metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyridine-κN)nickel(II)]-di-μ-thio­cyanato-κ2N:S;κ2S:N]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

(Received 10 April 2014; accepted 28 April 2014; online 3 May 2014)

In the title compound, [Ni(NCS)2(C5H5N)2]n, the Ni2+ cation is coordinated by four thio­cyanate anions (μ-1,3) and two pyridine ligands within a slightly distorted octa­hedral configuration. The Ni—N bond lengths to the pyridine rings are 2.1189 (17) and 2.1241 (17) Å, whereas those to the thiocyanate anions are 2.0299 (18) and 2.0359 Å. The Ni—S bond lengths are 2.5357 (6) and 2.5568 (6) Å. The Ni2+ cations are linked by N:S-bridging thio­cyanate ligands into chains extending along [010]. The Ni⋯Ni distance within the chains is 5.5820 (5) Å. The asymmetric unit contains two Ni2+ cations of which one is located on a centre of inversion, whereas the second is located on a general position.

Related literature

For isotypic structures, see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019-11026.], 2012[Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587-595.]); Chen et al. (2005[Chen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2718-m2719.]). For a previous structure report of the title compound, see Reller & Oswald (1986[Reller, A. & Oswald, H. R. (1986). J. Solid State Chem. 62, 306-316.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C5H5N)2]

  • Mr = 333.07

  • Triclinic, [P \overline 1]

  • a = 8.4913 (5) Å

  • b = 8.6808 (5) Å

  • c = 15.3608 (9) Å

  • α = 92.675 (5)°

  • β = 96.460 (4)°

  • γ = 114.753 (4)°

  • V = 1016.17 (10) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 200 K

  • 0.17 × 0.13 × 0.08 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.594, Tmax = 0.775

  • 15116 measured reflections

  • 4557 independent reflections

  • 3361 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 0.98

  • 4557 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, we reported on the synthesis, crystal structures and the magnetic properties of coordination polymers of composition [M(NCS)2(pyridine)2]n with M = Mn, Fe, Ni, Co (Boeckmann & Näther, 2010, 2012). The Mn compound is an antiferromagnet, the Fe and Ni compounds show a metamagnetic transition whereas the Co compound shows a slow relaxation of the magnetization. The crystal structures of the compounds with Mn, Fe and Co were determined by single crystal x-ray diffraction, whereas for [Ni(NCS)2(pyridine)2]n no single crystals were available at that time. However, the structure of the Ni compound was already reported by Reller & Oswald (1986). They found a monoclinic unit cell in which the pyridine rings are completely disordered. Weissenberg photographs gave hint for super structure reflections leading to a triclinic unit cell that is similar to that of the title compound. However, in that paper the monoclinic average structure was presented. Later we re-investigated the Ni compound in a different context and we accidentally obtained crystals suitable for single crystal x-ray analysis. Therefore, we have determined this structure in the correct unit cell. The isotypic structure of [Cu(NCS)2(pyridine)2]n was already reported by Chen et al. (2005).

The asymetric unit of the title compound, [Ni(NCS)2(pyridine)2]n, contains two crystallographically independent Nickel(II)-cations, of which one (Ni2) is located on general position whereas the second one (Ni1) is located on a crystallographic inversion centre. In the crystal structure each Ni(II) cation is octahedrally coordinated by two N- and two S-atoms from the thiocyanato anions and by two N-atoms from the pyridine ligands. The Ni cations are linked by N,S bridging thiocyanato anions into chains that are elongated along the crystallographic b-axis (Fig. 2).

Related literature top

For isotypic structures, see: Boeckmann & Näther (2010, 2012); Chen et al. (2005). For a previous structure determination, see Reller & Oswald (1986).

Experimental top

NiSO4.6H2O was obtained from Merck, Pyridine was obtained from Riedel-de Haen and Ba(NCS)2 was obtained from Alfa Aesar. Ni(NCS)2 was prepared by stirring Ba(NCS)2*3H2O (17.5 g, 56.9 mmol) and NiSO4*6 H2O (15.0 g, 57 mmol) in water (500 mL) for two hours. The white residue of BaSO4 was filtered off and the solution was evaporated using a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of 9.1 mg Ni(NCS)2 (0.05 mmol) and 2.02 µL Pyridin (0.025 mmol) in 2.0 mL EtOH which was overlayed by 2.0 mL Hexan in a sealed 10 mL glass-vessel at 75°C. After 2 days the solution was slowly cooled down and green blocks of the title compund start to grow.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with Uiso(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.93 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound. Anisotropic displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = -x , -y, -z, ii = -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. : Crystal structure of the title compound viewed along the crystallographic b-axis.
catena-Poly[[bis(pyridine-κN)nickel(II)]-di-µ-thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Ni(NCS)2(C5H5N)2]Z = 3
Mr = 333.07F(000) = 510
Triclinic, P1Dx = 1.633 Mg m3
a = 8.4913 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6808 (5) ÅCell parameters from 15654 reflections
c = 15.3608 (9) Åθ = 2.6–27.8°
α = 92.675 (5)°µ = 1.73 mm1
β = 96.460 (4)°T = 200 K
γ = 114.753 (4)°Block, green
V = 1016.17 (10) Å30.17 × 0.13 × 0.08 mm
Data collection top
Stoe IPDS-1
diffractometer
4557 independent reflections
Radiation source: fine-focus sealed tube3361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.3°, θmin = 1.3°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1010
Tmin = 0.594, Tmax = 0.775k = 1111
15116 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
4557 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Ni(NCS)2(C5H5N)2]γ = 114.753 (4)°
Mr = 333.07V = 1016.17 (10) Å3
Triclinic, P1Z = 3
a = 8.4913 (5) ÅMo Kα radiation
b = 8.6808 (5) ŵ = 1.73 mm1
c = 15.3608 (9) ÅT = 200 K
α = 92.675 (5)°0.17 × 0.13 × 0.08 mm
β = 96.460 (4)°
Data collection top
Stoe IPDS-1
diffractometer
4557 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
3361 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.775Rint = 0.038
15116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.98Δρmax = 0.59 e Å3
4557 reflectionsΔρmin = 0.61 e Å3
259 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.02953 (11)
Ni20.32606 (3)0.32286 (3)0.336439 (15)0.02901 (10)
N10.0934 (2)0.0319 (2)0.12221 (11)0.0341 (4)
C10.1736 (3)0.0104 (2)0.19156 (13)0.0297 (4)
S10.28609 (8)0.02190 (7)0.29065 (3)0.03567 (13)
N20.1934 (2)0.3389 (2)0.22085 (11)0.0338 (4)
C20.1373 (3)0.3294 (2)0.14746 (13)0.0304 (4)
S20.05487 (8)0.30834 (7)0.04288 (3)0.03629 (14)
N30.4604 (2)0.3121 (2)0.45220 (12)0.0344 (4)
C30.5331 (3)0.3368 (2)0.52339 (13)0.0299 (4)
S30.63925 (7)0.37650 (7)0.62438 (3)0.03426 (13)
N110.2559 (2)0.0842 (2)0.03401 (11)0.0335 (4)
C110.3966 (3)0.2009 (3)0.01811 (14)0.0397 (5)
H110.38100.24280.07170.048*
C120.5638 (3)0.2621 (3)0.00381 (16)0.0485 (6)
H120.65830.34330.03430.058*
C130.5885 (3)0.2008 (3)0.08315 (17)0.0493 (6)
H130.69970.24060.09980.059*
C140.4458 (3)0.0800 (3)0.13697 (16)0.0469 (6)
H140.45880.03610.19070.056*
C150.2824 (3)0.0242 (3)0.11042 (14)0.0391 (5)
H150.18660.05850.14710.047*
N210.0930 (2)0.2202 (2)0.39438 (11)0.0331 (4)
C210.0530 (3)0.0912 (3)0.35280 (14)0.0391 (5)
H210.05120.04690.29680.047*
C220.2066 (3)0.0205 (3)0.38916 (16)0.0461 (5)
H220.30560.06870.35810.055*
C230.2099 (3)0.0848 (3)0.47198 (17)0.0489 (6)
H230.31150.03970.49790.059*
C240.0615 (3)0.2164 (3)0.51590 (15)0.0478 (6)
H240.06070.26180.57210.057*
C250.0870 (3)0.2805 (3)0.47529 (14)0.0395 (5)
H250.18730.36960.50550.047*
N310.5650 (2)0.4229 (2)0.28291 (11)0.0330 (4)
C310.6917 (3)0.3742 (3)0.30780 (14)0.0412 (5)
H310.67130.29330.34790.049*
C320.8516 (3)0.4379 (3)0.27708 (16)0.0475 (6)
H320.93650.40110.29660.057*
C330.8827 (3)0.5559 (3)0.21738 (17)0.0491 (6)
H330.98900.60080.19550.059*
C350.5977 (3)0.5386 (3)0.22479 (14)0.0410 (5)
H350.51180.57500.20670.049*
C340.7535 (3)0.6065 (3)0.19054 (16)0.0489 (6)
H340.77070.68570.14970.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0282 (2)0.0340 (2)0.02409 (19)0.01121 (16)0.00356 (14)0.00216 (14)
Ni20.02799 (16)0.03284 (16)0.02439 (15)0.01130 (12)0.00377 (11)0.00245 (10)
N10.0364 (10)0.0351 (9)0.0290 (9)0.0139 (8)0.0041 (7)0.0012 (7)
C10.0327 (10)0.0285 (9)0.0289 (10)0.0130 (8)0.0081 (8)0.0040 (7)
S10.0417 (3)0.0389 (3)0.0270 (3)0.0190 (2)0.0005 (2)0.0022 (2)
N20.0351 (10)0.0363 (9)0.0291 (9)0.0155 (8)0.0019 (7)0.0003 (7)
C20.0299 (10)0.0281 (9)0.0335 (10)0.0121 (8)0.0069 (8)0.0024 (8)
S20.0412 (3)0.0376 (3)0.0280 (3)0.0161 (2)0.0000 (2)0.0031 (2)
N30.0354 (10)0.0342 (9)0.0312 (9)0.0130 (8)0.0031 (7)0.0026 (7)
C30.0319 (11)0.0284 (9)0.0298 (10)0.0130 (8)0.0052 (8)0.0035 (7)
S30.0375 (3)0.0361 (3)0.0279 (3)0.0157 (2)0.0000 (2)0.0020 (2)
N110.0312 (9)0.0380 (9)0.0310 (8)0.0141 (8)0.0064 (7)0.0046 (7)
C110.0334 (12)0.0433 (12)0.0375 (11)0.0125 (10)0.0034 (9)0.0003 (9)
C120.0305 (12)0.0519 (14)0.0548 (14)0.0104 (11)0.0040 (10)0.0021 (11)
C130.0365 (13)0.0537 (14)0.0626 (15)0.0208 (11)0.0173 (12)0.0125 (12)
C140.0470 (14)0.0543 (14)0.0469 (13)0.0261 (12)0.0181 (11)0.0064 (11)
C150.0390 (12)0.0430 (12)0.0353 (11)0.0175 (10)0.0068 (9)0.0025 (9)
N210.0308 (9)0.0355 (9)0.0318 (9)0.0125 (7)0.0058 (7)0.0045 (7)
C210.0353 (11)0.0389 (11)0.0386 (11)0.0120 (10)0.0042 (9)0.0026 (9)
C220.0328 (12)0.0429 (12)0.0548 (14)0.0083 (10)0.0068 (10)0.0083 (10)
C230.0438 (14)0.0505 (14)0.0571 (15)0.0194 (12)0.0241 (12)0.0182 (11)
C240.0514 (15)0.0524 (14)0.0421 (12)0.0213 (12)0.0196 (11)0.0072 (10)
C250.0387 (12)0.0429 (12)0.0340 (11)0.0137 (10)0.0093 (9)0.0017 (9)
N310.0298 (9)0.0375 (9)0.0322 (8)0.0139 (8)0.0068 (7)0.0062 (7)
C310.0393 (12)0.0477 (12)0.0433 (12)0.0236 (10)0.0087 (10)0.0132 (10)
C320.0366 (13)0.0531 (14)0.0594 (15)0.0234 (11)0.0128 (11)0.0121 (11)
C330.0410 (14)0.0484 (13)0.0600 (15)0.0173 (11)0.0206 (12)0.0103 (11)
C350.0398 (12)0.0429 (12)0.0431 (12)0.0185 (10)0.0100 (10)0.0135 (10)
C340.0500 (15)0.0476 (13)0.0556 (14)0.0220 (12)0.0213 (12)0.0214 (11)
Geometric parameters (Å, º) top
Ni1—N12.0317 (17)C13—H130.9300
Ni1—N1i2.0317 (17)C14—C151.382 (3)
Ni1—N11i2.1189 (17)C14—H140.9300
Ni1—N112.1189 (17)C15—H150.9300
Ni1—S2i2.5568 (6)N21—C211.339 (3)
Ni1—S22.5568 (6)N21—C251.341 (3)
Ni2—N32.0299 (18)C21—C221.383 (3)
Ni2—N22.0359 (18)C21—H210.9300
Ni2—N212.1203 (17)C22—C231.373 (3)
Ni2—N312.1241 (17)C22—H220.9300
Ni2—S3ii2.5357 (6)C23—C241.371 (4)
Ni2—S12.5432 (6)C23—H230.9300
N1—C11.160 (3)C24—C251.382 (3)
C1—S11.648 (2)C24—H240.9300
N2—C21.159 (3)C25—H250.9300
C2—S21.648 (2)N31—C311.336 (3)
N3—C31.157 (3)N31—C351.338 (3)
C3—S31.647 (2)C31—C321.382 (3)
S3—Ni2ii2.5357 (6)C31—H310.9300
N11—C111.338 (3)C32—C331.370 (3)
N11—C151.342 (3)C32—H320.9300
C11—C121.380 (3)C33—C341.373 (3)
C11—H110.9300C33—H330.9300
C12—C131.379 (3)C35—C341.381 (3)
C12—H120.9300C35—H350.9300
C13—C141.372 (4)C34—H340.9300
N1—Ni1—N1i180.00 (11)C11—C12—H12120.6
N1—Ni1—N11i90.89 (7)C14—C13—C12118.6 (2)
N1i—Ni1—N11i89.11 (7)C14—C13—H13120.7
N1—Ni1—N1189.11 (7)C12—C13—H13120.7
N1i—Ni1—N1190.89 (7)C13—C14—C15119.2 (2)
N11i—Ni1—N11180.00 (8)C13—C14—H14120.4
N1—Ni1—S2i86.10 (5)C15—C14—H14120.4
N1i—Ni1—S2i93.90 (5)N11—C15—C14122.9 (2)
N11i—Ni1—S2i90.46 (5)N11—C15—H15118.6
N11—Ni1—S2i89.54 (5)C14—C15—H15118.6
N1—Ni1—S293.90 (5)C21—N21—C25117.13 (18)
N1i—Ni1—S286.10 (5)C21—N21—Ni2121.78 (14)
N11i—Ni1—S289.54 (5)C25—N21—Ni2121.07 (14)
N11—Ni1—S290.46 (5)N21—C21—C22123.1 (2)
S2i—Ni1—S2180.00 (3)N21—C21—H21118.4
N3—Ni2—N2178.85 (6)C22—C21—H21118.4
N3—Ni2—N2188.45 (7)C23—C22—C21118.7 (2)
N2—Ni2—N2191.90 (7)C23—C22—H22120.6
N3—Ni2—N3189.20 (7)C21—C22—H22120.6
N2—Ni2—N3190.46 (7)C24—C23—C22119.1 (2)
N21—Ni2—N31177.59 (6)C24—C23—H23120.5
N3—Ni2—S3ii94.72 (5)C22—C23—H23120.5
N2—Ni2—S3ii84.17 (5)C23—C24—C25118.9 (2)
N21—Ni2—S3ii90.85 (5)C23—C24—H24120.5
N31—Ni2—S3ii89.89 (5)C25—C24—H24120.5
N3—Ni2—S187.63 (5)N21—C25—C24123.0 (2)
N2—Ni2—S193.47 (5)N21—C25—H25118.5
N21—Ni2—S189.58 (5)C24—C25—H25118.5
N31—Ni2—S189.77 (5)C31—N31—C35116.92 (18)
S3ii—Ni2—S1177.618 (19)C31—N31—Ni2120.73 (13)
C1—N1—Ni1163.91 (16)C35—N31—Ni2122.34 (15)
N1—C1—S1179.12 (19)N31—C31—C32123.4 (2)
C1—S1—Ni299.82 (7)N31—C31—H31118.3
C2—N2—Ni2165.01 (16)C32—C31—H31118.3
N2—C2—S2177.92 (18)C33—C32—C31118.9 (2)
C2—S2—Ni199.72 (7)C33—C32—H32120.6
C3—N3—Ni2165.50 (17)C31—C32—H32120.6
N3—C3—S3178.70 (19)C32—C33—C34118.5 (2)
C3—S3—Ni2ii100.49 (7)C32—C33—H33120.7
C11—N11—C15117.22 (19)C34—C33—H33120.7
C11—N11—Ni1122.02 (14)N31—C35—C34122.9 (2)
C15—N11—Ni1120.75 (15)N31—C35—H35118.6
N11—C11—C12123.2 (2)C34—C35—H35118.6
N11—C11—H11118.4C33—C34—C35119.4 (2)
C12—C11—H11118.4C33—C34—H34120.3
C13—C12—C11118.9 (2)C35—C34—H34120.3
C13—C12—H12120.6
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C5H5N)2]
Mr333.07
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.4913 (5), 8.6808 (5), 15.3608 (9)
α, β, γ (°)92.675 (5), 96.460 (4), 114.753 (4)
V3)1016.17 (10)
Z3
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.17 × 0.13 × 0.08
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.594, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
15116, 4557, 3361
Rint0.038
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 0.98
No. of reflections4557
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.61

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2718–m2719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReller, A. & Oswald, H. R. (1986). J. Solid State Chem. 62, 306–316.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds