Fournel, A. & Sorbier, J. P. (1985). Inorg. Chem. 24, 1878–1882.  CAS Google Scholar
First citationNyokong, T., Gasyna, Z. & Stillman, M. J. (1987). Inorg. Chem. 26, 1087–1095.  CrossRef CAS Web of Science Google Scholar
First citationOrmond, A. B. & Freeman, H. S. (2013). Materials, 6, 817-840.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED, Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationPrzybył, B. & Janczak, J. (2014). Dyes Pigments, 100, 247–254.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTedesco, A. C., Rott, J. C. G. & Lunardi, C. N. (2003). Curr. Org. Chem. 7, 187–196.  Web of Science CrossRef CAS Google Scholar
First citationYang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375–m377.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZeng, Q., Wu, D., Wang, C., Lu, J., Ma, B., Shu, C., Ma, H., Li, Y. & Bai, C. (2005). CrystEngComm, 7, 243–248.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m231-m232
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds