organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ethyl-2-[1-(2-hy­dr­oxy-4-methyl­phen­yl)ethyl­­idene]hydrazinecarbo­thio­amide

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 May 2014; accepted 26 May 2014; online 31 May 2014)

The title compound, C12H17N3OS, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the benzene ring and the hydrazinecarbo­thio­amide group are 6.9 (4) and 37.2 (5)° in mol­ecules A and B, respectively. An intra­molecular O—H⋯N hydrogen bond is observed in each mol­ecule. This serves to maintain an approximately planar conformation for mol­ecule A, but leaves a significant twist between these two groups in mol­ecule B. In the crystal, a weak N—H⋯S inter­action is observed, forming inversion dimers among the B mol­ecules and resulting in an R22(8) motif. These dimers are further inter­connected by weak N—H⋯O and C—H⋯O inter­molecular inter­actions, forming chains along [011].

Related literature

For the biological activity of thio­semicarbazones, see: Chellan et al. (2010[Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520-3528.]). For binding motifs of thio­semicarbazones, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For thio­semicarbazones as ligands in catalysis, see: Xie et al. (2010[Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641-1647.]). For related structures, see: Anderson et al. (2012[Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.], 2013a[Anderson, B. J., Freedman, M. B., Millikan, S. P. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1315.],b[Anderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013b). Acta Cryst. E69, o11.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N3OS

  • Mr = 251.34

  • Triclinic, [P \overline 1]

  • a = 7.4253 (4) Å

  • b = 8.7713 (4) Å

  • c = 20.7093 (11) Å

  • α = 96.238 (4)°

  • β = 94.400 (5)°

  • γ = 100.177 (4)°

  • V = 1313.35 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.28 × 0.24 × 0.12 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.693, Tmax = 1.000

  • 17011 measured reflections

  • 8692 independent reflections

  • 5875 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.204

  • S = 1.09

  • 8692 reflections

  • 315 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N3A 0.84 1.85 2.589 (2) 146
C10A—H10B⋯O1Bi 0.98 2.45 3.406 (3) 164
O1B—H1B⋯N3B 0.84 1.81 2.545 (2) 146
N1B—H1BA⋯O1Aii 0.88 2.36 3.076 (2) 139
N2B—H2B⋯S1Biii 0.88 2.52 3.320 (2) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiosemicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan et al., 2010), interesting binding motifs (Lobana et al., 2009), and their use as ligands in catalysis (Xie et al., 2010). We have previously reported the structure of three similar novel thiosemicarbazones (Anderson et al., 2012; Anderson et al., 2013a; Anderson et al., 2013b). Here, we report the synthesis and crystal structure of a new novel thiosemicarbazone ligand, (I), C12H17N3OS.

The title compound, (I), crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1). The dihedral angles between the mean planes of the benzene ring and the hydrazinecarbothioamide group is 6.9 (4)° (N3A/N2A/C1A/S1A/N1A) and 37.2 (5)° (N3B/N2B/C1B/S1B/N1B). An intramolecular O—H···N hydrogen bond is observed serving to maintain an approximately planar conformation in A. However in B there is a significant twist between these two groups. In the crystal, a weak N2B—H2B···S1B intermolecular interaction is observed forming inversion dimers among the B molecules in an R22[8] motif format (Fig. 2). These dimers are further interconnected by weak N1B—H1BA···O1A and C10A—HH10B···O1B intermolecular interactions (Table 1) forming polymeric chains along [011].

Related literature top

For the biological activity of thiosemicarbazones, see: Chellan et al. (2010). For binding motifs of thiosemicarbazones, see: Lobana et al. (2009). For thiosemicarbazones as ligands in catalysis, see: Xie et al. (2010). For related structures, see: Anderson et al. (2012, 2013a,b).

Experimental top

A 25 mL round bottom flask was charged with 0.1986 g (1.428 mmol) of 4'-methylacetophenone, 0.1702 g (1.428 mmol) of 4-ethyl-3-thiosemicarbazide and dissolved in 5 mL of a 1:1 ethanol: water solution and refluxed for 96 hours (Fig. 3). The reaction was allowed to cool to room temperature before dichloromethane (5 mL) and deionized water (5mL) were added, and the organic layer was separated. The aqueous layer was then extracted with an additional 5 mL of dichloromethane. The organic layers were then combined, washed with brine (2 X 5 mL), dried with magnesium sulfate, and the solvent removed in vacuo resulting in an off-white powder. The product was recrystallized from dichloromethane. m.p. 428–431 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3), 0.88Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me refined as rotating group. Idealised tetrahedral OH refined as rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C12H17N3OS, showing the labeling scheme of molecules A and B with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate weak N2B—H2B···S1B intermolecular interactions forming inversion dimers among the B molecules in an R22[8] motif format. These dimers are further interconnected by weak N1B—H1BA···O1A and C10A—HH10B···O1B intermolecular interactions forming polymeric chains along [011].
[Figure 3] Fig. 3. Reaction scheme.
N-Ethyl-2-[1-(2-hydroxy-4-methylphenyl)ethylidene]hydrazinecarbothioamide top
Crystal data top
C12H17N3OSZ = 4
Mr = 251.34F(000) = 536
Triclinic, P1Dx = 1.271 Mg m3
a = 7.4253 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7713 (4) ÅCell parameters from 4160 reflections
c = 20.7093 (11) Åθ = 3.6–32.3°
α = 96.238 (4)°µ = 0.24 mm1
β = 94.400 (5)°T = 173 K
γ = 100.177 (4)°Irregular, colourless
V = 1313.35 (12) Å30.28 × 0.24 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
8692 independent reflections
Radiation source: Enhance (Mo) X-ray Source5875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0416 pixels mm-1θmax = 32.9°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1213
Tmin = 0.693, Tmax = 1.000l = 2630
17011 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.5803P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
8692 reflectionsΔρmax = 0.66 e Å3
315 parametersΔρmin = 0.38 e Å3
0 restraints
Crystal data top
C12H17N3OSγ = 100.177 (4)°
Mr = 251.34V = 1313.35 (12) Å3
Triclinic, P1Z = 4
a = 7.4253 (4) ÅMo Kα radiation
b = 8.7713 (4) ŵ = 0.24 mm1
c = 20.7093 (11) ÅT = 173 K
α = 96.238 (4)°0.28 × 0.24 × 0.12 mm
β = 94.400 (5)°
Data collection top
Agilent Eos Gemini
diffractometer
8692 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
5875 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 1.000Rint = 0.038
17011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.09Δρmax = 0.66 e Å3
8692 reflectionsΔρmin = 0.38 e Å3
315 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.83372 (9)0.27257 (8)1.00813 (3)0.04037 (17)
O1A0.6515 (3)0.23324 (18)0.72182 (8)0.0367 (4)
H1A0.67530.25090.76250.055*
N1A0.6804 (4)0.1452 (2)0.89037 (10)0.0445 (5)
H1AA0.65400.15390.84890.053*
N2A0.8328 (3)0.3978 (2)0.89858 (9)0.0292 (4)
H2A0.88790.48570.92200.035*
N3A0.8001 (3)0.3907 (2)0.83175 (8)0.0264 (3)
C1A0.7795 (3)0.2685 (3)0.92817 (10)0.0308 (4)
C2A0.8520 (3)0.5138 (2)0.80405 (10)0.0262 (4)
C3A0.8189 (3)0.4995 (2)0.73234 (10)0.0244 (4)
C4A0.7229 (3)0.3614 (2)0.69440 (10)0.0253 (4)
C5A0.6966 (3)0.3517 (2)0.62696 (10)0.0288 (4)
H5A0.62720.25900.60270.035*
C6A0.7694 (3)0.4746 (3)0.59403 (10)0.0295 (4)
C7A0.8656 (3)0.6109 (3)0.63058 (11)0.0332 (5)
H7A0.91590.69670.60910.040*
C8A0.8889 (3)0.6230 (2)0.69794 (11)0.0307 (4)
H8A0.95420.71790.72180.037*
C9A0.7471 (4)0.4560 (3)0.52077 (11)0.0431 (6)
H9AA0.83430.39350.50380.065*
H9AB0.77120.55910.50560.065*
H9AC0.62130.40330.50500.065*
C10A0.9427 (5)0.6663 (3)0.84219 (12)0.0476 (7)
H10A0.88640.68080.88320.071*
H10B0.92710.75150.81660.071*
H10C1.07410.66660.85180.071*
C11A0.6132 (6)0.0035 (3)0.91371 (15)0.0679 (11)
H11A0.52810.01170.94740.081*
H11B0.71770.04390.93380.081*
C12A0.5152 (5)0.1188 (3)0.85797 (16)0.0609 (9)
H12A0.60300.14240.82710.091*
H12B0.41880.07450.83580.091*
H12C0.45960.21490.87450.091*
S1B0.27526 (9)0.11629 (8)0.50079 (3)0.03846 (17)
O1B0.0388 (3)0.00478 (19)0.22569 (9)0.0442 (5)
H1B0.06320.00320.26610.066*
N1B0.3440 (3)0.0524 (2)0.37797 (9)0.0328 (4)
H1BA0.31140.00040.33880.039*
N2B0.0643 (3)0.0663 (2)0.40373 (9)0.0322 (4)
H2B0.00520.10760.43230.039*
N3B0.0112 (3)0.0985 (2)0.33722 (9)0.0297 (4)
C1B0.2276 (3)0.0313 (2)0.42314 (11)0.0302 (4)
C2B0.1110 (3)0.2211 (2)0.31448 (11)0.0275 (4)
C3B0.1631 (3)0.2420 (2)0.24375 (10)0.0269 (4)
C4B0.0889 (3)0.1338 (2)0.20249 (11)0.0304 (4)
C5B0.1424 (3)0.1555 (3)0.13613 (12)0.0335 (5)
H5B0.09300.07890.10990.040*
C6B0.2666 (3)0.2867 (3)0.10702 (12)0.0341 (5)
C7B0.3400 (3)0.3951 (3)0.14698 (13)0.0383 (5)
H7B0.42540.48580.12820.046*
C8B0.2904 (3)0.3726 (3)0.21335 (12)0.0350 (5)
H8B0.34410.44790.23940.042*
C9B0.3194 (4)0.3111 (3)0.03475 (12)0.0442 (6)
H9BA0.44960.30570.02610.066*
H9BB0.29870.41380.01660.066*
H9BC0.24430.22980.01430.066*
C10B0.1944 (3)0.3386 (3)0.35613 (12)0.0354 (5)
H10D0.32200.32810.36110.053*
H10E0.12410.32080.39920.053*
H10F0.19180.44400.33540.053*
C11B0.5237 (4)0.1568 (3)0.38931 (12)0.0419 (6)
H11C0.60260.12000.42270.050*
H11D0.50780.26340.40580.050*
C12B0.6130 (6)0.1606 (6)0.32810 (19)0.0867 (14)
H12D0.53080.18990.29420.130*
H12E0.63940.05720.31410.130*
H12F0.72810.23730.33540.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0474 (4)0.0438 (3)0.0272 (3)0.0004 (3)0.0005 (2)0.0092 (2)
O1A0.0507 (10)0.0243 (7)0.0290 (8)0.0091 (7)0.0076 (7)0.0001 (6)
N1A0.0690 (15)0.0318 (10)0.0271 (10)0.0068 (10)0.0037 (9)0.0063 (8)
N2A0.0386 (10)0.0245 (8)0.0234 (8)0.0036 (7)0.0032 (7)0.0019 (6)
N3A0.0328 (9)0.0235 (8)0.0227 (8)0.0047 (7)0.0042 (6)0.0019 (6)
C1A0.0380 (11)0.0282 (10)0.0264 (10)0.0050 (9)0.0067 (8)0.0042 (8)
C2A0.0319 (10)0.0189 (8)0.0275 (10)0.0053 (8)0.0001 (8)0.0018 (7)
C3A0.0279 (9)0.0185 (8)0.0256 (9)0.0031 (7)0.0001 (7)0.0013 (7)
C4A0.0266 (9)0.0202 (8)0.0280 (10)0.0015 (7)0.0041 (7)0.0018 (7)
C5A0.0297 (10)0.0253 (9)0.0286 (10)0.0019 (8)0.0005 (8)0.0024 (7)
C6A0.0342 (10)0.0287 (10)0.0254 (10)0.0069 (9)0.0004 (8)0.0025 (7)
C7A0.0439 (12)0.0249 (9)0.0294 (11)0.0014 (9)0.0008 (9)0.0075 (8)
C8A0.0395 (11)0.0195 (8)0.0307 (11)0.0017 (8)0.0022 (8)0.0030 (7)
C9A0.0560 (16)0.0437 (13)0.0259 (11)0.0024 (12)0.0011 (10)0.0030 (9)
C10A0.080 (2)0.0258 (11)0.0280 (12)0.0066 (12)0.0112 (12)0.0026 (8)
C11A0.120 (3)0.0359 (14)0.0379 (15)0.0174 (17)0.0104 (17)0.0114 (11)
C12A0.079 (2)0.0331 (13)0.062 (2)0.0119 (15)0.0111 (16)0.0024 (12)
S1B0.0403 (3)0.0435 (3)0.0269 (3)0.0003 (3)0.0034 (2)0.0028 (2)
O1B0.0627 (12)0.0257 (8)0.0350 (9)0.0126 (8)0.0058 (8)0.0044 (6)
N1B0.0359 (9)0.0302 (9)0.0274 (9)0.0044 (8)0.0045 (7)0.0021 (7)
N2B0.0342 (9)0.0326 (9)0.0271 (9)0.0002 (8)0.0056 (7)0.0000 (7)
N3B0.0313 (9)0.0275 (8)0.0281 (9)0.0017 (7)0.0014 (7)0.0000 (7)
C1B0.0345 (10)0.0262 (9)0.0280 (10)0.0023 (9)0.0004 (8)0.0019 (8)
C2B0.0271 (9)0.0222 (9)0.0329 (11)0.0047 (8)0.0058 (8)0.0007 (7)
C3B0.0263 (9)0.0211 (9)0.0325 (11)0.0043 (8)0.0027 (8)0.0000 (7)
C4B0.0345 (11)0.0198 (9)0.0351 (11)0.0035 (8)0.0003 (8)0.0011 (8)
C5B0.0361 (11)0.0277 (10)0.0364 (12)0.0070 (9)0.0002 (9)0.0039 (8)
C6B0.0327 (11)0.0321 (11)0.0370 (12)0.0104 (9)0.0016 (9)0.0015 (9)
C7B0.0328 (11)0.0312 (11)0.0442 (14)0.0034 (9)0.0032 (9)0.0046 (9)
C8B0.0331 (11)0.0274 (10)0.0412 (13)0.0019 (9)0.0038 (9)0.0014 (9)
C9B0.0433 (13)0.0496 (15)0.0361 (13)0.0088 (12)0.0071 (10)0.0032 (11)
C10B0.0385 (12)0.0301 (11)0.0359 (12)0.0005 (9)0.0085 (9)0.0042 (9)
C11B0.0397 (12)0.0426 (13)0.0351 (13)0.0111 (11)0.0015 (10)0.0010 (10)
C12B0.067 (2)0.104 (3)0.067 (2)0.037 (2)0.0288 (18)0.016 (2)
Geometric parameters (Å, º) top
S1A—C1A1.669 (2)S1B—C1B1.681 (2)
O1A—H1A0.8400O1B—H1B0.8400
O1A—C4A1.357 (2)O1B—C4B1.358 (3)
N1A—H1AA0.8800N1B—H1BA0.8800
N1A—C1A1.330 (3)N1B—C1B1.327 (3)
N1A—C11A1.459 (3)N1B—C11B1.465 (3)
N2A—H2A0.8800N2B—H2B0.8800
N2A—N3A1.379 (2)N2B—N3B1.387 (3)
N2A—C1A1.359 (3)N2B—C1B1.360 (3)
N3A—C2A1.290 (3)N3B—C2B1.297 (3)
C2A—C3A1.474 (3)C2B—C3B1.469 (3)
C2A—C10A1.496 (3)C2B—C10B1.497 (3)
C3A—C4A1.412 (3)C3B—C4B1.414 (3)
C3A—C8A1.406 (3)C3B—C8B1.404 (3)
C4A—C5A1.386 (3)C4B—C5B1.384 (3)
C5A—H5A0.9500C5B—H5B0.9500
C5A—C6A1.389 (3)C5B—C6B1.388 (3)
C6A—C7A1.390 (3)C6B—C7B1.394 (3)
C6A—C9A1.501 (3)C6B—C9B1.500 (3)
C7A—H7A0.9500C7B—H7B0.9500
C7A—C8A1.383 (3)C7B—C8B1.379 (3)
C8A—H8A0.9500C8B—H8B0.9500
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C10A—H10A0.9800C10B—H10D0.9800
C10A—H10B0.9800C10B—H10E0.9800
C10A—H10C0.9800C10B—H10F0.9800
C11A—H11A0.9900C11B—H11C0.9900
C11A—H11B0.9900C11B—H11D0.9900
C11A—C12A1.497 (4)C11B—C12B1.476 (4)
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C4A—O1A—H1A109.5C4B—O1B—H1B109.5
C1A—N1A—H1AA118.1C1B—N1B—H1BA118.0
C1A—N1A—C11A123.7 (2)C1B—N1B—C11B124.01 (19)
C11A—N1A—H1AA118.1C11B—N1B—H1BA118.0
N3A—N2A—H2A120.1N3B—N2B—H2B121.2
C1A—N2A—H2A120.1C1B—N2B—H2B121.2
C1A—N2A—N3A119.78 (17)C1B—N2B—N3B117.55 (18)
C2A—N3A—N2A119.35 (17)C2B—N3B—N2B120.16 (18)
N1A—C1A—S1A123.78 (17)N1B—C1B—S1B123.27 (17)
N1A—C1A—N2A116.28 (19)N1B—C1B—N2B116.29 (19)
N2A—C1A—S1A119.91 (16)N2B—C1B—S1B120.44 (17)
N3A—C2A—C3A117.47 (17)N3B—C2B—C3B116.11 (18)
N3A—C2A—C10A122.20 (19)N3B—C2B—C10B123.4 (2)
C3A—C2A—C10A120.34 (18)C3B—C2B—C10B120.51 (18)
C4A—C3A—C2A122.63 (17)C4B—C3B—C2B122.56 (18)
C8A—C3A—C2A120.90 (17)C8B—C3B—C2B121.23 (19)
C8A—C3A—C4A116.43 (18)C8B—C3B—C4B116.2 (2)
O1A—C4A—C3A122.03 (18)O1B—C4B—C3B121.90 (19)
O1A—C4A—C5A116.98 (17)O1B—C4B—C5B116.80 (19)
C5A—C4A—C3A121.00 (18)C5B—C4B—C3B121.29 (19)
C4A—C5A—H5A119.3C4B—C5B—H5B119.3
C4A—C5A—C6A121.46 (19)C4B—C5B—C6B121.4 (2)
C6A—C5A—H5A119.3C6B—C5B—H5B119.3
C5A—C6A—C7A118.27 (19)C5B—C6B—C7B118.0 (2)
C5A—C6A—C9A119.8 (2)C5B—C6B—C9B120.9 (2)
C7A—C6A—C9A121.9 (2)C7B—C6B—C9B121.1 (2)
C6A—C7A—H7A119.7C6B—C7B—H7B119.5
C8A—C7A—C6A120.64 (19)C8B—C7B—C6B120.9 (2)
C8A—C7A—H7A119.7C8B—C7B—H7B119.5
C3A—C8A—H8A118.9C3B—C8B—H8B118.9
C7A—C8A—C3A122.15 (19)C7B—C8B—C3B122.2 (2)
C7A—C8A—H8A118.9C7B—C8B—H8B118.9
C6A—C9A—H9AA109.5C6B—C9B—H9BA109.5
C6A—C9A—H9AB109.5C6B—C9B—H9BB109.5
C6A—C9A—H9AC109.5C6B—C9B—H9BC109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C2A—C10A—H10A109.5C2B—C10B—H10D109.5
C2A—C10A—H10B109.5C2B—C10B—H10E109.5
C2A—C10A—H10C109.5C2B—C10B—H10F109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
N1A—C11A—H11A109.7N1B—C11B—H11C109.6
N1A—C11A—H11B109.7N1B—C11B—H11D109.6
N1A—C11A—C12A109.8 (2)N1B—C11B—C12B110.2 (2)
H11A—C11A—H11B108.2H11C—C11B—H11D108.1
C12A—C11A—H11A109.7C12B—C11B—H11C109.6
C12A—C11A—H11B109.7C12B—C11B—H11D109.6
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
O1A—C4A—C5A—C6A177.9 (2)O1B—C4B—C5B—C6B177.4 (2)
N2A—N3A—C2A—C3A178.30 (17)N2B—N3B—C2B—C3B177.79 (18)
N2A—N3A—C2A—C10A1.6 (3)N2B—N3B—C2B—C10B3.3 (3)
N3A—N2A—C1A—S1A175.07 (16)N3B—N2B—C1B—S1B162.66 (16)
N3A—N2A—C1A—N1A6.7 (3)N3B—N2B—C1B—N1B18.2 (3)
N3A—C2A—C3A—C4A4.4 (3)N3B—C2B—C3B—C4B1.4 (3)
N3A—C2A—C3A—C8A173.1 (2)N3B—C2B—C3B—C8B178.3 (2)
C1A—N1A—C11A—C12A177.2 (3)C1B—N1B—C11B—C12B176.4 (3)
C1A—N2A—N3A—C2A179.6 (2)C1B—N2B—N3B—C2B160.1 (2)
C2A—C3A—C4A—O1A1.3 (3)C2B—C3B—C4B—O1B1.3 (3)
C2A—C3A—C4A—C5A179.14 (19)C2B—C3B—C4B—C5B179.1 (2)
C2A—C3A—C8A—C7A177.6 (2)C2B—C3B—C8B—C7B179.4 (2)
C3A—C4A—C5A—C6A2.6 (3)C3B—C4B—C5B—C6B2.1 (3)
C4A—C3A—C8A—C7A0.0 (3)C4B—C3B—C8B—C7B0.3 (3)
C4A—C5A—C6A—C7A2.0 (3)C4B—C5B—C6B—C7B1.5 (3)
C4A—C5A—C6A—C9A176.5 (2)C4B—C5B—C6B—C9B178.2 (2)
C5A—C6A—C7A—C8A0.4 (4)C5B—C6B—C7B—C8B0.1 (4)
C6A—C7A—C8A—C3A0.6 (4)C6B—C7B—C8B—C3B0.8 (4)
C8A—C3A—C4A—O1A178.9 (2)C8B—C3B—C4B—O1B178.4 (2)
C8A—C3A—C4A—C5A1.5 (3)C8B—C3B—C4B—C5B1.1 (3)
C9A—C6A—C7A—C8A178.0 (2)C9B—C6B—C7B—C8B179.7 (2)
C10A—C2A—C3A—C4A175.7 (2)C10B—C2B—C3B—C4B179.7 (2)
C10A—C2A—C3A—C8A6.8 (3)C10B—C2B—C3B—C8B0.6 (3)
C11A—N1A—C1A—S1A2.5 (4)C11B—N1B—C1B—S1B2.9 (3)
C11A—N1A—C1A—N2A179.4 (3)C11B—N1B—C1B—N2B178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N3A0.841.852.589 (2)146
C10A—H10B···O1Bi0.982.453.406 (3)164
O1B—H1B···N3B0.841.812.545 (2)146
N1B—H1BA···O1Aii0.882.363.076 (2)139
N2B—H2B···S1Biii0.882.523.320 (2)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N3A0.841.852.589 (2)146
C10A—H10B···O1Bi0.982.453.406 (3)164
O1B—H1B···N3B0.841.812.545 (2)146
N1B—H1BA···O1Aii0.882.363.076 (2)139
N2B—H2B···S1Biii0.882.523.320 (2)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnderson, B. J., Freedman, M. B., Millikan, S. P. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1315.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013b). Acta Cryst. E69, o11.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.  CSD CrossRef IUCr Journals Google Scholar
First citationChellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds